Peter Latham, February 18, 2018 1

Hopfield networks

We are interested in building a network of neurons that has a large number of fixed points.
There are at least two reasons such a network might be useful. First, it can serve as a
memory — if you want to store something in your brain for a while in the absence of input,
pretty much be definition you need an attractor network. Second, you often want to recall
something based on partial information. For instance, you might see somebody’s face and
want to recall other information about them (name, friend or enemy, etc.).

In principle we should do this with spiking neurons — and such networks have been built.
However, that’s complicated. So to illustrate the main idea, we’ll consider about the simplest
possible network: binary units with a discrete time update rule. We’ll assume there are N
units, denoted z;, each of which can take on the values +1 or —1. We’ll assume they are
updated according to the rule

z;(t+ 1) = sign (Z Jiix; (t)> : (1)

j=1
There are three main ways to implement this set of equations:

1. Asynchronous update: a unit, ¢, is chosen randomly, and it is updated according to
Eq. (1).

2. Serial update: the units are updated in order, and periodically: 1,2,..., N, 1,2,..., N, ...

3. Synchronous update: the term inside the parentheses, > i Jijr;, is computed, and
that’s used to simultaneously update all the units.

In some regimes it doesn’t matter which scheme you use, but asynchronous update is easiest
to analyze, so that’s what we’ll focus on.

While this update rule is massively simplified compared to real networks, it does retain
some semi-realistic features: if input is large enough the neuron “spikes” (x; = +1); otherwise
the neuron is “silent” (x; = —1). The reason for the quote marks is that we’re not really
going to think of +1 as active and —1 as silent: as we’ll see, at any time, about half the
neurons take on the value 4+1; much more than in a real network.

Lyapunov function for the Hopfield network. The first observation is that if the weight ma-
trix is symmetric (J;; = Jj;), its diagonal elements are zero (J; = 0), and updates are
asynchronous, this system of equations admits a Lyapunov function — a function that cannot
increase under Eq. (1). We're not going to use that fact, so you can skip this on first reading.
It’s important mainly for historical reasons.

The Lyapunov function, which we’ll call E (for energy), is

= __Z%)Jij;(t) (2)

The difference in energy on subsequent times steps, denoted AFE, is given by

AE = E(t+1) - E(t) :——Z@Hl)me]tH le) Jija;(t) (3)

]

Peter Latham, February 18, 2018 2

Because we’re using asynchronous update, only one unit changes at a time. For definiteness,
assume it’s unit k. Noting that z;(t + 1) = x;(¢) unless ¢ = k, the change in energy is

AE = —%Z (vt + 1) — 21 (1)) Ty, () ij (Tt + 1) — a4 (1)) - (4)

j#k J#k

We didn’t need the fact that J; = 0 to derive this expression. That’s because xf =1
regardless of the value of z;, so the diagonal elements of the weight matrix don’t contribute
to any time variation in the energy, and so they don’t contribute to AE. Using the fact that
the weight matrix is symmetric, this simplifies to

AFE = —(ZL‘k(t—f- —ZL‘k ZJ;C].I‘] (5)
Jj#k

Inserting the update rule, Eq. (1), into this expression gives us

AE = —(sign(hg(t)) — zx(t)) hi(t) (6)

where

)= Jim(t). (7)
J#k
Here we did use the fact that J; = 0; otherwise, the term h; that appears inside the sum
would have a contribution from .Jj.

There are three possibilities: hy(t) = 0, hi(t) > 0 and hg(t) < 0. If hy(t) = 0, the
right hand side of Eq. (6) is zero, and the energy doesn’t change. If hy(t) > 0, then either
xk(t) = 41, in which case the energy doesn’t change, or xj(t) = —1, in which case the energy
goes down. Similarly, if hy(¢) < 0, the energy either stays the same or goes down. Thus, no
matter what the value of hy(t), the energy does not increase.

The fact that the energy is non-decreasing means that the system must eventually go to
a local energy minimum, at which point the x; can’t change any more. This means Eq. (1)
admits at least one fixed point. The trick is to get multiple fixed points, and so have some
control over them.

The Hopfield weight matrix. John Hopfield, in a seminal 1982 paper (PNAS 79:2554-2558,
1982), considered the following weight matrix

1 p
=28 (8)
pn=1

where the ¢! are drawn 4id from the following simple distribution,

e — { +1 probability 1/2

—1 probability 1/2. 9)

As we’ll see below, the £ turn out to be stored memories. Note that we have not made the
restriction J;; = 0, so there’s no guarantee that there will be a Lyapunov function. But in

Peter Latham, February 18, 2018 3

the large N limit there is. Note also that the factor of 1/N is unnecessary, as were taking
the sign, but it’s convenient.

