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1 Background

Our goal is to understand the dynamics of networks of recurrently connected excita-
tory and inhibitory neurons. Loosely, this means: given single neuron properties and
connectivity, predict the qualitative behavior of a network without doing any computer
simulations. This is hard, if not impossible, to do in general, but we’ll consider cases
where it can be done.

We have in mind networks of the form

τm
dVi
dt

= f(Vi)−
∑
j

Aijgj(t)(Vi − Ej) (1a)

τs
dgj
dt

= −gj(t) +
∑
j,k

δ(t− tkj ) . (1b)

Here fi(V ) represents the single neuron dynamics, Ej is the reversal potential associated
with neuron j, δ(·) is the Dirac δ-function, and tkj is the time of the kth spike on neuron
j. Note that we could write down much more complicated equations – for instance, we
could include axonal delays and dendritic processing, the dynamics of gj could be made
more complicated, gj could depend on i as well as j, and, of course, the single neuron
dynamics could have additional variables associated with channels, resulting in Hodgkin-
Huxley type dynamics. However, the level of complexity in Eq. (1) will be sufficient to
get the main ideas across.

Given these equations, we would like to determine things like: the equilibrium (or
equilibria if there are more than one), stability around that equilibria, dynamics in the
case of unstable equilibria, and we might even want to predict the distribution of firing
rates. We can’t (yet) do any of that in general, but we can do some of it for some
connectivity structures. “Some” means two or three, depending on how you count, but
that may be enough to mainly understand how networks work before learning. Here we’ll
focus on randomly connected networks, and in the next couple of sections we’ll “solve”
the above equations in various limits.

2 Firing rate equations

A very phenomenological approach to studying networks is to assume that neurons are
completely described by their firing rates, and that the firing rate of any one neuron is a
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function of the firing rates of all the other neurons in the network. Given this assumption
(which is not exactly true, but is not terribly false either), a reasonable model is that the
“synaptic drive” to a neuron is a linear sum of the firing rates of its pre-synaptic neurons,
and the firing rate of a postsynaptic neurons is a nonlinear function of the synaptic drive.
This produces a model of the form

νi = φ (hi + hx,i) (2a)

hi =
∑
j

Bijνj (2b)

where νi is the firing rate of neuron i, hx,i is the external input to neuron i, Bij is the
connection strength from neuron j to neuron i, and φ is the gain function. The gain
function is typically approximately sigmoidal – zero when its argument is negative and
large, and around 100 Hz when its argument is positive and large. We could have let φ
depend on index, i, to make it different for every neuron, but that would have complicated
notation without adding anything conceptual. Note that we’re using Bij for the weights
instead of Aij (the latter being the weights that appeared in Eq. (1)). That’s because
the weights that connect firing rates to firing rates are different from those that connect
input spikes to voltage.

In the following we’ll solve Eq. (2) for two kinds of randomly connected networks:
those that violate Dale’s law, and those that don’t. (Recall that Dale’s law tells us that
a neuron makes either excitatory connections or inhibitory connections, but never both.)
In Sec. 3, we’ll go back to Eq. (1), and take into account time dependence.

2.1 Networks that violate Dale’s law

We’ll start by considering a network of N neurons in which the weights, Bij, are drawn
iid from a single distribution. Although this is inconsistent with Dale’s law, it illustrates
most of the techniques that we’ll use. To be somewhat realistic, we’ll consider sparse
connectivity, and we’ll let the probability of a connection be K/N . This corresponds to
an average of K connections per neurons, and it means that on average a fraction 1−K/N
of the Bij are zero. Typically K/N is on the small side – about 1/10. To be honest, sparse
connectivity adds very little conceptually, so on first reading it’s OK to mentally set K
to N , which simplifies some of the analysis.

Given that connectivity is random, it turns out that all we need are the mean and
variance of the elements of Bij. For now we’ll leave those arbitrary. We will, however,
introduce some scaling; we’ll let

Bij =
Wij

K1/2
. (3)
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With this scaling, the synaptic drive, Eq. (2b), becomes

hi =
1

K1/2

N∑
j=1

Wijνj . (4)

(In what follow, all sums will be from 1 to N , so we’ll suppress those limits below.) It’s
not hard to see why we introduced the factor of 1/K1/2: the sum on the right hand side
of Eq. (4) consists of about K terms, and so different realizations of that sum (different
values of i) will have a spread that scales as K1/2; dividing by 1/K1/2 makes that spread
independent of K. As we’ll see below, the O(1) spread in synaptic drive is critical for
producing a reasonable distribution of firing rates.

Our goal is to solve Eq. (2a) with the synaptic drive given in Eq. (4). Here “solve”
doesn’t mean find the firing rate of every neuron – because connectivity is random, the
identity of any one neuron doesn’t have much meaning. Instead, “solve” means “find the
distribution over firing rates”.

