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1 Linear algebra

Linear algebra is mainly concerned with solving equations of the form

A · x = y , (1)

which is written in terms of components as∑
j

Aijxj = yj . (2)

Generally, y is known and we want to find x. For that, we need the inverse of A. The
inverse, denoted A−1, is the solution to the equation

A−1 ·A = I (3)

where I is the identity matrix; it has 1’s along the diagonal and 0’s in all the off diagonal
elements. In components, this is written∑

ij

A−1ij Ajk = δik (4)
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where δik is the Kronecker delta,

δik =

{
1 i = k
0 i 6= k .

(5)

If we know the inverse, then we can write down the solution to Eq. (1),

x = A−1 · y . (6)

That all sounds reasonable, but what really just happened is that we traded one problem
(Eq. (1)) for another (Eq. (3)). To understand why that’s a good trade, we need to under-
stand linear algebra – which really means we need to understand the properties of matrices.
So that’s what the rest of this section is about.

Probably the most important thing we need to know about matrices is that they have
eigenvectors and eigenvalues, defined via

A · vk = λkvk . (7)

Note that λk is a scalar (it’s just a number). If A is n × n, then there are n distinct
eigenvectors (except in very degenerate cases, which we typically don’t worry about), each
with its own eigenvalue.

To find the eigenvalues and eigenvectors, note that Eq. (7) can be written (dropping the
subscript k, for reasons that will become clear shortly),[

A− λI
]
· v = 0 . (8)

For most values of λ, this corresponds to n equations and n unknowns, which means that
v is uniquely determined. Unfortunately, it’s uniquely determined to be 0. So that’s not
very useful. However, for particular values of λ, some of the n equations are redundant –
meaning, more technically, the rows of the matrix A − λI are linearly dependent. In that
case, there is a vector, v, that is nonzero and solves Eq. (8). That’s an eigenvector, and the
corresponding value of λ is its eigenvalue.

To see how this works in practice, consider the following 2× 2 matrix,

A =

(
5 2
4 3

)
. (9)

For this matrix, Eq. (8) can be written(
5− λ 2

4 3− λ

)(
v1
v2

)
=

(
0
0

)
. (10)

As is easy to verify, for most values of λ (for instance, λ = 0), the only solution is v1 = v2 = 0.
However, for two special values of λ, 1 and 7, there are nonzero values of v1 and v2 that
solve Eq. (10) (as is easy to verify). Note also that when λ takes on either of these values,
the determinant of A − λI is zero (see Eq. (31a) for the definition of the determinant of a
2× 2 matrix).
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The fact that the determinant vanishes is general: the eigenvalues associated with matrix
A are found by solving the so-called characteristic equation,

Det[A− λI] = 0 (11)

where Det stands for determinant (more on that shortly). If A is n × n, then this is an
nth order polynomial; that polynomial has n solutions. Those solutions correspond to the n
eigenvalues. For each eigenvalue, one must then solve Eq. (7) to find the eigenvectors.

So what’s a determinant? There’s a formula for computing it, but it’s so complicated
that it’s rarely used (you can look it up on Wikipedia if you want). However, you should
know about the properties of determinants, three of the most important being

Det[A ·B] = Det[A]Det[B] (12a)

Det[A] =
∏
k

λk (12b)

Det[AT ] = Det[A] (12c)

Det[A−1] = Det[A]−1 . (12d)

Note that Eq. (12d) follows from Eq. (12a), so we don’t really need it. Superscript T denotes
transpose, which is pretty much what it sounds like,

ATij = Aji . (13)

Matrices also have adjoint, or left, eigenvectors, for which one often uses a dagger,

v†k ·A = λkv
†
k . (14)

Note that we have taken the eigenvalues associated with the adjoint eigenvectors to be the
same as the ones associated with the eigenvectors. To see why this is correct, write Eq. (14)
as

AT · v†k = λkv
†
k . (15)

These are found through the characteristic equation,

Det[AT − λI] = 0 . (16)

Because Det[A] = Det[AT ] (Eq. (12c)), and IT = I (true for all diagonal matrices), this is
the same as Eq. (11).

