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The complexity and diversity of the numerous biological mecha-
nisms that underlie memory is both fascinating and disconcerting. 
The molecular machinery responsible for memory consolidation at 
the level of synaptic connections is believed to employ a complex 
network of diverse biochemical processes that operate on different 
timescales1,2. Understanding how these processes are orchestrated 
to preserve memories over a lifetime requires guiding principles to 
interpret the complex organization of the observed synaptic molecu-
lar interactions and explain its computational advantage. Here we 
present a class of synaptic models that can efficiently harness biologi-
cal complexity to store and preserve a huge number of memories on 
long timescales, vastly outperforming all previous synaptic models 
of memory.

The models we construct solve a long-standing dilemma: on the one 
hand, in a memory system that is continually receiving and storing 
new information, synaptic strengths representing memories must be 
protected from being overwritten during the storage of new informa-
tion. Failure to provide such protection results in memory lifetimes 
that are catastrophically low3–5. On the other hand, protecting old 
memories too rigidly causes memory traces of new information to 
be weak, being represented by small numbers of synapses. This is one 
aspect of the plasticity–rigidity dilemma6–9. Synapses that are highly 
plastic are good at storing new memories but poor at retaining old 
ones. Less plastic synapses are good at preserving memories but poor 
at storing new ones.

Previous theoretical work has estimated the consequences of the 
plasticity–rigidity dilemma on the memory performance for various 
synaptic models characterized by different degrees of complexity. Early 
memory models10 suggested that networks of neurons connected by 
simple synapses can preserve a number of memories that scales lin-
early with the size of the network. However, subsequent theoretical 
analyses3–5 revealed that ignoring the limits on synaptic strengths 

imposed on any real biological system, which had appeared to be a 
harmless assumption in the calculations, was actually a serious flaw. 
When these limits are included—for example, in the extreme case of 
binary synapses in which the weight takes only two distinct values—
the memory capacity grows only logarithmically with the number of 
synapses N for highly plastic synapses, and as N  for rigid synapses 
that can store only a small amount of information per memory.

A possible resolution of this dilemma is to make each synapse com-
plex enough to contain both plastic and rigid components. In many 
models the plastic components are represented by fast biochemical 
processes, which can change rapidly to store new memories. This 
initial memory trace is strong but labile; it decays quickly when other 
memories are stored. Memories can be consolidated if they are pro-
gressively transferred to the slow components. This mechanism is 
widely used in artificial devices (for example, computer memories, 
which include fast RAM and hard drives). It was proposed to explain 
memory consolidation at the systems level8,11 and incorporated into 
a cascade model of synaptic memory based on multiple biochemical 
processes that operate on different timescales9. This form of synap-
tic complexity allows extended memory lifetimes without sacrificing 
the initial memory strength, accounting for our remarkable ability to 
remember for long times a large number of details even when memo-
ries are learned in one shot12. The two quantities that characterize 
memory performance, memory lifetime and the strength of the initial 
memory trace, scale as N  in the cascade model9.

Here we show that these models can be markedly improved upon 
when the network of interactions between the multiple biochemi-
cal processes that control the synaptic dynamics is bidirectional and 
appropriately tuned. Indeed, the decay of the memory trace becomes 
substantially slower than in previous models, leading to a memory life-
time that scales almost linearly with the number of synapses N. Notably, 
in our model longer memory lifetimes do not require a systematic  
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Memories are stored and retained through complex, coupled processes operating on multiple timescales. To understand the 
computational principles behind these intricate networks of interactions, we construct a broad class of synaptic models that 
efficiently harness biological complexity to preserve numerous memories by protecting them against the adverse effects of 
overwriting. The memory capacity scales almost linearly with the number of synapses, which is a substantial improvement over 
the square root scaling of previous models. This was achieved by combining multiple dynamical processes that initially store 
memories in fast variables and then progressively transfer them to slower variables. Notably, the interactions between fast and 
slow variables are bidirectional. The proposed models are robust to parameter perturbations and can explain several properties of 
biological memory, including delayed expression of synaptic modifications, metaplasticity, and spacing effects. 
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reduction in the initial memory strength, which still scales approxi-
mately as N . Although the proposed synaptic model requires some 
tuning, it is robust to noise and variation in its parameters. Moreover, 
we construct a broad class of synaptic models that are equivalent 
in terms of memory performance. These different models capture 
the complexity and diversity of biochemical processes believed to 
be involved in memory consolidation. Thanks to their complexity, 
they can also reproduce the rich phenomenology of a plethora of 
biology and psychology experiments, including power-law memory 
decay13,14, synaptic metaplasticity15, delayed expression of synaptic 
potentiation and depression, and spacing effects16,17.

RESULTS
The memory benchmark
To study the process of storing multiple memories and compare 
memory models, we need to make assumptions about the nature of 
memories. Storage of new memories is likely to exploit similarities 
with previously stored information (consider, for example, semantic 
memories). In what follows, we focus on mechanisms responsible for 
storing new information that has already been preprocessed in this 
way and is thus incompressible. For this reason, we consider memo-
ries that are unstructured (random) and do not have any correlations 
with previously stored information (uncorrelated).