If p is not too large compared to N, there are fixed points close to the /. To see why,
we'll let z;(t) = £ and compute z;(t + 1),

zi(t +1) = sign (% Zéﬁ‘éﬁ-‘é}’) = sign (55 S @“5;5;) . (10)

] WFEV,J

To get a handle on the sum over p and j, note that the terms in this sum are random
and uncorrelated — each term is either +1 or —1, with probability 1/2. Therefore, by the
central limit theorem, the sum (without the factor 1/N) is a Gaussian random variable with
a variance equal to the number of terms in the sum, which is N(p — 1). Thus, the variance
of the whole term (including the factor 1/N) is (p—1)/N, which, for large p, is close to p/N.
We thus have have

i(t + 1) = sign (& + (p/N)"*n;) (11)

where n; is a zero mean, unit variance Gaussian random variable. If p < N, meaning the
number of stored memories is much smaller than the number of neurons. No matter how
small p is, in the large N limit (with p/N fixed) there will always be a few “bit flips”. But
that doesn’t change the basic story: £ is an approximate fixed point.

When p is on the same order as N, the analysis becomes a lot harder. In 1987 — five
years after Hopfield published his classic paper — Sompolinsky and colleagues showed that
memories exist so long as p < 0.138N, but when p exceeds this value there’s complete
blackout and all memories vanish (Amit, Gutfreund and Sompolinsky, Ann. Phys. 173:30-
67, 1987). They used the replica method; a simpler derivation, using mainly pedestrian
methods, was given in “Introduction to the theory of neural computation,” (Hertz, Krogh
and Palmer, Addison Wesley, 1991).

This would seem to be good news: even modest networks in mammals can easily exceed
one million neurons, so it would seem to be easy to store lots of memories; certainly enough
to explain human memory. However, there’s a problem: the weight matrix given in Eq. (8)
has all-all connectivity, meaning every unit is connected to every other unit. This is not the
case in real brains; each neuron connects to somewhere between 1,000 and 10,000 others.
We’ll consider this more realistic connectivity next. We’'ll find that memory capacity is
greatly reduced.

Realistic connectivity. Let’s assume that each neuron in our network connects to, on average,
K others; for simplicity we’ll assume that those K other neurons are chosen randomly. In
that case, the weight matrix (the equivalent of Eq. (8)) becomes

p
Jy =Ly (12)
pn=1

where

(13)

{ 1 probability K/N
Xij

0 probability 1 — K/N .

Peter Latham, February 18, 2018 4

Again we'll assume x; = &/ and estimate the capacity — the number of memories, p, for
which there aren’t too many bit flips. With this setting, z;(t) is given by

1 1 1
zi(t + 1) = sign (g ; Xz‘jfffff}’) = sign (55% ; Xij + 7= Z Xijfffﬁf?) . (14)

HFEV,]

The term K~ 37 xi; = 1, with corrections that are O(1/ VK). We'll ignore those corrections
and focus on the second term, which has the potential to be much larger. There are about
K(p—1) terms in the sum, each of which is either +1 or —1, and they are all uncorrelated.
Thus, the variance of the sum is K(p — 1), and the variance when the factor of 1/K is
included is (p — 1)/ K ~ p/K. Consequently, we may write

zi(t+1) = sign (& + (p/K)"*n;) . (15)

So long as p is small compared to K, there’s a fixed point very close to /. And, based on
the results for all-all connectivity, we wouldn’t be surprised if the capacity of the network —
the number of memories it can store — is proportional to K.

That’s the case, but it’s a bit problematic; K simply isn’t that big. Even if K = 10,000,
multiplying that by 0.138, the scaling factor for the all-all case, the network can store only
1,380 memories. One possible fix is to build sparse memories: rather than letting half the
¢! be equal to +1, in a sparse system only a factor f are equal to +1. This increases the
capacity; it scales more or less like K/ f (Tsodyks and Feigel’'man Europhys. Lett. 6:101-105,
1988). If one makes f very small — on the order of 1/N, then we regain the O(N) capacity
that we saw in the all-all case. Unfortunately, in realistic spiking networks in which there’s
a background state — a state where all the neurons fire at low rate — f must be greater than
some threshold (Roudi and Latham, PLoS Comp. Biol. 3:679-1700, 2007). In simulations,
that threshold was about 0.2. And the capacity was not very high; the number of memories
that could be stored was about 0.05K. For K = 10,000, that’s only 500 memories! Not
nearly enough to explain the memory capacity of humans.

The conclusion, then, is that we have no idea how to build networks of spiking neurons
that exhibit a large number of attractors. OK, that’s not exactly true: one could make a
high capacity attractor by decoupling neurons, and making each of them bistable. In that
case, for a network of N neurons, there would be 2V attractors. However, that wouldn’t be
so useful; what we want is a set of attractors with reasonable basins of attraction, so that
we can fill in missing information based on partial cues. For that the neurons need to be
coupled, and it’s the coupling that makes things hard. This is an active area of research.

