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Representing continuous variables is easy in a computer – so long as you’re willing to live with
machine precision. It’s harder in networks of neurons, at least on short timescales. That’s
because activity has to be stable at a continuous (or very finely discretized) set of firing rate.
A continuous set of firing rates – the focus here – corresponds to a line attractor: a line in
some high dimensional space on which activity is stable. This is the one higher dimensional
analog of a point attractor. It doesn’t end there, of course; one could imagine n dimensional
attractor with n pretty much any integer (n = 0 corresponds to point attractors). Our focus
here is on constructing a line attractor with networks of neurons, and, more importantly,
manipulating the dynamics so that activity can move along the attractor. But much of what
I say will be applicable to higher dimensional attractors.

Constructing a line attractor with spiking neurons is possible, but the analysis is pretty
hard. So we’ll consider instead a network of rate-based neurons. We’ll assume they obey the
(relatively standard, at least in the rate-based world) equation.

ṙi = φ

(
N∑
j=1

Wijrj

)
− ri. (1)

Here ri is the firing rate of neuron i (out of N neurons), a dot denotes a time derivative,
and φ is the gain function, which is typically approximately sigmoidal. We’ll assume that
Eq. (1) admits an equilibrium at ri = fi(θ),

fi(θ) = φ

(∑
j

Wijfj(θ)

)
. (2)

What’s important is that the equilibrium corresponds to a one dimensional manifold, with
position on the manifold determined by θ.

There’s an important aside here (it’s an aside because we won’t use it in our analysis):
line attractors are structurally unstable. That means any perturbation to the equations will
destroy the line attractor, and turn it into a set of point attractors (and repellers). To see
why, write Eq. (2) as

fi(θ)− φ

(∑
j

Wijfj(θ)

)
= 0. (3)

The left hand side is a function of θ that is exactly zero for all θ. Most functions do not
have this property. And any perturbation at all – either to the weights or the function φ –
will make the left hand side a function of θ, and so destroy the line attractor.

It gets worse: for arbitrary weight matrix Wij, it’s extremely hard (and maybe even
impossible in general; see the last section) to construct a line attractor. It’s a lot easier if
Wij is translation invariant: Wij = Wi−j. In that case, if fi is an equilibrium of Eq. (1) then
so is fi+k for any integer k. This doesn’t quite mean you have a line attractor, but it does
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mean you have a set of point attractors. If N is large they’re very closely spaced, which
allows you to store continuous variable with precision 1/N . Moreover, it’s not hard to tweak
the nonlinearity to give you a true line attractor.

That’s the end of the aside; now back to our line attractor. A pure line attractor by itself
isn’t that interesting: the network just goes to an equilibrium and stays there forever. To do
something useful, it must be possible to control the position on the line. For that, though,
we need to destroy the line attractor (which is easy to do, as line attractors are structurally
unstable), but in controlled ways (which is slightly harder). So we’ll add external input.
We’ll also add recurrent connections that, even without external input, would destroy the
line attractor. Such connections will always be there; it’s simply not possible for a biological
system to admit a perfect line attractor. With these additions, our network equations become

ṙi = φ

(∑
j

Wijrj +
∑
j

Vijrj + hi

)
− ri . (4)

This set of equations is hard to solve in general. To make progress, and to gain insight into
its behavior, we’ll assume that both Vij and hi are small. This is reasonable: we want to
keep some semblance of our line attractor, and if Vij and hi are too large, that won’t happen.

The smallness assumption suggests a perturbative treatment. We thus let

ri(t) = fi(θ0) + δri(t) (5)

where fi(θ0) is a fixed point of the dynamics given in Eq. (1). We’ll eventually choose θ0 so
that δri(t) is small, and then ask what happens at t+ dt. Exactly how we do that, which is
somewhat important, will be specified below.

Inserting Eq. (5) into (4), Taylor expanding around ri = fi(θ0), keeping only terms that
are linear in δri, Vij and hi (in particular, we throw away the term

∑
j Vijδrj), and using

Eq. (2), we arrive at

δṙi = φ′i(θ0)

[∑
j

Wijδrj +
∑
j

Vijfj(θ0) + hi

]
− δri (6)

where

φ′i(θ0) ≡ φ′

(∑
j

Wijfj(θ0)

)
. (7)

We’re using kind of confusing notation: the prime on the right hand side is a derivative; the
prime on the left hand side isn’t. But it should usually be clear from context what we mean.
As usual, I’m using “=” when I should be using “≈”. We’ll assume that Vij and hi are small
enough that that’s OK.