Consider an ensemble of N synapses that is exposed to an ongoing 
stream of modifications, each leading to the storage of a new memory 
defined by the pattern of N synaptic modifications. We will select 
arbitrarily one of these memories and track it over time. The selected 
memory is not special in any way, so the results for this particular 
memory apply equally to all the memories being stored.

To track the selected memory, we take the point of view of an ideal 
observer who knows the strengths of all the synapses4,9. In the brain 
the readout is implemented by complex neural circuitry, and the 
strength of the memory trace based on the ideal observer approach 
may be substantially larger than the memory trace that is actually 
usable by the neural circuits. However, given the remarkable memory 
capacity of biological systems, it is not unreasonable to assume that 
the readout circuits perform almost optimally. Moreover, we will show 
that the ideal observer approach predicts the correct scaling properties 
of the memory capacity of simple neural circuits that actually perform 
memory retrieval. More quantitatively, we define the memory signal 
as the overlap between the state of the synaptic ensemble and the pat-
tern of synaptic modifications originally imposed by the event being 
remembered. Previously stored memories, which are assumed to be 
random and uncorrelated, make the memory trace noisy. Memories 
that are stored after the tracked one continuously degrade the memory 
signal and also contribute to its fluctuations. We will monitor the 
signal to noise ratio (SNR) of a memory, which is defined as the ratio 
between the overlap and its standard deviation (see Online Methods, 
“Formal definition of memory signal and noise”).

One measure of memory performance is the memory lifetime, the 
maximal time since storage over which a memory can be detected; i.e., for 
which the SNR is larger than some threshold of order one (whose precise 
value does not affect the scaling properties of the memory performance). 
If new memories arrive at a constant rate, the lifetime is proportional 
to the memory capacity because memories that have been stored more 
recently than the tracked one will have a larger SNR, and hence if the 
tracked memory is likely to be retrievable, so are more recent ones.

Constructing the synaptic model
The value of a synaptic weight wa at any given time t is typically the 
result of multiple synaptic modifications. To build an efficient synaptic  

model, it is instructive to start from an abstract memory model in 
which the present weight is expressed as a sum of synaptic modifica-
tions ∆wa(tl), weighted by a factor r that decreases with the age of the 
modification t – tl. The signal of the corresponding memory would 
decay as r(t – tl), while the noise would be approximately proportional 
to the square root of the variance of wa(t) 

Var w t w t r t ta
l tl t

a l l( )( ) = ( ) −( )
<

∑
:

∆ 2 2

where we have assumed that the expectation value of ∆wa(tl) vanishes, 
which is equivalent to hypothesizing that synaptic potentiation and 
depression are balanced. A slowly decaying r would enable the synap-
tic weight to maintain a dependence on a large number of modifica-
tions, but it would also induce a large variance for wa(t), potentially 
arbitrarily large if the sum extends over arbitrarily many modifica-
tions. By contrast, fast decays would limit the number of synaptic 
modifications that are remembered. Therefore, the memory capacity 
and its growth as a function of N depend crucially on r(t). From equa-
tion (1) it is apparent that, in the case of random and uncorrelated 
modifications, the slowest power-law decay one can afford while keep-
ing w finite is approximately r(t) ≈ t−1/2 (see also Online Methods 
section “Abstract models with linear superpositions of memories”). 
In Supplementary Note 1, we show that under some conditions this 
is approximately the optimal solution among all possible decay func-
tions (see also Discussion). As we will explain in detail below, the SNR 
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Figure 1  Model schematic. (a) Diagram of a simple synaptic plasticity 
model. The dynamical variables uk represent different biochemical 
processes that are responsible for memory consolidation (k = 1, …, m, 
where m is the total number of processes). They are arranged in a linear 
chain and interact only with their two nearest neighbors (see differential 
equation), except for the first and the last variable. The first one interacts 
only with the second one (and is also coupled to the input), while the  
last one interacts only with the penultimate one. Moreover, the last 
variable um has a leakage term that is proportional to its value (obtained 
by setting um+1 = 0). The parameters gk,k+1 are the strengths of the 
bidirectional interactions (double arrows). Together with the  
parameters Ck they determine the timescales on which each process 
operates. The first variable u1 represents the strength of the synaptic 
weight. (b) The schematic model in a behaves like a set of communicating 
vessels. The uk variables measure the deviation of the liquid level  
from equilibrium, shown in the third beaker as a blue dashed line.  
The Ck values represent the sizes (areas) of the beakers, and the coupling 
constants gk,k+1 correspond to the cross-sections of the connecting 
tubes. The liquid level in the first beaker (yellow) represents the synaptic 
strength. The last beaker is connected to a reservoir whose liquid level 
is always at equilibrium. This interaction represents the leak in the 
differential equation of um.
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is proportional to N , and as a consequence a t−1/2 decay would imply 
that the memory capacity scales linearly with N.