To do that, we use essentially one approximation, which is so important that we’ll
highlight it in red:

Whenever we see a sum over a large number of indices, we treat it as a Gaussian
random variable.

The right hand side of Eq. (4) qualifies as such a sum (it has about K nonzero terms, and
in the brain K is about 1,000). Thus, we treat hi as a Gaussian random variable. Note
that it’s Gaussian with respect to index i, meaning that if we were to make a histogram
of all the hi’s, it would look Gaussian.

The reason this is so important is that with the Gaussian assumption, all we need are
the mean and variance of h to calculate the distribution over the firing rates, P (ν) (as-
suming we know the distribution over the input, hx); that’s given by the usual expression

P (ν) =

∫
dhP (h)

∫
dhx P (hx) δ

(
ν − φ(h+ hx)

)
. (5)

Here P (h) is a Gaussian distribution (with mean and variance that we have to compute,
which we’ll do next), and P (hx) is the distribution over input, hx (which we take to
be independent of h). (If this doesn’t make sense, you can also get the firing rate by
sampling: sample h from a Gaussian distribution, sample hx from it’s distribution, set
ν to φ(h + hx), and repeat.) This doesn’t, of course, tell us how to get the mean and
variance of h, but that turns out to be a straightforward application of the central limit
theorem, as we show now.

Our starting point is to break Wij into a mean and fluctuating piece,

Wij = 〈W 〉+ δWij (6)
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where 〈W 〉 is the true mean of the weights (unless specified otherwise, angle brackets
denote an average over the true distribution of whatever is inside them). We should think
of this equation as defining δWij. Combining this relationship with Eq. (4), we see that

hi =
N

K1/2
〈W 〉ν +

1

K1/2

∑
j

δWijνj (7)

where in general the kth empirical moment of the firing rate is given by

νk ≡ 1

N

∑
i

νki . (8)

We can get ν from this expression by setting k = 1.
The first term in Eq. (7) appears to be proportional to N/

√
K. However, that’s not

the actual scaling, since most of the elements of Wij are zero. Defining W (with no
subscripts) to be the true average of the nonzero terms in Wij, we have (because of the
sparse connectivity)

〈W 〉 =
K

N
W . (9)

Consequently, Eq. (7) becomes

hi = K1/2Wν +
1

K1/2

∑
j

δWijνj . (10)

As promised above, we’re going to treat the second term in this expression as a Gaus-
sian random variable with respect to the index i. Its mean is zero, so we just need its
variance, denoted σ2

h,

σ2
h =

1

N

∑
i

(
1

K1/2

∑
j

δWijνj

)2

(11)

Turning the square of the single sum into a double sum, and rearranging terms slightly,
we have

σ2
h =

1

N

∑
jj′

νjνj′

(
1

K

∑
i

δWijδWij′

)
. (12)

Separating this into terms with j = j′ and j 6= j′ yields

σ2
h =

1

N

∑
j

ν2
j

(
1

K

∑
i

δW 2
ij

)
+

1

N

∑
j 6=j′

νjνj′

(
1

K

∑
i

δWijδWij′

)
. (13)
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The first term is O(1) (as we’ll see shortly). The second terms consists of a sum containing
N3 zero mean, uncorrelated random variables (OK, assumed-to-be-uncorrelated random
variables, since the firing rates are actually correlated with the weights; why we can
ignore those correlations is nontrivial), so it scales as N3/2ν2Var[W ]/NK. It turns out
that Var[W ] scales as K/N (for the same reason that the first term is O(1)); consequently,
the second term scales as 1/

√
N . Thus, in the large N limit we can drop that term and

focus on the first.
The sum over i in the first term can be expanded as

1

K

∑
i

δW 2
ij =

1

K

∑
i

〈δW 2
ij〉+

1

K

∑
i

(
δW 2

ij − 〈δW 2
ij〉
)

(14)

where, as above, the angle brackets denote an average over the true distribution of weights.
The second term consists of N zero mean, uncorrelated random variables, so it scales as√
N/K at worst, although it turns out to scale as 1/

√
K (which is not totally easy to

show, but not so hard either). Given that scaling, in the large K limit the second term is
smaller than the first term, so we can ignore it. To compute the first term, we just need
〈δWij〉, which is given by

〈δW 2
ij〉 = 〈W 2〉 − 〈W 〉2 =

K

N

(
W 2 + σ2

w,nonzero

)
− K2

N2
W 2 (15)

where σ2
w,nonzero is the variance of the nonzero weights. Rearranging terms slightly gives

〈δW 2
ij〉 =

K

N

(
σ2
w,nonzero +

(
1− K

N

)
W 2

)
. (16)