Let us make the definitions

Jij(θ) ≡ φ′i(θ)Wij − δij (8a)

Si(θ) ≡ φ′i(θ)
∑
j

Vijfj(θ) + φ′i(θ)hi (8b)
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where δij is the Kronecker delta: it’s 1 if i = j and zero otherwise. This allows us to write
Eq. (6) in vector notation,

δṙ = J(θ0) · δr + S(θ0) (9)

where bold denotes vectors and matrices, and “·” denotes a dot product: J · δr =
∑

j Jijδrj
(and for two vectors, say p and q, p · q =

∑
i piqi).

To solve Eq. (9), we express δr in terms of the eigenvectors of J(θ0). Let the kth eigenvec-
tor be vk(θ0) and its corresponding eigenvalue λk(θ0). We’ll also need the adjoint eigenvalues,
v†k(θ0). These three quantities are defined via the relations (for general θ)

J(θ) · vk(θ) = λk(θ)vk(θ) (10a)

v†k(θ) · J(θ) = λk(θ)v†k(θ) . (10b)

The eigenvectors and their adjoints can always be chosen to be be orthogonal to each other;
in addition, we’ll choose the normalization

v†l (θ) · vk(θ) = δlk . (11)

Letting

δr =
∑
k

ak(t)vk(θ0) , (12)

inserting this into Eq. (9), and using Eq. (10a), we arrive at a set of equations for the ak,∑
k

ȧkvk(θ0) =
∑
k

akλk(θ0)vk(θ0) + S(θ0). (13)

Dotting both sides with v†l (θ0), using Eq. (11), and then letting l→ k, we arrive at

ȧk = λk(θ0)ak + v†k(θ0) · S(θ0) . (14)

If we were linearizing around a fixed point, the next step would be to determine stability
by finding the signs of the eigenvalues. However, because we have a line attractor (when hi
and Vij are zero), there’s a zero eigenvalues, which makes things a little harder. We have
already said that the line attractor is stable. That means if the system gets a small push off
the line attractor, it returns back. However, even under the unperturbed dynamics, Eq. (1),
because of the zero eigenvalue it doesn’t usually return to the same place.

Using k = 0 for the zero eigenvalue, the equation for a0 is

ȧ0 = v†0(θ0) · S(θ0). (15)

This is just an integrator, and so the change in a0 after a time dt is especially simple,

a0(t+ dt) = a0(t) + dtv†0(θ0) · S(θ0). (16)
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Because a0 integrates its input, under the unperturbed dynamics, for which there is no input
(as S(θ0) = 0), a0 doesn’t decay. This is in marked contrast to the other ak, which do decay
to zero when S(θ0) = 0. Thus, when S(θ0) = 0,

r(t′ →∞) = f(θ0) + a0(t)v0(θ0). (17)

(Here f(θ0) is a vector whose ith component is fi(θ0)).
This suggests a natural way to choose θ0: make sure that a0(t) = 0 under the unperturbed

dynamics. In general,

a0(t) = v0(θ0) ·
(
r(t)− f(θ0)

)
(18)

(see Eqs. (5) and (12), and use Eq. (11)); for a0(0) to be zero, we want to choose θ0 so that

v0(θ0) · r(t) = v0(θ0) · f(θ0). (19)

With this choice, r(t+ dt) becomes

r(t+ dt) = f(θ0) + dtv0(θ0)v
†
0(θ0) · S(θ0) +

∑
k 6=0

ak(t+ dt)vk(θ0) (20)

where we used Eq. (16) and the fact that our choice of θ0 ensured that a0(t) = 0.
We now want to use the expression for r(t + dt) to determine the drift along the line

attractor. To do that, we need to know what v0 is. It turns out that we can write down an
explicit expression for it. Differentiating both sides of Eq. (2) gives us

f ′i(θ) = φ′i(θ)
∑
j

Wijf
′
j(θ) (21)

where the prime on fi(θ) denotes a derivative. This relationship implies that f ′i(θ) is an
eigenvector of Jij whose eigenvalue is zero (see Eq. (8a)). Thus, v0i(θ0) = f ′i(θ0); or, in
vector notation, v0(θ0) = f ′(θ0). Using this notation, r(t + dt) can be written (in the limit
dt→ 0)

r(t+ dt) = f(θ0) + dt f ′(θ0)v
†
0(θ0) · S(θ0) +

∑
k 6=0

ak(t+ dt)vk(θ0) (22)

= f
(
θ0 + dtv†0(θ0) · S(θ0)

)
+
∑
k 6=0

ak(t+ dt)vk(θ0).

This gives us the following set of equations,

r(t+ dt) = f(θ) +
∑
k 6=0

ak(t+ dt)vk(θ) (23a)

θ̇ = v†0 · S(θ) (23b)

θ(t) = θ0 . (23c)

The starting time, t, is arbitrary. Thus, the differential equation for θ holds for all time. In
fact, Eq. (23b) is the important result; we don’t care very much how the other ak evolve.
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If the right hand side of Eq. (23b) doesn’t change sign with θ, then the trajectories will
drift along the attractor forever; if the right hand side does change sign, with negative slope,
then θ can be pulled to a fixed point. In either case, we don’t have a line attractor: in the
former we have a limit cycle (if θ is periodic); in the latter we have one or more fixed points.

