
What you should have learned from my lectures

Peter Latham, March 28, 2022

1 Biophysics

1.1 The basic equations

In biophysics, there are only two equations. The first one relates the charge, Q, that accu-
mulates across a bounded surface (such as the membranes surrounding neurons, dendrites
and axons) to the voltage difference between the inside and outside,

Q = CV (1)

where C is the capacitance. This equation assumes that the voltage is the same everywhere.
The “same everywhere” assumption doesn’t hold exactly. Imagine, for instance, injecting
a small amount of charge into a neuron. For a brief period the voltage near the point of
injection will be different than it is everywhere else. But if the neuron isn’t very big, that
voltage difference won’t last very long. So Eq. (1), is valid for small objects such as neurons,
but it breaks down in dendrites and axons, at least in the long direction.

Differentiating both sides with respect to time, and noting that the rate of change of
charge is, by definition, current (dQ/dt = I where I is current), we have

C
dV

dt
= I . (2)

Here signs matter. We’ll adopt the convention that voltage, V , is relative to the inside of
the cell. Consequently, if current flows into the cell the voltage should go up, and if current
flows out of the cell the voltage should go down.

Now we just need to know how the current depends on the voltage, and we’ll have an
equation for voltage in terms of voltage. If this were regular old physics, where the charge
carriers are electrons, we would have V = IR, or I = V/R. However, in neurons charge
carriers are ions, and the concentration of ions is different on the inside and the outside
of the cell. (The concentration imbalance is maintained by ion pumps, which accounts for
a big chunk of the energy your brain uses. But that’s a detail we’ll ignore.) Because of
the concentration imbalance, current would flow even if the voltage were zero. The voltage
required to keep current from flowing is known as the reversal potential, and it’s denoted E .
Consequently, to good approximation, the current flow is proportional V − E .

But it doesn’t quite end there: different ions have different relative concentrations, and
so different reversal potentials. They also have different conductances. The three main ionic
species are Na+, K+ and Cl−, which stand for sodium, potassium and chloride, respectively;
if we included only these, the current would be

I = −gNa(V − ENa)− gK(V − EK)− gCl(V − ECl) . (3)
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The leading minus sign arises because we’re taking I to be the outward current. There’s
a lot of sodium and chloride on the outside (think “salt outside the cell”) and a lot of
potassium on the inside. Consequently, the reversal potential for sodium, ENa, is positive,
and the reversal potentials for potassium and chloride, EK and ECl, are negative. You should
convince yourself that these last statements about the reversal potentials are correct, based
on the relative concentrations inside and outside the cell.

In the general case, we write

I = −
∑
x

gx(V − Ex) (4)

where gx is the conductance of ion x and Ex is its reversal potential. Inserting this into
Eq. (2), and also adding an external current I0(t) (taken to be inward, by convention), we
have

C
dV

dt
= −

∑
x

gx(V − Ex) + I0(t) . (5)

This is a fundamental equation, based almost solely on arguments from physics. The inter-
esting part comes from the conductances, which can be either constant, voltage-dependent
or neurotransmitter-dependent. Those dependencies just have to be memorized, since they
come from experimental observations.

1.2 Constant conductances

In the simplest case all conductances are constant; in that case the neuron is considered to
be passive. For constant conductances, Eq. (5) can be written

τ
dV

dt
= −(V − EL) + g−1L I0(t) , (6)

with τ , EL and gL suitably defined in terms of the gx and Ex (you should derive explicit
expressions). The solution to this equation is

V (t) = EL + V (t = 0)e−t/τ +

∫ t

0

dt′

τ
e−(t−t

′)/τg−1L I0(t
′) , (7)

which can be written in several other forms,

V (t) = EL +

∫ t

−∞

dt′

τ
e−(t−t

′)/τg−1L I0(t
′)

= EL +

∫ ∞
0

ds

τ
e−s/τg−1L I0(t− s) .