This analysis tells us that vk and v†k share the same eigenvalue. They also share something
else: an orthogonality condition. That condition is written

v†k · vl = δkl (17)

where, recall, δkl is the Kronecker delta (defined in Eq. (5)). The k 6= l part of this equation
is easy to show. Write

v†k ·A · vl = λlv
†
k · vl = λkv

†
k · vl . (18)
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The first equality came from Eq. (7); the second from Eq. (14). Consequently,

(λk − λl)v†k · vl = 0 . (19)

If all the eigenvalues are different, then v†k ·vl = 0 whenever k 6= l. If some of the eigenvalues

are the same, it turns out that one can still choose the eigenvectors so that v†k · vl = 0
whenever k 6= l. (That’s reasonably straightforward to show; I’ll leave it as an exercise for
the reader.) So why set v†k · vk to 1? It’s a convention, but it will become clear, when we
work actual problems, that it’s a good convention.

Note that Eq. (17) doesn’t pin down the magnitudes of the eigenvectors or their adjoints;
it pins down only the magnitude of their product: the eigenvectors can be scaled by any
factor, so long as the associated adjoint eigenvector is scaled by the inverse of that factor. As
far as I know, there’s no generally agreed upon convention for setting the scale factor; what
one chooses depends on the problem. Fortunately, all quantities of interest involve products
of vk and v†k, so the scale factor doesn’t matter.

As a (rather important) aside, if A is symmetric, then the eigenvectors and adjoint
eigenvectors are the same (as is easy to show from Eqs. (7) and (14)). In this case, the
orthogonality conditions implies that

vk · vl = δkl . (20)

Thus, for symmetric matrices (unlike non-symmetric ones), the magnitude of vk is fully
determined by the orthogonality conditions: all eigenvectors have a Euclidean length of 1.

There are several reasons to know about eigenvectors and eigenvalues. Most of them hinge
on the fact that a matrix can be written in terms of its eigenvectors, adjoint eigenvectors,
and eigenvalues as

A =
∑
k

λkvkv
†
k . (21)

To show that this equality holds, all we need to do is show that it holds for any vector, u.
In other words, if Eq. (21) holds, then we must have

A · u =
∑
k

λkvkv
†
k · u . (22)

(This is actually an if an only if, which we won’t prove.) Because eigenvectors are generally
complete, any vector u can be written uniquely as the sum of eigenvectors,

u =
∑
k

akvk . (23)

(And, of course, the same is true of adjoint eigenvectors.) Using Eq. (7), along with the
orthogonality condition, Eq. (17), we see that Eq. (22) is indeed satisfied. The only time
this doesn’t work is when the eigenvectors aren’t complete, but that almost never happens.
When it does, though, one must be careful.
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One of the reasons Eq. (21) is important is that it gives us an expression for the inverse
of a matrix,

A−1 =
∑
k

λ−1k vkv
†
k . (24)

To see that this really is the inverse, use orthogonality condition, Eq. (17) to write

A−1 ·A =
∑
kl

λ−1k vkv
†
k · λlvlv

†
l =

∑
k

vkv
†
k . (25)

It’s very important to realize that the right hand side is the identity matrix. The reasoning
is the same as that used to show that Eq. (21) is correct; you should convince yourself of
this!

As an aside, this generalizes to

f(A) =
∑
k

f(λk)vkv
†
k (26)

where f is any function that has a Taylor series expansion. We will rarely use this, but it
does occasionally come up, and it’s a good thing to know.

One of the important things about Eq. (24) is that it can be used to solve our original
problem, Eq. (1). Using Eq. (3), we see that

x =
∑
k

λ−1k vkv
†
k · y . (27)

So, once we know the eigenvectors, adjoint eigenvalues, and eigenvectors (and we have the
machinery to do that: we just have to solve the characteristic equation for the eigenvalues,
and then solve some linear equations for the eigenvectors and their adjoints), finding x
amounts to computing a bunch of dot products.

