
Peter Latham, March 1, 2018 1

Trajectories in neural space

One of the things we’re pretty sure the brain does is generate complex, controllable, time-
varying trajectories in neural space. Such trajectories are definitely needed for activating
muscles, and they’re probably also needed for processing time-varying sensory input. But
it’s not clear how the brain could generate them. Here we’ll discuss one idea.

As usual, we’ll consider rate neurons. We’ll assume there’s an underlying voltage-type
variable, which we’ll call xi for neuron i, and that the firing rate is some function of the
voltage. Because it’s the firing rate that drives voltage, this suggests the following equations,

τ
dxi
dt

=
∑
j

gWijφ(xi)− xi . (1)

Here the nonlinearity that maps voltage to firing rate is φ. We have included a scaling factor,
g, in front of the weights mainly for historical reasons. Although it is kind of useful; as we’ll
see, we can adjust g to bring us in and out of the chaotic regime.

Equation (1) is just a recurrent network; if we want it to do something interesting we
need a readout. We’ll assume the readout is linear in the firing rates,

zµ =
∑
j

Aµjφ(xj) . (2)

Typically, the number of readout units (the dimensionality of z) is much, much smaller than
the number of neurons – think on the order of 1 to 5.

The eventual goal is to train the network so that zµ(t) is a desired time-varying signal.
For instance, we might want it correspond to signals to muscles that result in some desired
limb trajectory. There is, though, clearly a problem: we do not have any way to control the
network. To remedy that, we do two things. The first is to add a control signal; the second
is to feed the activity, zµ, back to the network. This results in a set of equations of the form

τ
dxi
dt

=
∑
j

gWijφ(xj) +
∑
µ

Jiµzµ +
∑
µ

Ciµuµ(t)− xi. (3)

We can combine this with Eq. (2) to eliminate zµ,

τ
dxi
dt

=
∑
j

gWijφ(xi) +
∑
µ,j

JiµAµjφ(xj) +
∑
µ

Ciµuµ(t)− xi. (4)

This emphasizes the fact that the feedback introduces low rank structure to the connectivity
matrix. This may be fundamental to how the brain works, but nobody really knows.

Networks of this type go back more than a decade; see Maass, Matschlager and Markram,
Neural Computation 14:2531-2560, 2002, and Jaeger and Haas, Science 304:78-80, 2004.
There’s a pretty good summary of the history in David Susillo and Larry Abbott’s paper
(Neuron 63:544-557, 2009), which I’ll discuss below. Here I’ll give a very brief summary.

When networks of the type given in Eq. (4) were invented, the conventional wisdom was
that the recurrent connectivity would lead to a rich set of temporal trajectories in the time



Peter Latham, March 1, 2018 2

domain; those trajectories could then act as temporal basis functions, and a suitable linear
combination of them could produce just about any time varying function you want. One
way to get a rich set of trajectories is to work in the chaotic regime. The problem, though, is
that if the network is chaotic, it’s hard to control the trajectories – even with feedback and
a control signal. The solution was to work on the edge of chaos: chaotic enough to generate
rich trajectories, but not so chaotic that the network is not controllable.

That’s where the parameter g comes in. If we ignore the control signal and the feedback
from the output units, and we linearize the dynamics around a fixed point, denoted x0i, by
letting xi = x0i + δxi), we arrive at the linear equation

dδxi
dt

= g
∑
j

Wijφ
′(x0j)δxj − δxi. (5)

When g is very small, all the eigenvalues are close to −1. However, if the first term has
at least one positive eigenvalue (the typical case) when g gets large enough one of those
eigenvalues will exceed 1, and the fixed point will becomes unstable. This generally leads to
chaotic dynamics, and rich temporal trajectories.

In the original work in this field, people used φ(x) = tanh(x). In that case, the fixed
point is at x0i = 0. More importantly, Sompolinsky, Crisanti and Sommers (Phys. Rev.
Lett. 61:259262,1988) showed that if the elements of the weight matrix are drawn iid from
a distribution with variance 1/N , then the fixed point becomes unstable, and chaotic, when
g exceeds 1. However, it’s not necessary to work with tanh; any nonlinearity will do.