Consequently, to leading order in K,

1

K

∑
i

δW 2
ij = σ2

w,nonzero +

(
1− K

N

)
W 2 . (17)

Inserting this into Eq. (13) then yields

σ2
h = σ2

w ν
2 (18)

where

σ2
w ≡ σ2

w,nonzero +

(
1− K

N

)
W 2 (19)

and, recall, ν2 is given in Eq. (8). Again, on first reading, set K = N ; that will reduce a
lot of the algebra without any conceptual loss.
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So far the analysis has been reasonably straightforward. But we’ll now take a leap
and treat the second term in Eq. (10) (whose variance we just computed) as a Gaussian
random variable. We thus write

hi = K1/2Wν + σhξi (20)

where ξi is a zero mean, unit variance Gaussian random variable. Inserting this into
Eq. (2a) gives us

νi = φ
(
K1/2Wν + σhξi + hx,i

)
. (21)

The right hand side depends on the first and second moments of the firing rate, which
we don’t know. However, we can find them self consistently by simple computing the
empirical moments,

νk =
1

N

∑
i

φk
(
K1/2Wν + σhξi + hx,i

)
. (22)

In the large N limit, samples can be replaced by averages over distributions, which gives
us

νk =

∫
Dξ

∫
dhx P (hx)φ

k
(
K1/2Wν + σhξ + hx

)
(23)

where, recall, P (hx) is the distribution over the input, hx, and D (which can operate on
any variable) is defined via

Dξ ≡ e−ξ
2/2

√
2π

. (24)

It’s worth commenting here on the scaling with K, which we’ll assume is large. First,
the mean drive – the first term inside φ in Eq. (21) – is O(K1/2). Thus, to keep the gain
function from saturating (so that the mean firing rate is neither 0 nor νmax), either W
must be O(1/K1/2) or the external input, hx,i, must balance, almost perfectly, the K1/2

term (although in the latter case, the mean weight must be negative; see the discussion
of stability below). Assuming that one of these conditions holds, so we manage to get the
mean firing rate between 0 and νmax, then the distribution in firing rate is determined by
σh. To have a reasonable distribution – neither too narrow nor too broad (in the latter
case bimodal) – σh must be O(1). Only the K−1/2 scaling of the weights ensures this.

Equation (23) gives us two equations (k = 1, 2) and two unknowns (ν and ν2). In
general it must be solved self-consistently. However, to gain a qualitative understanding
of the behavior of this equation, we don’t really have to solve both. Instead, imagine
solving the equation for the second moment, ν2, in terms of the first, ν. In that case, the
equation for the mean firing rate becomes

ν =

∫
Dξ

∫
dhx P (hx)φ

(
K1/2Wν + σh(ν)ξ + hx

)
. (25)
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Figure 1. Plots of φ̃
(
K1/2Wν + 〈hx〉

)
(blue curve) versus ν for various values of K

and W . The 45 degree line is shown in magenta and the red and green filled circles are
the fixed points; green are stable and red are unstable. A) Positive mean weight, W ,
and relatively large K. B) Negative mean weight, W , and relatively large K. C)
Positive mean weight, W , and relatively small K.

The integral over ξ is a convolution, so it simply smooths the gain function. Assuming
the distribution of hx is more or less Gaussian as well (probably all we need is that it
has a single peak), the integral over hx also simply smooths the gain function. We can,
therefore write

ν = φ̃
(
K1/2Wν + 〈hx〉

)
(26)

where φ̃, which is defined implicitly via Eq. (25), is a smoothed version of φ, with the
degree of smoothing scaling with σh and the width of P (hx). Note that the degree of
smoothing depends on ν, a dependence we suppress for clarity. Although we don’t know
exactly what φ̃ looks like, for most (if not all) of our analysis its precise shape won’t
matter. This will become a lot more clear when we consider networks that obey Dale’s
law, which we do in the next section.

To find the solutions to Eq. (26), we can simply plot the right hand side versus ν and
look for intersections with the 45 degree line. We do that in Fig. 1 for various values of
the parameters. The blue curves in these plots are φ̃, the magenta line is the 45 degree
line, and the red and green filled circles are the fixed points. Panels A and B are plots
with relatively large K for, respectively, positive and negative mean weight, W . Panel
C shows a plot with positive mean weight but a much smaller value of K. Note that in
all three plots the blue curve could be shifted in either direction; for panels A and B, a
sufficiently large shift will eliminate two of the fixed points.

While this analysis can tell us about equilibria, it gives no hint about stability. For
that we add, in a very hacky way, time dependence,

τ
dν

dt
= φ̃

(
K1/2Wν + 〈hx〉

)
− ν . (27)
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This certainly has the right flavor: if, for instance, we suddenly increased synaptic drive,
that would cause the firing rate to go up, but with a delay (here determined by the time
constant, τ). However, although this equation has the right flavor, and gives reasonable
intuition, I have no idea how to derive it from first principles.