So how can we control drift along the line attractor? The natural thing to do is provide
appropriate external input. To investigate what we mean by “appropriate,” we isolate the
external input by letting Vij = 0. Then, using Eq. (8b), we see that

v†0(θ) · S(θ) =
∑
i

v†0i(θ)φ
′
i(θ)hi . (24)

To make sense of this equation, we need to know what v†0i(θ) looks like. It obeys the equation
(dropping the θ-dependence for clarity)∑

j

v†0j(θ)φ
′
j(θ)Wji = v†0i(θ) . (25)

We can’t make much progress in the general case, but we can if Wij is symmetric, so that’s
what we’ll use. Multiplying both sides of Eq. (25) by φ′i we see that if Wij is symmetric,
Eq. (25) can be written∑

j

φ′i(θ)Wij

(
v†0j(θ)φ

′
j(θ)

)
=
(
v†0i(θ)φ

′
i(θ)
)
. (26)

Comparing this to Eq. (21), we see that

v†0i(θ) =
1

Z(θ)

f ′i(θ)

φ′i(θ)
(27)

where Z(θ) is chosen to ensure that v†0 · f ′ = 1,

Z(θ) =
∑
i

f ′i(θ)
2

φ′i(θ)
(28)

(see Eq. (11) and note that v0 = f ′),
Combining Eqs. (23b), (24) and (27), we see that θ evolves according to

θ̇ =
1

Z(θ)

∑
i

f ′i(θ)hi . (29)

If we want to easily control the drift, we want the right hand side to be independent of θ,
without hi depending on θ (because we don’t want to have to know θ to control motion along
the line attractor). A natural choice is h constant: hi = h. In that case, θ evolves according
to

θ̇ = h
1

Z(θ)

∑
i

f ′i(θ) . (30)
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This would be ideal: by modifying external input, h, we could induce drift along the line
attractor at any rate we wanted. However, as we’ll see shortly, for the “standard” line
attractor at least, the sum over i vanishes, so this won’t work.

Alternatively, we could use the recurrent connectivity, Vij, to induce drift along the
attractor. Letting hi = 0,

θ̇ =
∑
ij

v†0i(θ)φ
′
i(θ)Vijfj(θ) (31)

(see Eqs. (23b) and (8b)). Using Eq. (27), this becomes

θ̇ =
1

Z(θ)

∑
ij

f ′i(θ)Vijfj(θ) . (32)

Here there is slightly more hope: letting, in a slight abuse of notation, Vij → g(t)Vij, we
have

θ̇ = g(t)
1

Z(θ)

∑
ij

f ′i(θ)Vijfj(θ) . (33)

Now we just have to make the right hand side independent of θ, again with Vij independent
of θ. As we’ll see in the next section, at least under the standard model, that’s possible.
However, while it’s straightforward to encode g(t) in neural activity (from, say, another
network in the brain), the interaction is multiplicative, and so not all that easy to do with
real neurons. An alternative approach is given in the homework.

The standard model for line attractors

As mentioned above, constructing a line attractor for an arbitrary weight matrix is difficult.
However, it’s relatively trivial for a translation invariant weight matrix: Wij = Wi−j. In that
case, Eq. (2) becomes

f(θi − θ) = φ

(∑
j

Wi−jf(θj − θ)

)
(34)

where the θi are equally spaced, say with spacing ∆θ. It’s easy to see that if this equation is
satisfied for θ = θ0, it’s satisfied for θ = θ0 + k∆θ with k an integer. For convenience, we’ll
assume it’s satisfied for arbitrary (non-integer) k, making this a true line attractor. We’ll
also assume that θ is a periodic variable – which is kind of important; otherwise, things
break down at the edges. And finally, we’ll assume that Wi−j is symmetric: Wi−j = Wj−i.
This is the standard model for periodic line attractors. We can now investigate our schemes
above for inducing drift.