Networks that admit time-varying dynamics are hard to analyze. However, we can make
progress if we set g to zero; that is, if we eliminate the recurrent connectivity. (When we say
“recurrent connectivity,” we mean Wij. The other recurrent-looking term in Eq. (4), JiµAµj,
is – at least in this formulation – due to activity outside the network; see Eqs. (2) and (3).)
In that case, Eq. (3) becomes

Lxi =
∑
µ

Jiµzµ +
∑
µ

Ciµuµ(t) (6)

where L is the linear operator

L ≡ τ
d

dt
+ 1. (7)

As is not hard to show, for any suitably well-behaved function f(t)

L−1f(t) =

∫ t

−∞

dt

τ
e−(t−t

′)f(t′). (8)

(You should verify that LL−1f(t) = L−1Lf(t) = f(t).) Thus, we can solve Eq. (6) for xi,
yielding

xi = L−1
[∑

µ

Jiµzµ +
∑
µ

Ciµuµ(t)

]
. (9)



Peter Latham, March 1, 2018 3

Inserting Eq. (9) into (2), and rearranging terms slightly, gives us

zµ =
∑
i

Aµiφ

(∑
ν

JiνL−1zν +
∑
ν

CiνL−1uν(t)

)
. (10)

Finally, defining z̃µ and ũµ via

zµ = Lz̃µ = τ
dz̃µ
dt

+ z̃µ (11a)

uµ = Lũµ = τ
dũµ
dt

+ ũµ, (11b)

and using the fact that LL−1 is the identity, we arrive at

τ
dz̃µ
dt

=
∑
i

Aµiφ

(∑
ν

Jiν z̃ν +
∑
ν

Ciν ũν(t)

)
− z̃µ . (12)

The nonlinear term on the right hand side of this expression is a function purely of z̃µ and
ũµ. That function is given by a neural network with one hidden layer. Thus, so long as φ is
nonlinear and there are enough units, we can implement any function on the right hand side
of Eq. (12). Thus, a neural network with low rank structure associated with a loop through
another network, but no intrinsic recurrent connectivity, can mimic an arbitrary dynamical
system. With this view, the recurrent connectivity – the connectivity that was supposed to
be useful for generating rich trajectories – is a nuisance.

So is there a regime in which the recurrent connectivity is useful? There is at least one.
Suppose z is one dimensional. And let’s say the control signal is transient, so all it does is
set initial conditions. In that case, Eq. (12) becomes (after the control signal is gone)

τ
dz̃

dt
= F (z̃)− z̃ (13)

where F is the function implemented by the neural network. Because we’re in one dimension,
and the dynamics is bounded (since we’re modeling a physical system), z̃ must go to a fixed
point. In particular, there can’t be any periodic trajectories – trajectories that are thought
to be important for repetitive motion like walking, breathing, eating, etc.

If, on the other hand, the recurrent connections are strong enough, it is possible to
generate periodic trajectories even when z is one dimensional. The resulting dynamics is,
of course, hard to analyze; what people do is simply train the networks. It is not known at
this time if the brain makes use of the recurrent connectivity, or if the low rank structure is
responsible for the interesting dynamics and the recurrent connectivity is a nuisance.

Learning in recurrent networks

To generate “interesting” dynamics, networks of the type given in Eq. (3) need to be trained.
Typically they’re trained to generate a target function, which we’ll call z∗µ(t). That’s done
by choosing the connection strengths to minimize the error function

E ≡ 1

2

∫
dt
∑
µ

(
z∗µ(t)− zµ(t)

)2
. (14)



Peter Latham, March 1, 2018 4

Using Eq. (2), the error function can be written

E ≡ 1

2

∫
dt
∑
µ

(
z∗µ(t)−

∑
i

Aµiri(t)

)2

. (15)

where ri is the firing rate,

ri(s) ≡ φ
(
xi(x)

)
. (16)

One can minimize error with respect to the recurrent weights, W, the output weights, A,
and the feedback weights, J. Here we’ll focus on the output weights, A – mainly because
the energy depends very directly on them.

As is typical of learning rules, we use gradient descent,

∆Aµj ∝ −
∂E

∂Aµj
. (17)

The problem, of course, is that we’re dealing with a recurrent network, and so changing
the weight at time t has unintended consequences at future times. We could try a greedy
algorithm, and adjust the weights according to

∆Aµj(t) ∝ −
1

2

∂
(
z∗µ(t)−

∑
iAµiri(t)

)2
∂Aµj

, (18)

which gives us the update rule

∆Aµj(t) ∝
(
z∗µ(t)− zµ(t)

)
ri(t). (19)

This makes sense: if zµ is too small we want to increase the weight (assuming φ(xi) is
positive), and if it’s too big we want to decrease the weight. It also usually works. But
it’s very slow – especially if the initial weights are far from their optimal values, and the
trajectories are far from what they would be once the weights are learned. To help with
learning, training is often done with zµ in Eq (3) replaced by z∗µ; that at least ensures that
the network is getting the correct input. This was the approach taken by Jaeger and Haas
(Science 304:78-80, 2004), and it does speed up training. However, after training, when zµ
is no longer replaced by z∗µ, the network often doesn’t work properly. This isn’t especially
surprising: we’re dealing with a complex dynamical system, and changing the equations
(swapping zµ for z∗µ) could easily change the stability of the desired trajectory.