(8)

You should verify that all three of these are solutions to Eq. (6).
Passive conductances are also important for the propagation of current and voltage in den-

drites and axons. For that, see http://www.gatsby.ucl.ac.uk/∼pel/tn/notes/biocables.pdf .
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1.3 Voltage-dependent conductances

Things get more interesting when conductance depend on voltage. The most common model
for that (at least in neuroscience) is what I call a charged ball-on-a-stick model, where the
stick/ball can be either open (allowing charged ions to pass) or closed (not allowing them to
pass). Because the ball is charged, the transition probability between the open and closed
states is a function of voltage,

probability of going from closed to open in time dt = α(V ) (9a)

probability of going from open to closed in time dt = β(V ) . (9b)

If the ball has positive charge, α(V ) is an increasing function of V and β(V ) is a decreasing
function of V ; if the ball has negative charge it’s the other way around. From the transition
probabilities, you should be able to show that the open probability, denoted x, evolves
according to

τx(V )
dx

dt
= −

(
x− x∞(V )

)
(10)

where

τx(V ) =
1

α(V ) + β(V )
(11a)

x∞(V ) =
α(V )

α(V ) + β(V )
. (11b)

You should also be able to show that if both α(V ) and β(V ) are exponential functions of V ,
then x∞(V ) is sigmoidal.

The full story is slightly more complicated: a channel is made up of more than one ball-
on-a-stick, the balls-on-a-stick open and close independently, and all have to be open for
current to flow. Taking all that into account leads to the Hodgkin-Huxley equation,

τ
dV

dt
= −(V − EL)− ρNam3h(V − ENa)− ρKn4(V − EK) + g−1L I0(t) (12)

where the m, h and n channels obey equations with the form of Eq. (10). You should know
where this equation came from, the approximate time constants, the shapes of the curves
m∞(V ), h∞(V ) and n∞(V ), and the approximate values of τ , ρNa, ρK , and the reversal
potentials I’ll tell you the last three: 10 ms, 400 and 120, respectively.

1.4 Concentration-dependent conductances

Conductances can also depend on the concentration of neurotransmitters and neuromodu-
lators (don’t ask me what the difference is); this is especially important for postsynaptic
terminals, whose main job is to respond to neurotransmitters. Here the equation is pretty
much what one should expect, given the above discussion,

τ
dx

dt
= −c(t)(1− x)− βx (13)
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where c(t) goes up rapidly when neurotransmitter or neuromodulator is nearby and drops
rapidly when it isn’t (“rapidly” generally means sub-millisecond). In class we talked about
the release of neurotransmitter into the synaptic cleft, with the main neurotransmitters
being AMPA, NMDA, GABAA and GABAB. The first two are excitatory (they activate
receptors with a reversal potential near 0 mV) and the second two are inhibitory (they
activate receptors with a reversal potential near -80 mV). Neuromodulators can be released
more broadly, and have all sorts of complicated effects (including on plasticity) that we don’t
understand very well.

The variable x, which is dimensionless, lies between 0 and 1; to get the current, we
need to multiply by the maximum conductance, modulated by the reversal potential. In the
general case, for neurotransmitter of type z,

Iz = −gzxz(V − Ez) . (14)

Note that the reversal potential depends on neurotransmitter type. This didn’t have to be
the case, but for reasons we don’t understand that’s what evolution chose to do.

And, as usual, there’s a twist: NMDA receptors are different. These are blocked by
magnesium, which is a doubly charged positive ion (denoted Mg++), so they’re not active
unless the voltage at the postsynaptic receptor is relatively high. More quantitatively, the
NMDA current is

INMDA = − gNMDAxNMDA(V − ENMDA)

1 + ([Mg++]/3.57 mM) exp(−V/16.1 mV)
(15)

where [·] is shorthand for concentration and mM is milli-molar. One way to get high voltage
at the postsynaptic receptor is via a backpropagating action potential: if there’s a spike at the
soma, the voltage propagates through the dendritic tree, and raises the voltage everywhere.
This makes NMDA receptors coincidence detectors (they’re active when pre and postsynaptic
spikes happen at about the same time). This is perfect for learning, and will be discussed
below.

