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We’re interesting in understanding the behavior of the set of equations

dxi
dt

= −xi + ηi (1a)

ηi =
N∑
j=1

Jijφ(xj). (1b)

We’re going to use the method outlined in “Intrinsically-generated fluctuating activity in

excitatory-inhibitory networks,” by Francesca Mastrogiuseppea and Srdjan Ostojic, PLoS

Computational Biology 13(4):e1005498 (2017). But our version is a bit simpler.

One of the main things we want to compute is the population averaged firing rate, denoted

µ,

µ ≡ 1

N

∑
i

〈xi〉 (2)

where angle brackets indicate an average with respect to time. Using Eq. (1), we have

µ =
1

N

∑
ij

Jij〈φ(xj)〉. (3)

Interchanging indices, this becomes

µ =
∑
j

〈φ(xj)〉
1

N

∑
i

Jij. (4)

Let

J̄ =
1

N

∑
i

Jij. (5)

Note that J̄ should depend on j. However, in the large N limit that dependence should be

weak, so we ignore it. We thus should think of J̄ as an average over the distribution of the

weight matrix. Strictly speaking this is valid only in the N →∞ limit, and in principle one

should be careful about fluctuations, but it’s not hard to show that they aren’t important.

Once we make this approximation, we have

µ = J̄
∑
j

〈φ(xj)〉. (6)
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As usual, to perform that average, we assume that xj is a Gaussian random variable,

and compute its mean and variance with respect to index, j. The variance, which we’ll call

∆(0), is given by

∆(0) ≡ 1

N

∑
i

〈xi(t)xi(t)〉 − µ2. (7)

If we knew ∆(0), we could solve for the mean, µ, self-consistently via

µ = NJ̄

∫
dξφ
(
µ+

√
∆(0)ξ

)
. (8)

If there’s a stable equilibrium, it’s pretty easy to compute ∆(0) – we can use standard

methods (going back at least to Danny Amit, and probably further). However, for large

enough coupling, xi(t) is time dependent, which makes things a lot harder. In that case, it

turns out that we need the whole covariance of xi(t). The rest of this writeup is devoted to

finding that.

The covariance is defined in the usual way,

∆(τ) ≡ 1

N

∑
i

〈xi(t)xi(t+ τ)〉 − µ2. (9)

To compute this, we write down a differential equation for it. Using Eq. (1a), we have

d∆(τ)

dτ
= − 1

N

∑
i

〈xi(t)xi(t+ τ)〉+
1

N

∑
i

〈xi(t)ηi(t+ τ)〉 (10)

= − 1

N

∑
i

〈xi(t)xi(t+ τ)〉+
1

N

∑
i

〈xi(t− τ)ηi(t)〉.

Taking another derivative (using the second line in the above expression), again using

Eq. (1a), and performing a very small amount of algebra, arrive at

d2∆(τ)

dτ 2
=

1

N

∑
i

〈xi(t)xi(t+ τ)〉 − 1

N

∑
i

〈xi(t)ηi(t+ τ)〉

+
1

N

∑
i

〈xi(t)xi(t+ τ)〉 − 1

N

∑
i

〈ηi(t)ηi(t+ τ)〉 (11)

=
1

N

∑
i

〈xi(t)xi(t+ τ)〉 − 1

N

∑
i

〈ηi(t)ηi(t+ τ)〉

= ∆(τ)−

[
1

N

∑
i

〈ηi(t+ τ)ηi(t)〉 − µ2

]
.
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So now all we need to do is compute the term in brackets. Using Eq. (1a), we have

1

N

∑
i

〈ηi(t)ηi(t+ τ)〉 =
1

N

∑
ijk

JijJik〈φ(xj(t))φ(xk(t+ τ))〉 . (12)

Rearranging terms gives us

1

N

∑
i

〈ηi(t)ηi(t+ τ)〉 =
∑
jk

〈φ(xj(t))φ(xk(t+ τ))〉 1

N

∑
i

JijJik. (13)

As above, we take the large N limit, which means we can compute the last term by averaging

over the distribution of the weight matrix. Let us define (for lack of better notation)

1

N

∑
i

JijJik ≡

 J1J2 j 6= k

J2 j = k.
(14)

The second term, J2, is the second moment of the weight matrix. The first term, J1J2, takes

into account correlations in the elements of the weight matrix (if they exist). In the absence

of correlations, J1J2 is simply J̄2. Inserting this definition into Eq. (11), and using Eqs. (6)

and (19), we have

∆(τ)− d2∆(τ)

dτ 2
=
∑
j 6=k

[
J1J2〈φ(xj(t))φ(xk(t+ τ))〉 − J̄2〈φ(xj(t))〉〈φ(xk(t))〉

]
+
∑
j

[
J2〈φ(xj(t))φ(xj(t+ τ))〉 − J̄2〈φ(xj(t))〉2

]
. (15)

We’ll assume xj and xk are uncorrelated when j 6= k, something that needs to be shown.