To determine stability, we linearize the right hand side around a fixed point, denoted
ν∗. Writing ν = ν∗ + δν, we have, in the limit of infinitesimal δν,

τ
dδν

dt
=
(
K1/2Wφ̃′

(
K1/2Wν∗ + 〈hx〉

)
− 1
)
δν (28)

where a prime denotes a derivative. The fixed point is stable if the term inside the
parentheses is negative and unstable if it’s positive. Thus, the condition for stability is
that the slope of φ̃ with respect to ν is less than one. The easiest way to determine this
is to simply plot φ̃

(
K1/2Wν + 〈hx〉

)
versus ν, and look at the slope at an equilibrium. If

the slope is less than 1 the equilibrium is stable; if it’s greater than 1 it’s unstable. With
this approach, it’s easy to see that the red filled circle in Fig. 1 correspond to an unstable
equilibrium and the green filled circles to stable equilibria. Note that in the large K limit,
the intermediate intersection (if it exists) can be stable only if W < 0; that is, only if the
neurons are inhibitory on average.

Finally, note that the intermediate intersection, which occurs at ν ≈ −〈hx〉/K1/2W ,
is O(1) only if 〈hx〉 ∝ K1/2. This is a general result, which we’ll see again in the next
section: for the external input to effect mean the firing rate, it needs to be O(K1/2).

2.2 Networks that obey Dale’s law

The analysis in the previous section ignored a salient feature of the brain: Dale’s law,
which says (more or less) that any particular neuron makes either excitatory connec-
tions or inhibitory connections, but never both. We thus need to redo the analysis, but
with extra indices: E for excitatory and I for inhibitory. The analysis is essentially the
same, although it’s more complicated because we have to keep track of which neurons are
excitatory and which are inhibitory. However, the network is much more interesting.

We’ll start by rewriting Eq. (2) as

ναi = φ

(∑
β

hαi +
√
Khαx + δhαxi

)
(29a)

hαi =
1

K1/2

∑
β,j

Wαβ
ij νβj (29b)

where α and β can be either E or I and the
√
K scaling in front of hαx was inspired by

the discussion at the end of the previous section. Note that we’re using the convention
that the inhibitory weights are negative, which is different than what I used in class. But
it makes the equations somewhat neater.
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Again, all we need are the mean and variance of hαi. Using exactly the same analysis
as above, we find that

〈hα〉 = K1/2
∑
β

Wαβνβ (30a)

Var[hα] =
∑
β

σ2
αβν

2
β (30b)

where the moments of the firing rates have definitions analogous to Eq. (8) and

Wαβ ≡ mean of nonzero weights from neurons of type β to neurons of type α (31a)

σ2
αβ ≡ σ2

αβ,nonzero +

(
1− K

N

)
W 2
αβ . (31b)

As above, σ2
αβ,nonzero is the variance of the nonzero weights projecting from neurons of

type β to neurons of type α. For simplicity, we assumed that the number of excitatory
and inhibitory neurons, denoted N , is the same.

Inserting Eq. (30) into Eq. (29a) gives us

ναi = φ

K1/2
∑
β

Wαβνβ +

(∑
β

σ2
αβν

2
β

)1/2

ξαi + δhαxi

 (32)

where ξαi is a zero mean, unit variance Gaussian random variable. As for the non-Dale’s
law case, to have an O(1) spread in firing rates, the variances, σ2

αβ, must be O(1). And

again, this happens only when the weights scale as K−1/2.
Averaging Eq. (32) over index, i, assuming, for simplicity, that δhαxi is a zero mean

Gaussian random variable with variance σ2
αx, and retracing the steps in the previous

section that let to Eq. (23), we arrive at the mean field equations

νkα =

∫
Dξ φk

(
K1/2

(∑
β

Wαβνβ + hαx

)
+
(∑

β

σ2
αβν

2
β + σ2

αx

)1/2

ξ

)
. (33)

This corresponds to equations for the first (k = 1) and second (k = 2) moments of the
excitatory and inhibitory firing rates. Because we have both excitatory and inhibitory
neurons, we have four equations.

As above, we can think of solving for the second moments in terms of the first, then
performing the integrals over ξ. Those integrals just smooth the gain functions, leading
to

να = φ̃

(
K1/2

(∑
β

Wαβνβ + hαx

))
. (34)
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As above, the degree of smoothing depends on the να, and as above, we suppress that
dependence for clarity.