1.5 Neurotransmitter release

You should know the sequence that leads to neurotransmitter release from presynaptic ter-
minals (it’s what causes c(t) in Eq. (13) to increase). This is kind of complicated,

1. A presynaptic spike travels along an axon and arrives at the presynaptic terminal.

2. That causes, via voltage-gated calcium channels, a local increase in calcium, denoted
Ca++, inside the presynaptic terminal.

3. That causes (sometimes; more on that below) one or more vesicles (in the cortex usually
one; in other places, more) to fuse to the cell membrane and release neurotransmitter.

4. That in turn causes c(t) to increase (see Eq. (13)), which results in current flowing
into, or out of, the postsynaptic terminal.
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5. Voltage diffuses along the dendrites, eventually leading to a change in voltage at the
soma.

6. Which will eventually lead to a spike, and the whole thing starts over.

It’s a miracle this works!
For reasons that are not clear (probably due to biophysical constraints), sometimes no

neurotransmitter is released. Lack of release is called a failure, and it’s captured by the
release probability, p, which is surprisingly low – only around 1/2 (with a big range). And to
make matters more complicated, p changes: it tends to drop if there’s release (depression),
because there are fewer vesicles available, and it tends to increase when a presynaptic spike
arrives (facilitation), because calcium builds up. Between presynaptic spikes it relaxes back
to its base value, which can drift slowly. You should be able to write down simple differential
equations describing these processes.

1.6 Synaptic plasticity

Finally, there’s synaptic plasticity: both the release probability and the postsynaptic conduc-
tance change in an activity-dependent way; it’s what we believe is responsible for learning.
There are lots and lots of experiments investigating how weights change. Those experiments
generally look at changes as a function of pre and postsynaptic activity. The result: it’s
complicated, and depends on the synapse. The most common form of plasticity at excita-
tory synapses (or at least the most studied) is NMDA-dependent plasticity: when NMDA
channels open (which, as discussed above, happens when pre and postsynaptic spikes occur
at about the same), calcium enters the cell, and can cause the insertion or deletion of AMPA
channels.

But this is only one type of plasticity, and of course it doesn’t apply when the presynaptic
neuron is inhibitory (since the receptor is GABA, not AMPA, mediated). There are lots of
other types, and we’re just beginning to work them out. And what’s seriously missing is
the dependence on an error signal, which is necessary to determine whether to increase or
decrease the synaptic strength. This is a huge and complicated field, and we only touched
the surface.

I’ll leave you with the model that theorists like most. In this model, the synaptic strength
from presynaptic neuron j to postsynaptic neuron i, denoted wij, changes according to

∆wij = η

∫
dt dt′K(t− t′)Si(t)Sj(t′) (16)

where η is the learning rate and Si(t) refers to the spike train of neuron i; using tµi for the
time of the µth spike on neuron i,

Si(t) ≡
∑
µ

δ(t− tµi ) . (17)

Note that the above learning rule can be written

∆wij = η
∑
µ,ν

K(tµi − tνi ) . (18)
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Different kernels have been observed. Symmetric ones tend to be called Hebbian, while
antisymmetric ones are called STDP (for spike-timing-dependent plasticity). While theorist
like the learning rule given in Eq. (16) (mainly because it’s relatively simple), the actual
learning rule (which varies from one synapse to the next) is a lot more complicated, and
typically involve nonlinearities in spike times.

2 Network dynamics

2.1 Randomly connected networks

The writeup on randomly connected networks, which can be found at
http://www.gatsby.ucl.ac.uk/∼pel/tn/notes/networks.pdf , is pretty complete. But to un-
derstand what we’ve done in class, you just need to keep in mind a few things.

