Question 1

You are sitting in a room waiting for an auditory signal. The probability per unit time for the signal to appear is γ , and once it appears it stays there forever.

- 1. The signal has not appeared at time 0. What is the probability that it will appear at time t? What is the probability it will not appear in the interval [0, T]?(2 marks)
- 2. A neuron with firing rate $\nu(t)$ and refractory period Δt emits spikes as follows: the probability that the neuron fires in a small interval dt around t is $\nu(t)dt$ if the neuron fired no previous spikes in the interval $[t \Delta t, t]$ and zero otherwise. If $\nu(t) = \nu$ =constant, what is the mean firing rate of this neuron? (3 marks)
- 3. A neuron in auditory cortex fires at a background rate of ν_0 before the signal in part 1 appears and jumps to rate ν_1 (and stays there) after it appears. As in part 2, the neuron has an absolute refractory period of Δt . You observe spikes at times $t_1, t_2, ..., t_n$. Write down the probability distribution that the signal came on at time t_s given the spikes, denoted $p(t_s|\text{spikes})$. Include the probability that the signal never came on. The normalization that appears in this problem will involve an integral don't do it! (5 marks)
- 4. You observe spikes in the interval [0, T]. Assume the signal came on at time t_0 . Sketch $\langle \log p(t_s|\text{spikes})\rangle$ versus t_s where the average is over ensembles of spike trains. (10 marks)
- 5. Based on this plot, give a back of the envelope estimate of the value of of t_0 at which you will say that no signal occurred; that is, estimate the value of t_0 such that $\int dt_s p(t_s|\text{spikes})$ is larger, on average, than p(no signal|spikes).

Question 2

Consider a network of N analog neurons that obey the time-evolution equations

$$\tau \dot{x}_i = \phi(J\overline{x} - \theta) - x_i \tag{1}$$

where "dot" denotes a time derivative, $\overline{x} \equiv N^{-1} \sum_i x_i$ is the mean firing rate, and $\phi(z)$ is the gain function. We will demand that the gain function be threshold-concave-nondecreasing, meaning

$$z < 0: \qquad \phi(z) = 0$$

$$z \ge 0$$
: $\phi'(z) \ge 0$ and $\phi''(z) \le 0$.

- 1. Write down the time evolution equation for \overline{x} . (1 mark)
- 2. Find the equilibria graphically in a regime in which there are three. Which of the equilibria are stable and which are unstable? (2 marks)
- 3. There are two main models for network bursting in the literature: synaptic depression and spike-frequency adaptation.
 - (a) What biophysical mechanism is thought to be responsible for synaptic depression? (2 marks)
 - (b) What biophysical mechanism is thought to be responsible for spike-frequency adaptation? (2 marks)
- 4. To model these two mechanisms, one typically lets J or θ have slow, activity dependent dynamics. For synaptic depression,

$$\tau_0 \dot{J} = -(J - J_0(\overline{x})), \qquad (2)$$

while for spike-frequency adaptation,

$$\tau_0 \dot{\theta} = -(\theta - \theta_0(\overline{x})). \tag{3}$$

In both cases these variables evolve slowly, meaning $\tau_0 \gg \tau$. If Eqs. (2) and (3) are to provide adaptation, how must J_0 and θ_0 depend on \overline{x} ? (Essentially, what is the slope of $J_0(\overline{x})$ and $\theta(\overline{x})$?) Sketch the two functions. (4 marks)

- 5. Given our model, including the properties of ϕ , which of these two mechanisms, if either, can lead to network bursting, and why? Assume $\tau_0 \gg \tau$, so that the x_i relax essentially instantaneously to their equilibria. For the model(s) that show bursting, sketch the trajectories of \overline{x} and either J or θ versus time. (8 marks)
- 6. Let the threshold, θ , be a random variable,

$$\tau \dot{x}_i = \phi(J\overline{x} - \theta_i) - x_i$$

where the θ_i are drawn i.i.d. from a Gaussian distribution with mean θ and variance σ^2 .

- (a) Derive a time evolution equation for \overline{x} in the large N limit. (4 marks)
- (b) Sketch the resulting effective gain function. (3 marks)
- (c) With this new model with variable thresholds, which of the mechanisms can produce bursting? (4 marks)