Note that in the large K limit things greatly simplify. That’s because the term with
K1/2 in Eq. (33) dominates. So in that limit we can find the mean firing rates just by
solving a set of linear equations, ∑

β

Wαβνβ + hαx = 0 . (35)

These equations are valid so long the solution is such that νβ lies between 0 and νmax

for β equals both E and I (for simplicity we take νmax to be the same for excitatory
and inhibitory neurons). If νβ is outside this range, it should be set to either 0 or νmax,
whichever is appropriate. Taking this into account leads to the famous van Vreeswijk and
Sompolinsky nullclines [1], and they do a pretty good job describing the mean firing rates.
The effect of the so-called “quenched noise,” the ξ-related term in Eq. (33), is simply to
induce a spread in firing rates. But from a conceptual point of view it doesn’t add that
much

As in the non-Dale’s law case, the mean field equations don’t tall us anything about
either dynamics or stability. For that we have to add time dependence,

τα
dνα
dt

= φ̃

(
K1/2

(∑
β

Wαβνβ + hαx

))
− να . (36)

Again this is a total hack. But again it provides a pretty good picture of what’s actually
going on.

As we’ll see below, although K is big (it’s about 1,000), the weights are small. We
thus often drop the explicit K-dependence, and write

τE
dνE
dt

= ψE (νE, νI)− νE (37a)

τI
dνI
dt

= ψI (νE, νI)− νI (37b)

where we have implicitly taken into account the smoothing associated with the quenched
noise. These are a minor modification to the famous Wilson-Cowan equations [2] (see
also [3], which contains a recipe for the construction of nullclines, along with lots of other
tidbits); they’re shown in what I believe is the relevant parameter regime in Fig. 2.

2.2.1 Summary for this section

Starting with a pretty much made-up model for the firing rates, we derived mean field
equations for the first and second moments of the firing rate distribution. Once we solved
those equations, we could find the distribution of firing rates. Our main approximation –
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νI

νE

Figure 2. Wilson-Cowan nullclines (red for excitatory, blue for inhibitory) in the
regime relevant for the brain.

one we’ll use over and over – was to treat large sums as Gaussian random variables. This
is clearly an approximation: for the sums to really be Gaussian, the elements have to be
independent, which they aren’t, since the firing rates depend on the weights. However, it
turns out that for the networks we study, it’s a pretty good approximation. The reasons
are nontrivial, and we won’t go into them here. We also made a second approximation,
which was to turn sums into integrals. That, however, is almost always valid.

3 Time dependence

In the above analysis, we went directly to firing rate equations. We would very much like
to derive those from Eq. (1), in a principled way. Unfortunately we can’t, at least not
very rigorously. However, we can gain insight into what’s going on by treating the sum
on the right hand side of Eq. (1a) as a time-dependent random variable. We’ll start by
singling out the synaptic drive in Eq. (1a),

hi(t) ≡ −
∑
j

Aijgj(t)(Vi − Ej) . (38)

This is a little hard to deal with because Vi depends on t. We’ll assume (without much
thought – this is a major approximation) that Vi is independent of gj(t), and replace Vi
with its average,

hi(t) ≈ −
∑
j

Aijgj(t)(〈Vi〉t − Ej) (39)

where the subscript t on the angle brackets indicates a time average. Note that the weights
are positive for excitatory neurons (for which E ≈ 0 mV whereas 〈Vi〉t ≈ -60 mV) and
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negative for inhibitory neurons (for which E ≈ −80 mV). This means there are really
two kinds of weights (excitatory and inhibitory) for which we need extra indices. Let us,
therefore, define

Wαβ
ij = K1/2Aij(Ej − 〈Vi〉t), i ∈ α, j ∈ β (40)

where the notation i ∈ α means neurons i is of type α (with, as above, α and β either E
or I). We now need to put a superscript on hi to tell us whether neuron i is excitatory
or inhibitory, so we have

hαi (t) ≈ 1

K1/2

∑
β,j

Wαβ
ij gβj(t) . (41)

This is simply the time-dependent version of Eq. (29b), which possibly we could have
written down immediately. With these approximations, Eq. (1a) becomes

τm
dVαi
dt

= f(Vαi) +
1

K1/2

∑
β,j

Wαβ
ij gβj(t) . (42)

This is a current-based, rather than the conductance-based, model.
As usual, we let

Wαβ
ij =

K

N
Wαβ + δWαβ

ij . (43)

As in Eq. (31a), Wαβ represents the mean of the nonzero weights. We’ll assume that gβj(t)
obeys Eq. (1b). Consequently, the time average of of gβj(t) is the firing rate, which we can
easily see by integrating both sides over a long period and noting that gβj(t) bounded.
We can, therefore, write

gβj(t) = νβj + δgβj(t) . (44)

Combining this with the above definition of Wαβ
ij , Eq. (41) becomes

hαi (t) = K1/2
∑
β

Wαβ

(
νβ + δgβ(t)