We don’t do that here; see Francesca and Srdjan’s paper. But with this assumption, the

above expression simplifies,

∆(τ)− d2∆(τ)

dτ 2
= Cov[J ]

∑
j 6=k

〈φ(xj(t))〉〈φ(xk(t))〉 (16)

+
∑
j

[
J2〈φ(xj(t))φ(xj(t+ τ))〉 − J̄2〈φ(xj(t))〉2

]
where

Cov[J ] ≡ J1J2 − J̄2. (17)
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It is convenient to make another simplification to Eq. (16). Including the j = k term in

the first sum and then subtracting it from the second gives us

∆(τ)− d2∆(τ)

dτ 2
= Cov[J ]

∑
jk

〈φ(xj(t))〉〈φ(xk(t))〉 (18)

+
∑
j

[
J2〈φ(xj(t))φ(xj(t+ τ))〉 − J1J2〈φ(xj(t))〉2

]
To write this in a more compact form, we make the definition

C(τ) ≡ 1

N

∑
j

〈φ(xj(t))φ(xj(t+ τ))〉 . (19)

Inserting this definition into Eq. (18), using Eq. (6), and noting that xj(t) and xj(t+ τ) are

temporally uncorrelated in the limit τ →∞, we arrive at

d2∆(τ)

dτ 2
= ∆(τ)−

[
µ2Cov[J ]/J̄2 +NJ2C(τ)−NJ1J2C(∞)

]
. (20)

To solve this equation, we need to compute compute averages over weight matrices. We’ll

consider two cases, stochastic and fixed in-degree. We’ll consider stochastic in-degree first,

as it is easier. In this case,

Jij =

 J0 prob C/N

0 prob 1− C/N,
(21)

where K is the number of connections per neuron. We’ll assume K is fixed and let N go to

infinity.

Because the weights are independent, J1J2 = J̄2. Consequently, Cov[J ] vanishes. We

thus need only compute the first and second moments of J ; these are given by

J̄ =
K

N
J0 (22a)

J2 =
K

N
J2
0 . (22b)

Thus,

d2∆(τ)

dτ 2
= ∆(τ)−KJ2

0C(τ) +
K2

N
J2
0C(∞)→ ∆(τ)−KJ2

0C(τ) (23)

where the “→” is valid in the limit N →∞ with K fixed.
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For fixed in-degree, for each i exactly K of the Jij are nonzero, and all nonzero elements

are equal to J0. This doesn’t change the first and second moments of J ; they’re still given

by Eq. (22). However, there are correlations among the Jij, so J1J2 is no longer equal to J̄2.

Instead, we have

J1J2 =
1

N

∑
i

JijJik = J2
0

K

N

K − 1

N
(24)

where in the above expression j 6= k. Consequently,

Cov[J ] = − K

N2
J2
0 , (25)

reflecting the fact that the Jij are very weakly anti-correlated. Inserting this into Eq. (20),

using Eq. (22) for the first two moments of Jij, and again taking the large N limit with K

fixed, we arrive at

d2∆(τ)

dτ 2
= ∆(τ)−KJ2

0

[
C(τ)− µ2

]
. (26)

To solve either of our two equations – Eq. (23) or (26) – we need to relate C(τ) to ∆(τ).

That’s relatively straightforward: from Eq. (19) and the definition of ∆(τ), Eq. (9), we have

C(τ) =
〈
φ(µ+ ξ1)φ(µ+ ξ2)

〉
ξ1,ξ2

(27)

where ξ1 and ξ2 are zero mean Gaussian random variables with with 〈ξ21〉 = 〈ξ2〉 = ∆(0) and

〈ξ1ξ2〉 = ∆(τ). Alternatively, if ∆(τ) ≥ 0, this can we written

C(τ) =
〈
φ
(
µ+

√
∆(0)−∆(τ)ξ1 +

√
∆(0)ξ

)
φ
(
µ+

√
∆(0)−∆(τ)ξ2 +

√
∆(0)ξ

)〉
ξ,ξ1,ξ2

(28)

where now ξ, ξ1 and ξ2 are independent, zero mean, unit variance Gaussian random variables.

So now Eqs. (23) and (26) can be solved, at least in principle. However, that’s not trivial.

For details, see Francesca and Srdjan’s paper.
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