To simplify the analysis, we’ll take the continuum limit. Basically, we take N to ∞, so
the matrix multiplication in Eq. (2) turns into a convolution,∑

j

Wi−jf(θj − θ)→
∑
j

W (θi − θj)f(θj − θ) ≈
1

∆θ

∫
dαW (θi − α)f(α− θ) . (35)
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Defining the rescaled weights

w(θ) =
W (θ)

∆θ
, (36)

we have ∑
j

Wi−jf(θj − θ) ≈
∫
dαw(θi − α)f(α− θ) . (37)

Thus, after a small amount of algebra, Eq. (2) becomes

f(θ) = φ

(∫
dαw(θ − α)f(α)

)
. (38)

We’ll focus first on drift induced by hi, with hi = h (Eq. (30)). For this case, the sum
over i on the right hand side of Eq. (30) becomes∑

i

f ′i(θ)→
1

∆θ

∫
dα f ′(α− θ) =

1

∆θ
[f(αmax − θ)− f(αmin − θ)]. (39)

Because θ is periodic, αmax = αmin, and the last term is zero. So if hi is independent of i,
the weight matrix is translation invariant and the connectivity is symmetric (this last one is
needed to write down the adjoint eigenvalue), there’s no easy way to use external input to
control the position on the attractor.

Now we’ll assume hi = 0 and ask about the effect of Vij. Letting

Vij =
v(θi, θj)

∆θ2
, (40)

Eq. (33) becomes

θ̇ = g(t)
1

Z(θ)

∫
dαdβ f ′(α− θ)v(α, β)f(β − θ) (41)

where, using Eq. (7) for φ′i(θ), Z(θ) is given by

Z(θ) ≡
∫
dα

f ′(α− θ)2

φ′
(∫

dβw(α− β)f(β − θ)
) (42)

Let v(α, β) be translation invariant, v(α, β) = v(α− β), leading to

θ̇ = g(t)
1

Z(θ)

∫
dαdβf ′(α− θ)v(α− β)f(β − θ) . (43)

The integral is clearly independent of θ, as we can see by making the change of variables
α→ α+ θ and β → β+ θ. Similarly the normalizer, Z(θ), is independent of θ, which we can
see by making the same change of variables in Eq. (42). Thus, θ̇ ∝ g(t). We also need to
make sure that the integral over α and β isn’t zero. We can do that by, for example, making
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v an odd function of its argument. In that case, the integral over β is an approximation to
a derivative, and so the integral over α is approximately the integral of the square of the
derivative of f , which is positive.

The less standard model for line attractors
To perform this analysis, we needed Wi−j to be symmetric, so that we could write down

an explicit expression for the adjoint eigenvector, v†0. What happens when Wi−j is not
symmetric? The short answer is that I don’t know. But I can speculate.

I have two beliefs in this case, neither of which I’m sure about. The first is that Z(θ) is
still independent of θ. The second is that∑

i

v†0i(θ)φ
′
i(θ) 6= 0 . (44)

It would be nice to know whether either of these is true, but I haven’t been able to figure
that out. But let’s say they are. We are then left with another question: is it possible to
build a line attractor when Wi−j is not symmetric? Unfortunately, I don’t know the answer
to that one either. But at least I can outline the issues.

The approach is to choose the weight matrix, w, and the equilibrium function, f , and
solve for the gain function, φ. If we can’t find a gain function that satisfies Eq. (38) for any
function f , than that weight matrix doesn’t admit a line attractor. To do that, it helps to
make the definition

F (θ) ≡
∫
dαw(θ − α)f(α). (45)

Then, Eq. (38) can be written

φ(F (θ)) = f(θ) . (46)

Because we know the mapping from f(θ) to F (θ), we know φ evaluated at all points of
interest – or at least all points of interest for constructing the line attractor. For other
points we can choose φ arbitrarily.

Equation (46) must be satisfied for all θ, which isn’t quite as trivial as it seems. That’s
because there are typically more than one value of θ that yield the same value of F (θ). For
those values, it’s f(θ) must also be the same. Put more succinctly, we have the condition

if F (θ1) = F (θ2), then f(θ1) must equal f(θ2). (47)

If f(θ) is symmetric, f(θ) = f(−θ), w is symmetric, w(θ) = w(−θ), and both f and F
are unimodal, then Eq. (47) is satisfied. That takes a little thinking, but a few well-drawn
figures should convince you. The key observation is that if both f and w are symmetric,
then F and f peak in the same place, and they’re both symmetric around that peak. Add
to that the unimodal constraint, and everything works out nicely.

Now we get to the question posed above: if w(θ) is not symmetric, is there some function
f and nonlinearity φ such that Eq. (46) holds for all θ? Although I said in class that the
answer is no, I’m now much less sure. What I showed is that if you pick an arbitrary function
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f , even a unimodal one, it’s very unlikely to satisfy Eq. (46). But that’s not the question;
we want to know if, for fixed non-symmetric w(θ), there’s a φ and f for which Eq. (46)
is satisfied for all θ. I’m actually leaning toward yes, but I have not been able to find an
explicit construction. This will have to wait for the exam. ;)

Finally, I should point out that we did not have to assume that w is translation invariant;
we could have performed all of the analysis in this section with an arbitrary weight matrix,
of the form w(θ, α). But that would make things even harder.
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