The following is a bit of an aside, but it will come up later when we solve differential
equations. If one of the eigenvalues of A is zero then, technically, its inverse does not exist
– the expression in Eq. (24) is infinity. However, it’s still possible for A−1 · y to exist; all
we need is for y to be orthogonal to any adjoint eigenvector whose corresponding eigenvalue
is zero. But this isn’t quite the end of the story. Suppose we want to solve Eq. (1) when
λ1 = 0 and v†1 · y = 1. In that case, the solution is

x =
n∑
k=2

λ−1k vkv
†
k · y + c1v1 (28)

where c1 is any constant. Because A · v1 = 0, this satisfies Eq. (1). So if A isn’t invertible,
we can have a continuum of solutions! We’ll actually use this fact when we solve linear
differential equations.

There is one more definition we need: the trace of a matrix, often denoted Tr. The trace
is the sum of the diagonal elements,

Tr[A] ≡
∑
i

Aii . (29)
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Using Eq. (21), along with the orthogonality conditions, Eq. (17), it is reasonably easy to
show that

Tr[A] =
∑
k

λk , (30)

which is why it’s an important quantity.
We end this section by applying some of these ideas to a 2 × 2 matrix. For that, the

determinant, which we’ll call D, and the inverse are given by

D = A11A22 − A12A22 (31a)

A−1 =
1

D

(
A22 −A12

−A21 A11

)
. (31b)

The first expression is a definition; the second is easy to verify. The characteristic equation,
Eq. (11), also has a simple form; using T for the trace (Eq. (29)), that equation is given by

λ2 − Tλ+D = 0 . (32)

This has two solutions, corresponding to the two eigenvalues, which we’ll call λ±,

λ± =
T ± (T 2 − 4D)1/2

2
. (33)

(You should verify that λ+ + λ− = D and λ+λ− = D. Thus, at least for 2 × 2 matrices,
Eqs. (30) and (12b) are correct.)

Finally, note that

T 2 − 4D = (A11 − A22)
2 + 4A12A21 . (34)

For arbitrary matrices, this quantity can be negative, and the eigenvalues can be complex
(for real matrices – matrices whose elements are all real – complex eigenvalues always come
in complex conjugate pairs). For symmetric matrices, on the other hand, this quantity is
non-negative. Consequently, real symmetric 2× 2 matrices have real eigenvalues. This turns
out to generalize: all real symmetric matrices have real eigenvalues. This isn’t that hard to
show; we’ll leave it as an exercise for the reader.

1.1 Matrix identities

inverse proportional to cofactors
det prod = prod det
log det = trace log
derivative of log det
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2 Fourier transforms (and other infinite dimensional

linear operators)

We often want to express a function in terms of other functions. For instance, we might
want to write a function f(x) as the sum of sines and cosines. If x has infinite range, that
sum turns into integrals, and we end up with an inverse Fourier transform,

f(x) =

∫ ∞
−∞

dk

2π
eikxf̂(k) (35)

where i =
√
−1. Why we would want to do this is discussed below.

Not surprisingly given its name, the inverse Fourier transform has an inverse – that’s the
Fourier transform,

f̂(k) =

∫ ∞
−∞

dx e−ikxf(x) (36)

Be aware that there are various conventions for signs and factors of 2π. Sometimes i is
replace by −i in the exponent; sometimes k is replaced by 2πk in the exponent, in which
case the factor of 2π in the denominator goes away; and sometimes the Fourier transform has
(2π)1/2 in the denominator, or even no denominator at all. And engineers have an annoying
habit of using j, which they set to −i. In each case, the inverse Fourier transform is adjusted
accordingly, so that it really is the inverse.

The first observation is that the Fourier transform can be thought of as a glorified dot
product between the matrix whose kth element is eikx. The matrix has an uncountably infinite
number of elements, but that’s kind of a detail. And if we wanted to actually compute the
Fourier transform, we would first discretize x and k, giving us a matrix with a countably
infinite number of elements, and then truncate, giving us a standard matrix. Thus, if you
understand linear algebra, you understand Fourier transforms.