)
+

1

K1/2

∑
β,j

δW αβ
ij

(
νβj + δgβj(t)

)
(45)

where

δgβ(t) ≡ 1

N

∑
j

δgβj(t) (46)

represents the population-averaged fluctuations in synaptic drive.
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The time-independent terms in Eq. (45) we recognize from our analysis of the static
case in the previous section, so we just have to deal with the time-dependent terms δgβ(t)
and δgβj(t). Let’s start with the former. Because the synaptic drive must be O(1), δgβ(t)
must obey ∑

β

Wαβ δgβ(t) ∼ 1

K1/2
. (47)

This is true for α = E and I; consequently, the average fluctuations are small for both
the excitatory and inhibitory populations,

gβ(t) ∼ 1

K1/2
. (48)

As an (important) aside, this assumes that any time-varying input isO(1). If it’sO(K1/2),
all bets are off! However, if the input is O(1), this tells us that we can ignore gβ(t); that
is, we can ignore time-varying fluctuations in the population averaged firing rates.

This has a second, and more important, implication: on average, correlations are weak.
To see why, combine Eq. (48) with (46) to write

〈δgβ(t)δgβ′(t+ τ)〉t =
1

N2

∑
jj′

〈δgβj(t)δgβ′j′(t+ τ)〉t ∼
1

K
(49)

where, as above, the subscript t indicates a time average. Consequently, when β 6= β′ or
j 6= j′, on average

〈〈δgβj(t)δgβ′j′(t+ τ)〉t ∼
1

K
. (50)

The reason we care about correlations is that they affect the last term in Eq. (45)
– the term with the neuron-dependent fluctuations, δgβj. Since this term is zero mean,
what’s relevant is its autocorrelation, which we’ll denote cαi(τ),

cαi(τ) ≡ 1

K

∑
ββ′,jj′

δWαβ
ij δW

αβ′

ij′ 〈δgβj(t)δgβ′j′(t+ τ)〉t (51)

where again the subscript t indicates a time average. As usual, we single out the terms
with β = β′ and j = j′, yielding

cαi(τ) =
1

K

∑
β,j

(
δWαβ

ij

)2

〈δgβj(t)δgβj(t+ τ)〉t

+
1

K

∑
β 6=β′,j 6=j′

δWαβ
ij δW

αβ′

ij′ 〈δgβj(t)δgβ′j′(t+ τ)〉t .
(52)
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The second term is O(N/K2)Var[δWαβ
ij ], with the second factor of 1/K coming from

Eq. (50). The variance of δWαβ
ij is O(K/N) (see Eq. (16)), so the second term is O(1/K).

As usual, because K is large, we can ignore it. This means

cαi(τ) ≈ 1

K

∑
β,j

(
δWαβ

ij

)2

〈δgβj(t)δgβj(t+ τ)〉t . (53)

Assuming, as usual, that the weights are independent of the δgβj, we can pull the weights
out of the sum, yielding

cαi(τ) ≈
∑
β

σ2
αβCβ(τ) (54)

where, as in Eq. (31b), σ2
αβ is the variance of the nonzero weights, and we have defined

Cβ(τ) =
1

N

∑
j

〈δgβj(t)δgβj(t+ τ)〉t . (55)

This is a nice result, because it tells us that the autocorrelation function is independent
of neuron index, at least in the large K limit.

Putting all this together, we have

hαi (t) = K1/2
∑
β

Wαβ

(
νβ + δgβ(t)

)
+
(∑

β

σ2
αβν

2
β

)1/2

ξαi +
∑
β

σαβζβi(t) (56)

where, as usual, ξαi is a zero mean, unit variance Gaussian random variable, and ζβi(t) is
a time-dependent random function with autocorrelation

〈ζβi(t)ζβ′j(t+ τ)〉t = δββ′δijCβ(τ) . (57)

The membrane potential thus obeys the equation

τm
dVαi
dt

= f(Vi) + hαi (t) + hαx,i(t) (58)

where we have added external input, hαx,i(t). What we should do is solve for Cα(τ) self
consistently. This, however, is a whole function (unlike in the static case, where we only
had to solve for a the first and second moments of the firing rates). There has been some
work in this area [4, 5, 6] (see also http://www.gatsby.ucl.ac.uk/∼pel/tn/notes/dmf.pdf),
but it’s hard to do rigorously for spiking neurons, and it’s not clear it’s a good idea to
try, especially considering all the other interesting problems in neuroscience.

Finally, a word about the external input, hαx,i(t). If it is O(1) and has a component
that’s independent of i, that component will have an O(K−1/2) effect on the firing rate. In
essence, the balance conditions pin the firing rates. However, if the external input depends
on neuron, i, then firing rates will be modified – as they must. And if the external input
has an O(K1/2) component, that component must be independent of i; otherwise, some
neurons will fire at very high rates and others will be silenced. That point (along with a
few others) was made in [7].
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4 How high is connectivity?