First, you need to know how sums of large numbers of random variables scale. In partic-
ular, if

E[xi] = µ (19a)

Covar[xi, xj] = δijσ
2 , (19b)

then, in the large n limit,

1

n

n∑
i=1

xi ∼ µ+
σ√
n
ξi (20)

where ξi is a zero mean, unit variance Gaussian random variable,

ξi ∼ N (0, 1) , (21)

and the “∼” in Eq. (20) means the left and right hand sides have the same distribution.
This means sums of large numbers of random variables self-average: their empirical sum

is equal to the actual sum. Or, more accurately, it’s equal if you only care about leading
order in n. That’s extremely useful, because it simplifies lots of calculations. And the next
order in n, which is smaller by a factor of 1/

√
n, is also pretty simple, because it’s Gaussian.

Note that it’s critical that the random variables are uncorrelated. If instead they were
correlated,

Covar[xi, xj] = Σij , (22)

things change. The average is still the same

E

[
1

n

∑
i

xi

]
= µ , (23)

but this quantity does not, in general, self-average. To see that, compute the variance,

Var

[
1

n

∑
i

xi

]
=

1

n2

∑
ij

Σij . (24)
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Unless the off-diagonal terms of the covariance matrix are zero on average (which is not so
common), the right hand side is O(1). Thus, the standard deviation of the average is on
the same order as the mean. And it gets worse: we can no longer invoke the central limit
theorem, so the distribution of the average isn’t even Gaussian (at least not in general). The
point is: assuming a random variable is uncorrelated is a very strong assumption, and should
be made with care.

To see what this has to do with networks of neurons, I’ll consider two examples. The
first is in the writeup on networks mentioned above (although this version is somewhat
simplified); the second isn’t.

In the first example, we’ll consider an equation describing the equilibrium firing rates in
a network of n neurons,

νi = φ

(
1

n1/2

n∑
j=1

wijνj

)
(25)

where the weights, wij are pulled iid from some distribution. All we know about that
distribution is that the mean is µ and the variance is σ2. Our goal is to find the distribution
of the firing rates. We could use Eq. (20) directly, but we’ll instead use a slightly different
method, mainly because it’s somewhat easier. But it amounts to the same thing.

First, let

wij = µ+ δwij , (26)

so that the sum over j becomes

1

n1/2

n∑
j=1

wijνj = n1/2µν +
1

n1/2

n∑
j=1

δwijνj (27)

where the kth moment of the firing rate is given by

νk =
1

n

n∑
i=1

νki . (28)

Second, treat the second term as a Gaussian random variable. It’s mean is zero (by design),
and so all we need is its variance, with respect to index, i. That’s given by

Var

[
1

n1/2

n∑
j=1

δwijνj

]
=

1

n

∑
i

[
1

n1/2

n∑
j=1

δwijνj

]2
=

1

n

∑
jj′

νjνj′
1

n

∑
i

δwijδwij′ . (29)

Because the δwij are uncorrelated random variable, terms with j 6= j′ are zero on average
(you should verify this – remember, there are a lot more of those terms than terms with
j = j′), and so, in the large n limit,

Var

[
1

n1/2

n∑
j=1

δwijνj

]
=

1

n

∑
j

ν2j
1

n

∑
i

δw2
ij = σ2ν2 . (30)
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Our big leap is to treat the second term in Eq. (27) as a zero mean Gaussian random
variable with variance σ2ν2. When we do that, Eq. (25) can be written

νi = φ
(
n1/2µν +

(
σ2ν2

)1/2
ξi

)
(31)

where ξi is a zero mean, unit variance Gaussian random variable. The problem is that we
don’t know the first and second moments, which are given by

νk =
1

n

n∑
i=1

φk
(
n1/2µν +

(
σ2ν2

)1/2
ξi

)
(32)

for k = 1, 2. So it seems like all this analysis doesn’t help much; we still have to do a sum.
However, the sum depends on the firing rates only through the first two moments, and all
the i-dependence is in the Gaussian random variable ξi. The latter observation means we
can turn the sum into an integral, giving us the mean field equations