Until 2009, most neuroscientists paid very little attention to this problem. But then David
Susillo and Larry Abbott introduced a learning rule, called FORCE learning, that converged
very fast (Neuron 63:544-557, 2009). (FORCE stands for first-order reduced and controlled
error, but nobody I know can remember that.) Since then there has been an explosion of
interest among neuroscientists. It’s not exactly clear why the sudden explosion; as we’ll see,
FORCE learning is clearly not biologically plausible, so the learning rule has nothing to do
with the brain. And the networks Susillo and Abbott used were pretty standard. It just
goes to show: neuroscience is as much about fashion as anything else. That said, I view



Peter Latham, March 1, 2018 5

the interest in these kinds of networks as a good thing, since it’s critically important to
understand networks that generate nontrivial time-varying activity.

So what is FORCE learning? It’s actually just the recursive least-squares algorithm, and
works as follows. Without loss of generality, we can focus on one value of µ. Let’s also turn
the integral in Eq. (15) into a sum, and add a regularization,

Eµ(t) =
1

2

t∑
s=0

(
z∗µ(s)−

∑
i

Aµiri(s)

)2

+
α

2

∑
i

A2
µi. (20)

Minimizing Eµ(t) with respect to Aµi yields the usual least-squares solution,

Aµi(t) =
∑
j

Pij(t)hµj(t) (21)

where Pij(t) is the inverse of the second moment of the activity (plus a regularization term),

P−1ij (t) ≡ αδij +
t∑

s=0

ri(s)rj(s) (22)

where δij is the Kronecker delta (it’s 1 if i = j and 0 otherwise) and hµi(t) is the proportional
to the correlation between the activity and z∗µ,

hµi(t) ≡
t∑

s=0

ri(s)z
∗
µ(s) . (23)

To implement these update rules we have to invert a matrix, which doesn’t seem easy
– especially for large networks. However, when done online, that inversion turns out to be
reasonably straightforward, leading also to reasonably straightforward update rules for the
weights, Aµi. To derive those rules, it is convenient to switch to vector/matrix notation, for
which Eq. (21) becomes

Aµ(t) = P(t) · hµ(t). (24)

To update this equation, we need both P and hµ on the next timestep. To make the equations
look less intimidating, we’ll use t + 1 for the next time step, although “1” should really be
“∆t”.

The update rule for hµ is easy; using Eq. (23), we have

hµ(t+ 1) = hµ(t) + r(t+ 1)z∗µ(t+ 1) . (25)

The update rule for P is a only slightly harder,

P(t+ 1) =

(
αI +

t+1∑
s=0

r(s)r(s)

)−1
=
(
P(t)−1 + r(t+ 1)r(t+ 1)

)−1
(26)



Peter Latham, March 1, 2018 6

where I is the identity matrix. It’s not hard to compute the inverse on the right hand side,
yielding

P(t+ 1) = P(t)− P(t) · r(t+ 1) r(t+ 1) ·P(t)

1 + r(t+ 1) ·P(t) · r(t+ 1)
. (27)

We are now in a position to find Aµ(t+ 1). Using Eq. (24), we have

Aµ(t+ 1) =

(
P(t)− P(t) · r(t+ 1) r(t+ 1) ·P(t)

1 + r(t+ 1) ·P(t) · r(t+ 1)

)
·
(
hµ(t) + r(t+ 1)z∗µ(t+ 1)

)
. (28)

Expanding the terms and performing a small amount of algebra gives us

Aµ(t+ 1) = P(t) · hµ(t) +
P(t) · r(t+ 1)

(
z∗µ(t+ 1)− r(t+ 1) ·P(t) · hµ(t)

)
1 + r(t+ 1) ·P(t) · r(t+ 1)

. (29)

As we can see from Eq. (24), the first term on the right hand side is just Aµ(t). For the
second term, we note, via Eq. (27), that

P(t+ 1) · r(t+ 1) =
P(t) · r(t+ 1)

1 + r(t+ 1) ·P(t) · r(t+ 1)
. (30)

Using these two observations, we arrive at

Aµ(t+ 1) = Aµ(t) + P(t+ 1) · r(t+ 1)
(
z∗µ(t+ 1)− r(t+ 1) ·Aµ(t)

)
. (31)

This update rule for Aµ, combined with Eq. (27) for P, is the FORCE learning algorithm.
This learning rule is non-local (since it keeps track of the full covariance matrix). It is thus
not biologically plausible. Nor is there an obvious guarantee that it will converge. That’s
because when you change Aµ, you change the dynamics; that’s not taken into account when
minimizing Eµ. Nevertheless, in practice it works pretty well.