Our analysis relied heavily on the large K assumption. Which seems reasonable, since in
cortex K is on the order of 1,000. However, determining whether or not this actually is
reasonable is tricky, as we’ll see.

To address this issue, it turns out we need two things: the size of the weights, and
the size of the autocorrelation function, Eq. (55). We’ll start with the weights, which
we can get from PSP (post-synaptic potential) sizes, which are more or less known. Our
approach is to ask how much the membrane potential changes in response to a single
presynaptic spike. Using Eq. (42), and assuming infinitely fast PSPs (remember, we just
want a ballpark estimate), the change in membrane potential due to a spike on neuron j
of type β is

∆Vαi =
Wαβ
ij

K1/2τm
(59)

(to derive this, use gβj = δ(t)). The left hand side is, on average, the PSP size, so we
have

Wαβ
ij ∼ K1/2τmV

αβ
PSP (60)

where V αβ
PSP is the typical PSP size for a neuron of type α receiving a spike from a neuron

of type β.
To understand the implications of this, we insert it into Eq. (56), and get (very ap-

proximately)

hαi (t) ∼ K
∑
β

V αβ
PSP

(
τmνβ + τmδgβ(t)

)
+K1/2

((∑
β

(δV αβ
PSP )2τ 2

mν
2
β

)1/2

ξαi +
∑
β

δV αβ
PSP τmζβi(t)

) (61)

where δV αβ
PSP is the standard deviation of V αβ

PSP .
The first observation is that we now have a factor of τm in all our expressions. Since

τm is on the order of 10 ms, for firing rates measured in Hz this corresponds to a factor of
1/100. Consequently, the term proportional to K scales as 10 × firing rate in Hz × PSP
size. This isn’t so bad – it’s 20 PSPs for a firing rate of only 2 Hz. However, it does mean
the gain functions aren’t especially steep functions of either the excitatory or inhibitory
mean firing rates.

On the upside, the quenched noise term (the term proportional to ξαi ) also has a factor
of τm in it as well. Thus, the term proportional to K is 30 times larger than the quenched
noise term, independent of the firing rate.
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But what about the time dependent term, ζβi(t)? Its autocorrelation function, Cβ(t),
is given in Eq. (55). To compute this we need to know the statistics of the spike trains,
which we don’t. But we can get an estimate of how big it is by assuming that the neurons
are firing with Poisson statistics and are uncorrelated. In that case, as we show in Sec. 5
(see in particular Eq. (78)),

Cβ(τ) =
νβ
τeff

G(τ) (62)

where τeff is the effective synaptic time constant, defined in Eq. (75) (and taken, for
simplicity, to be the same for all neurons), and G(τ) is a function that is 1 when τ = 0
and falls rapidly to zero when |τ | > τeff (see Eq. (77) for its definition, and Eq. (82) for a
specific example).

It appears that Cβ(τ) scales as 1/τeff. Because τeff is approximately equal to the
synaptic time constant, it can be small, implying that Cβ(τ) can be large. However, this
is a bit of an illusion: because of the term τmd/dt in Eq. (1a), the drive to the membrane
potential is low-pass filtered, so what really matters is the size of the fluctuations averaged
over the membrane time constant, τm. In fact, we can let τeff → 0, at which point the
synaptic drive turns into white noise, but that doesn’t mean fluctuations in the membrane
potential are infinitely large.

The white noise limit is actually kind of nice, because in that limit ζβi(t)→ ν
1/2
β ηi(t)

where ηi(t) is white noise,

〈η(t)η(t+ τ)〉t = δ(τ) . (63)

In that limit (which is a worst case scenario, in the sense that nonzero synaptic time
constant will decrease the temporal fluctuations),

τmζβi(t)→ (τmνβ)1/2 τ 1/2
m ηi(t) . (64)

To determine how these temporal fluctuations affect the membrane potential, we’ll
isolate the temporal fluctuations by considering the equation

τm
dV

dt
= −V + τ 1/2

m η(t) (65)

where η(t) is white noise. This has the solution

V (t) =

∫ t

−∞

dt′

τ
1/2
m

e−(t−t′)/τmη(t′) . (66)

The resulting autocorrelation function is

CV (τ) ≡ 〈V (t)V (t+ τ)〉t =
1

τm

∫ t

−∞
dt′
∫ t+τ

−∞
dt′′ e−(t−t′)/τm−(t+τ−t′′)/τm〈η(t′)η(t′′)〉 . (67)
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Assuming τ > 0 (we’ll find the autocorrelation function for negative τ by symmetry), we
can use Eq. (63) to turn the average over the white noise into delta functions. After that
the integrals are easy, and we arrive at

