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Linear analysis

Background

Many of the processes in computational neuroscience are modeled as ordinary differential
equations. These equations have the form

dxi

dt
= Fi(x) (1)

where x = (x1, x2, ..., xn) is an n-dimensional vector and Fi is some function. The xi

might, for instance, be voltage and gating currents in a Hodgkin-Huxley model, synaptic
variables in a short term plasticity model, or firing rates in a network model. Except in
very rare instances, this set of equations can’t be solved analytically. We can, however,
get some intuition into the dynamics by considering the fixed points and their stability.
The “stability” part is where linear analysis comes in.

Linearizing equations

Linearizing Eq. (1) starts with finding a fixed point. Assume we’ve done that, and that
the fixed point is at x0; that is, Fi(x0) = 0 for all i. We then Taylor expand around x0

by letting

x = x0 + δx , (2)

or, in component form, xi = x0,i + δxi. Inserting either of these expressions into Eq. (1),
and noting that dx0,i/dt = 0, we have

dδxi

dt
= Fi(x0 + δx) . (3)

We then assume that δx is small and expand Fi(x0 + δx) to first order,

Fi(x0 + δx) ≈ Fi(x0) +
∑

j

∂Fi(x0)

∂x0,j

δxj =
∑

j

∂Fi(x0)

∂x0,j

δxj (4)

where the second equality follows because Fi(x0) = 0. It is useful to define the Jakobian
matrix, J, via
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Jij =
∂Fi(x0)

∂x0,j

. (5)

Then, replacing the “approximately equals” sign that appears in Eq. (4) by an equality
(which is valid in the limit δxi → 0), Eq. (3) becomes

dδxi

dt
=

∑

j

Jijδxj . (6)

Alternatively, we can use vector notation and write

dδx

dt
= J · δx (7)

where J is a matrix with elements Jij and “·” is the standard dot product: J · δx =∑
j Jijδxj .
As with just about every equation, we solve this one by guessing. Our guess is that

δx = veλt (8)

where v is some (constant) vector. Inserting this into Eq. (6), and noting that dδx/dt =
λx, we have

J · v = λv . (9)

This is an eigenvalue equation, and it must be solved for both λ and v. This is done in
two steps. The first is to solve for λ. As we (should) know from linear algebra, Eq. (9)
has a nontrivial solution (meaning a solution in which at least one of the elements of v is
nonzero) if and only if

Det[J− λI] = 0 (10)

where “Det” is the determinant and I is the identity matrix. If J is n × n, then this
equations has n different solutions – n different values of λ. For each of them there is a
different eigenvector. Let us use λk to denote the kth eigenvector and vk to denote its
corresponding eigenvector. Mathematically, λk and vk are related via

J · vk = λkvk . (11)

If we were interested only in stability, we would solve Eq. (10) for the λk, and then
determine stability by looking at the real part of all of them: if the all the real parts were
negative, then the fixed point is stable; if at least one is positive, then the fixed point
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is unstable. However, we are often interested in one more thing: the dynamics near the
fixed point. That is, how does δx(t) evolve given that we know δx(0), its initial value?

To answer that, we need the full expression for δx(t), which is

δx(t) =
∑

k

akvke
λkt (12)

where the ak are constant. It is easy to verify that this does indeed satisfy Eq. (7). Our job
now is to find the coefficients, ak. To do that, we introduce adjoint (or left) eigenvectors.
These, which we denote v

†
k, obey the equations

v
†
k · J = λkv

†
k . (13)

If J is symmetric, then the adjoint eigenvectors are equal to the eigenvectors; otherwise,
they aren’t. The really important fact about them is that they form an orthogonal basis,
in the sense that they can be chosen so that

v
†
k · vl = δkl (14)

where δkl is th Kronecker delta: δkl = 1 if k = l and 0 otherwise.
As an aside, orthogonality is easy to show, at least when all the eigenvectors are

different:

v
†
k · J · vl = λkv

†
k · vl = λlv

†
k · vl . (15)

The first equality follows from Eq. (13); the second from Eq. (11). The second equality
tells us that if λk 6= λl, then v

†
k · vl = 0. So, if no two eigenvalues are the same, so that

λk 6= λl implies that k 6= l, then it follow that v†
k · vl = 0 whenever k 6= l. Forcing v

†
k · vk

to be 1 is just a matter of choosing a normalization.
To see why all this is useful, dot both sides of Eq. (12) with v

†
l , use the orthogonality

condition given in Eq. (14), and evaluate the expression at t = 0. This gives

v
†
l · δx(t) = al (16)

Inserting this into Eq. (12) (and changing l to k), we see that

δx(t) =
∑

k

vkv
†
k · δx(0) e

λkt . (17)

This is a nice expression. More importantly, it is also often very useful. That’s because
at long times the right hand side is dominated by the largest eigenvalue; in that case
Eq. (17) is reduced to one term.

Note that by evaluating Eq. (17) at time t = 0, we have
∑

k

vkv
†
k = I . (18)
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Moreover, differentiating Eq. (17) once with respect to time, evaluating the expression at
t = 0, and using Eq. (7), we see that

∑

k

λkvkv
†
k = J . (19)

(There are easier ways of showing this; for instance, by showing that the eigenvalues and
eigenvectors of the left and right hand sides of Eq. (19) are the same.) It is also not hard
(for instance, by taking more time derivatives) to show that

∑

k

λn
kvkv

†
k = Jn (20)

where Jn means take n dot products: Jn ≡ J ·J · ... with J appearing n times on the right
hand side. All of this is mind-numbingly useful; you should remember it.

The 2-D case

This is next!

4