νk =

∫
dξ

e−ξ
2/2

(2π)1/2
φk
(
n1/2µν +

(
σ2ν2

)1/2
ξ
)
. (33)

Solving this for for k = 1, 2 gives us the first two moments. Once we know those, the
distribution of firing rates is found from

P (ν) =

∫
dξ

e−ξ
2/2

(2π)1/2
δ
(
ν − φ

(
n1/2µν +

(
σ2ν2

)1/2
ξ
))

(34)

where δ(·) is the Dirac delta function.
The second example is the classical Hopfield network, which has the discrete update

equation

xi(t+ 1) = tanh

(
1

n

∑
j

Jijxj(t)

)
. (35)

The weights, Jij are given by

Jij =

p∑
µ=1

ηµi η
µ
j (36)

where

ηµi =

{
+1 probability 1/2
−1 probability 1/2 .

(37)

To solve this we’ll define the overlaps, mµ, via

mµ(t) ≡ 1

n

∑
i

ηixi(t) . (38)
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The update rule for mµ is given by

mµ(t+ 1) =
1

n

∑
i

ηµi tanh

(
1

n

∑
j

∑
ν

ηνi η
ν
j xj(t)

)
=

1

n

∑
i

ηµi tanh

(∑
ν

ηνimν(t)

)
. (39)

If p < n we have fewer equations, but besides that it’s not immediately clear how this
helps. However, we’ll now make a wild guess: mµ is large and the rest of the overlaps, mν 6=µ,
are small. This suggest that we treat mµ and mν differently, so we write

mµ(t+ 1) =
1

n

∑
i

ηµi tanh

(
ηµi mµ(t) +

∑
ν 6=µ

ηνimν(t)

)
. (40)

In the previous examples sums were turned into Gaussian integrals. Here the sum over
i can also be turned into a statistical average, but now over the distribution of ηµi , which
is binary. However, to do that we first need to deal with the second term inside the tanh.
That term we can treat as a Gaussian random variable. Its mean is zero (because the ηνi are
zero mean), so we just need its variance, which is given by

Var

[
ηµi
∑
ν 6=µ

ηνimν(t)

]
=

1

n

∑
i

(∑
ν 6=µ

ηνimν(t)

)2

. (41)

As usual, only the diagonal terms (in ν) survive, giving us

Var

[
ηµi
∑
ν 6=µ

ηνimν(t)

]
=
∑
ν 6=µ

m2
ν(t) ≡ σ2

m . (42)

Note that σ2
m depends on time, a dependence we’ll suppress. It’s possible to find σ2

m self-
consistently, but we won’t do that. Instead, we’ll pretend like it’s known, and treat the
second term inside Eq. (40) as a random variable,

mµ(t+ 1) =
1

n

∑
i

ηµi tanh (ηµi mµ(t) + σmξi) (43)

where ξi is a zero mean, unit variance Gaussian random variable. Importantly, ξi and ηµi are
uncorrelated. We can, therefore, write

mµ(t+ 1) =

∫
dξ

e−ξ
2/2

(2π)1/2
〈ηµ tanh (ηµmµ(t) + σmξ)〉ηµ (44)

where ηµ is ±1, each with probability 1/2. Because ξ and η are independent, we can perform
the average over ηµ, leaving us with

mµ(t+ 1) =

∫
dξ

e−ξ
2/2

(2π)1/2
tanh (mµ(t) + σmξ) . (45)

As usual, the quenched noise just smooths the gain function. However, we have to solve for
σm self-consistently. That’s not totally easy, but it’s not especially hard either. We won’t
do that here; really the main point is that sums over indices sometimes turn into Gaussian
integrals, but sometimes they turn into averages over discrete variables. It’s important to
know when to use which!
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