CV (τ) =
e−|τ |/τm

2
. (68)

Consequently, the term τ
1/2
m ηi(t) is effectively O(1), and so the ratio of temporal

fluctuations to mean drive (compare the first and last terms in Eq. (61)) is

temporal fluctuations

mean drive
∼ 1

(Kτmνβ)1/2
. (69)

Because Kτm ∼ 10 s, this isn’t so small. Ken Miller has made a big deal of this [8], but
the implications are mainly pretty minor; it just means the nullclines are not straight, as
in van Vreeswijk and Sompolinsky’s early work [1]; instead, they’re curved, as in Fig. 2.
It’s still the case that K is large enough to use the central limit theory for the quenched
noise, so that part is OK. The main implications as far as our derivation goes is that
correlations may be larger than we think. Remember that we used large K to argue that
correlations are O(1/K1/2) (see Eq. (50)). However, once we take into account the scaling
factor of τm, that equation really should have been

〈δgβj(t)δgβ′j′(t+ τ)〉t ∼
1

(Kτmν)1/2
, (70)

which is not so small. And, in fact, correlations in the cortex tend to be on the order of
10%, and sometimes larger. However, to understand the average behavior of the networks,
all of our analysis holds.

5 Temporal correlations for Poisson firing

Here we’ll compute the autocorrelation function given in Eq. (55) when the neurons are
uncorrelated and firing with Poisson statistics. There must be an easy way to to this, but
I don’t know what it is, so I’ll use an insanely complicated method.

We’ll start by writing (dropping the subscript β to reduce clutter)

C(τ) =
1

N

∑
j

〈∑
l,m

δg(t− tlj)δg(τ + t− tmj )

〉

=
1

N

∑
j

(〈∑
l,m

g(t− tlj)g(τ + t− tmj )

〉
− ν2

αj

) (71)
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where tkj is the time of the kth spike on neuron j, the average is now over both t and
the statistics of the spike trains, and we are assuming that the shape of the conductance
change depends on α but not j.. We’ll perform this average in an interval of size T , which
we’ll eventually take to ∞. Using the fact that the spike counts obey Poisson statistics,
we may write〈∑

l,m

g(t− tlj)g(τ + t− tmj )

〉
=
∞∑
k=0

(ναjT )ke−ναjT

k!

∫ k∏
n=1

dtn
T

∑
l,m

g(t− tl)g(τ + t− tm)

(72)

where the integral is a kth order temporal integral over the tn, with each integral running
from 0 to T . There are k(k − 1) terms that have l 6= m and k terms that have l = m. In
each case the time integrals are straightforward, and we arrive at〈∑

l,m

g(t− tlj)g(τ + t− tmj )

〉
=
∞∑
k=0

(ναjT )ke−ναjT

k!

[
k(k − 1)

T 2
+
k

T

∫
dt g(t)g(t+ τ)

]
(73)

where we have used the fact that g(t) integrates to 1. Performing the sums over k, we
arrive at 〈∑

l,m

g(t− tlj)g(τ + t− tmj )

〉
= ν2

j + νj

∫
dt g(t)g(t+ τ) . (74)

Defining the effective synaptic time constant as

1

τeff

≡
∫
dt g(t)2 (75)

(we show below that this is a sensible definition; see analysis starting with Eq. (80)), we
arrive at 〈∑

l,m

g(t− tlj)g(t+ τ − tmj )

〉
= ν2

j +
νj
τeff

G(τ) (76)

where

G(τ) ≡
∫
dt g(t)g(t+ τ)∫

dt g(t)2
. (77)

Finally, inserting this into Eq. (71), we arrive at the very simple expression

C(τ) =
1

N

∑
j

νj
τeff

=
ν

τeff

G(τ) . (78)
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Note that
∫
dτ C(τ) has a simple form: combining the above expression with Eq. (75),

we see that ∫ ∞
−∞

dτ C(τ) = ν

∫ ∞
−∞

dτ

∫ ∞
−∞

dt g(t)g(t+ τ) = ν , (79)

which follows because g(t) integrates to 1. This is relevant for justifying Eq. (63).
To make sure this all makes sense, let’s compute G(τ) for a decaying exponential,

g(t) = Θ(t)e−t/τs/τs. In that case, assuming τ > 0,∫
dt g(t)g(t+ τ) =

∫ ∞
0

dt

τ 2
s

e−t/τse−(t+τ)/τs =
e−τ/τs

2τs
. (80)

Consequently, via Eq. (75),

τeff = 2τs , (81)

and

G(τ) = e−2|τ |/τeff (82)

(the absolute value sign comes from symmetry around τ = 0).
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