That said, the fact that the matrix eikx has in uncountably infinite number of elements
does introduce some issue. In particular, the relevant identity matrix (see Eq. (3)) is now a
Dirac delta function, ∫

dx

2π
eikxe−ik

′x = δ(k − k′) . (37)

The term on the right – the Dirac delta function – is not a true function, but we’ll call it a
function anyway. And it’s the best function in the world. It’s discussed in Sec. 7.1 below,
but briefly: it is infinitely narrow and infinitely high, and the narrowness and height are just
right so that the area under it is 1. So it really is the continuum equivalent of the identity
matrix. As an aside, Eq. (37) is a really useful representation of the delta function; it comes
up all the time in probability theory, Bayesian inference, statistical physics, and probably
lots of other places.

So why would we ever want to Fourier transform a function? There are actually lots of
reasons, most of which have to do with the kind of eigenvector/eigenvalue analysis we did
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in the linear algebra section. We’ll give just one: the convolution theorem. Suppose that a
function g(x) is given in terms of a convolution,

g(x) =

∫
dx′K(x− x′)f(x′) . (38)

This comes up all the time, especially in neuroscience. Suppose we Fourier transformed both
sides. In that case, as is easy to show using Eq. (36),

ĝ(k) = K̂(k)f̂(k) (39)

where

K̂(k) ≡
∫ ∞
−∞

dx e−ikxK(x) . (40)

Equation (39) is the convolution theorem. What it says is that once we Fourier transform,
convolution reduces to multiplication. This makes convolutions easier in Fourier transformed
space than in the original space simply because multiplication is easier than integration. It
also allows us to find f(x) in terms of g(x); it’s given by the inverse Fourier transform of
K̂(k)/f̂(k). This method for finding f(x) is equivalent to using Eq. (27) to solve Eq. (1).
(Like I said, Fourier transforms are just linear algebra.) We will see other uses for Fourier
transforms when we discuss linear differential equations.

Fourier transforms are just one way of expressing a function as a sum (or integral) of
other functions. There are basically an infinite number of ways to do this, and there’s a
whole theory behind it. Which we won’t go into. Instead, we’ll just write down two common
alternatives. One is the Fourier sum. Suppose you have some function f(x) that has period
L, meaning f(x+ L) = f(x). In that case, f(x) can be written

f(x) =
∞∑

k=−∞

e2πik/Lf̂(k) (41)

where the sum is over integer k. This too has an inverse; as is easy to verify,

f̂(k) =

∫
dx

L
e−2πik/Lf(x) . (42)

Note that this is a mixed discrete/continuous transform: the Fourier sum is discrete; its
inverse is continuous. That happens all the time.

Finally, we end with the Laplace transform of the function f(t),

f̂(s) =

∫ ∞
0

dt e−stf(t) . (43)

Its inverse is sort of complicated,

f(t) =

∫
ds2πi estf̂(s) (44)

where the integration is along the imaginary s-axis. Complications come in because the path
of integration can be deformed in complex s-space, but we won’t go into that. We will point
out, though, that if you make the transformation s → is, this looks much like an inverse
Fourier transform. Laplace transforms are sometimes used to solve linear ordinary differential
equations, and they are important for computing averages of Dirichlet distributions.
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3 Ordinary differential equations (ODEs)

Ordinary differential equations are equations of the form

dxi
dt

= fi(x) . (45)

If fi(x) is a linear function of x, it’s a linear ODE; those we can solve. If, on the other
hand, fi(x) is a nonlinear function of x, there is generally no solution. In one and two
dimensions we can draw pictures that tell us a lot; beyond that life becomes very difficult,
mainly because the equations can admit chaotic dynamics.

Here we’ll focus mainly on problems we can solve: linear ODEs, and nonlinear ODEs in
one and two dimensions. We’ll also briefly consider stochastic ODEs, for which a noise term
is added to the right hand side of Eq. (45).

3.1 Linear ODEs

Linear ODEs have the form

dxi
dt

=
∑
j

Aijxj . (46)

Or, in vector notation,

dx

dt
= A · x . (47)

Linearity refers to the fact that the equations are linear in x. This has an important
consequence: if y(t) and z(t) are both solutions to Eq. (47), then so is their sum. The way
we solve these equations, then, is to find all possible solutions, and add them together.

As is well known, mainly because somebody figured it out a long time ago, the solutions
to Eq. (47) are, generally, exponentials: x ∝ eλt. (There are exceptions, which we’ll talk
about briefly below.) The problem is to find which values of λ are the relevant ones. To do
that, assume x = veλt, and insert that into Eq. (47). That yields

λv = A · v . (48)

This is an equation we’ve seen before: it’s the eigenvalue equation given in Eq. (7). (Not
really a big coincidence; all linear equations are essentially the same.) We know, therefore,
that if A is n×n, then there will be n eigenvalues, n eigenvectors, and n adjoint eigenvectors.
As usual, we denote these λk, vk and v†k. Then, the most general solution to Eq. (47) is

x(t) =
∑
k

akvke
λkt . (49)

Note that the solution depends on n numbers – the ak. So it’s really a family of solutions.
But for a particular problem, they have particular values. Usually (but not always), one
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is given an initial value problem, for which x(t = 0), commonly known as x(0), is known.
Inserting this into the above solution gives

x(0) =
∑
k

akvk . (50)

Using the orthogonality condition, Eq. (17), we can solve for the ak,

ak = v†k · x(0) . (51)

Inserting this into Eq. (49), we have

x(t) =
∑
k

eλkt vkv
†
k · x(0) . (52)

This is nice, compact expression. And it becomes especially useful if we’re interested in the
long time limit, because in that case

x(t) ≈ eλk0 t vk0v
†
k0
· x(0) (53)

where λk0 is the largest eigenvalue. Of course, if there are two eigenvalues that tie for largest,
both have to be included.

Eq. (47) is known as a homogeneous ODE. Often we have to solve homogeneous ones,
which have the form

dx

dt
−A · x = g(t) . (54)

We have sort of seen this before: the left hand side is a linear operator (meaning it’s linear
in x), so all we have to do is invert it. We know a lot about inverting matrices (which are
also linear operators; they’re just particularly simple ones). Inverting linear operators is a
little trickier, but the same principles apply: find the eigenvalues and eigenvectors, and use
those.

So how do we proceed? There are lot of ways, but one of my favorites is to write

x(t) =
∑
k

ak(t)vk (55)

where the vk are the eigenvectors of A. Inserting this into Eq. (54) gives us∑
k

dak(t)

dt
vk −A ·

∑
k

akvk = g(t) . (56)

Using the orthogonality relationships, and the fact that A·vk = λkvk, we find that equations
for the individual ak,

dak(t)

dt
− λkak = v†k · g(t) . (57)
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So we have reduced the problem: now we have to solve n one dimensional ODEs, and they
all have the same form. So once we solve one, we’ve solved all of them!

Because we essentially have one equation to solve, to ease notation we’ll consider the
equation

da

dt
− λa = g(t) . (58)

We’re going to use the Green function approach, because it’s powerful and intuitive. The
idea is to solve the equation

dG(t, t′)

dt
− λG(t, t′) = δ(t− t′) (59)

where the delta function is discussed in Sec. 7.1. Briefly, t’s zero when t 6= t′, infinite when
t = t′, and it integrates to one. Basically, it’s the continuous analog of the identity matrix.
Thus, the Green function is, essentially, the inverse of the linear operator d/dt−λ. As such,
that inverse operates on g(t). And, in fact, that’s (mainly) correct,[

d

dt
− λ
] ∫

dt′G(t− t′)g(t′) =

∫
dt′ δ(t− t′)g(t′) = g(t) . (60)

(You may want to consult Sec. 7.1 on the delta function.) Thus,

a(t) =

∫
dt′G(t, t′)g(t′) . (61)

There are, though, a couple of twists. We haven’t specified the limits of integration, and
that turns out to matter. Also, the most general solution includes the homogeneous solution,

a(t) =

∫
dt′G(t, t′)g(t′) + a0e

λt . (62)

The homogeneous solution is used to satisfy initial, or boundary, conditions. (Boundary
conditions are typically, although not always, conditions on a(t) at t = ±∞.)

So how do we solve Eq. (59)? For most values of t, the right hand side is zero, and the
solution is just eλt. However, there can be a discontinuity at t = t′. We thus write

G(t, t′) = eλ(t−t
′)

{
c1 t < t′

c2 t > t′
(63)

To be continued ...
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