This abstract model reveals what kind of decay of the memory 
signal is desirable, but it does not explain how this behavior is achiev-
able by synaptic dynamics. The next step is to construct a model that 
implements the desired power-law decay. One simple way would be 
to endow each synapse with a timer and introduce a mechanism to 
decrease the relative weight of each synaptic modification on the basis 
of the age of the modification18, but this would just move the prob-
lem to the encoding and preservation of the memory age, which is 
potentially as difficult as the original memory problem we intend to 
solve. Fortunately, there is no need for a timer, as there are synaptic 
models in which the 1 t  decay emerges naturally from the interac-
tion of multiple processes.

We will start with the construction of a simple chain model that 
captures and illustrates all the relevant scaling properties of more 
complex models. Then we will show how to generalize the model to 
incorporate less orderly interactions more similar to those observed 
in biological synapses. The simple chain model is characterized by 
multiple dynamical variables, each representing a different biochemi-
cal process (Fig. 1a). The first variable, which is the most plastic one, 
represents the strength of the synaptic weight. It is rapidly modi-
fied every time the conditions for synaptic potentiation or depres-
sion are met. The other dynamical variables represent biochemical 
processes that are affected by changes in the first variable. In the 
simplest configuration, these variables are arranged in a linear chain, 
and each variable interacts with its two nearest neighbors. These hid-
den variables tend to equilibrate around the weighted average of the 
neighboring variables. When the first variable is modified, the second 
variable tends to follow it. In this way a potentiation or depression is  

propagated downstream, through the chain of all variables. 
Importantly, the downstream variables also affect the upstream vari-
ables as the interactions are bidirectional.

To gain insight into the way this type of synapse works, it is useful 
to resort to an analogy with a set of communicating vessels, a more 
intuitive physical system (Fig. 1b). Each synaptic variable is repre-
sented by the level of liquid in a beaker. The interactions between 
variables are mediated by tubes that connect the beakers. The first 
beaker represents the synaptic weight. Potentiation of the synapse is 
implemented by pouring liquid into it, whereas depression is imple-
mented by removing liquid. As the liquid level deviates from equilib-
rium, the fluid flow through the tubes will tend to balance the levels 
in all beakers. The balancing dynamics is fast when the beakers are 
small and the tubes large, but slow when the beakers are large and the 
tubes small. A single synaptic modification is remembered as long as 
the liquid levels remain significantly different from equilibrium.

We can construct the desired synaptic memory model by consid-
ering the analogous system of communicating vessels. An efficient 
memory system should have both long memory lifetimes (i.e., long 
relaxation times) and a large initial memory strength, obtained with 
a relatively small number m of variables (i.e., beakers). In a homoge-
neous chain (Fig. 2a), perturbations already decay with the desired 
1 t  power law, but it requires a large m that grows as the square 
root of the memory lifetime. This problem can be circumvented by 
merging exponentially growing groups of beakers into larger ones of 
equivalent total area (Fig. 2b) and in addition reducing the sizes of 
the connecting tubes by exponentially increasing factors (Fig. 2c), 
which implies that the variables describing the system operate on dif-
ferent timescales that increase exponentially as one moves along the 
chain. This leads to a model with an approximately 1 t  decay of the 
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Figure 2  Model construction. (a) Relaxation dynamics in a set of 31 identical beakers connected by tubes of equal size (Ck = 1, gk,k+1 = 1/8). A 
perturbation of the liquid level of the first beaker diffuses to the others, slowly disappearing. The 31 uk variables are shown in the middle at three 
different times. The decay of u1, which approximates the desired 1 t  power law, is plotted on the right on a log–log scale. The number of beakers 
required in such a homogeneous system, however, grows as the square root of the number of stored memories. (b) A smaller set of beakers of 
progressively increasing sizes is obtained by merging those of a. The first beaker remains unchanged. The next two are merged into a larger beaker that 
contains the same volume of liquid as the two original ones. Then the next four beakers are combined, and so on, leading to successively larger ones 
(Ck = 2k−1). The cross-sections of the tubes are still identical (indicated by blue ovals). While this merging procedure dramatically reduces the number 
of beakers, the convergence to equilibrium is now much faster than before (~1/t). (c) We can recover the slow decay, without increasing the number of 
beakers, by tuning the cross-sections of the tubes connecting the communicating vessels. Their sizes are progressively reduced (by powers of two) to 
slow the decay (gk,k+1 = 2−k−2), which now follows the desired 1 t  behavior over a time period that grows exponentially with the number of beakers.
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memory strength that requires only a number of variables that grows 
logarithmically with the memory lifetime (see also Online Methods, 
“Constructing models by coarse-graining random walks”).

To understand more formally how the 1 t  decay is achieved, it is 
useful to consider the continuum limit of the equation in Figure 1a, 
in which the discrete index k can be replaced by a continuous vari-
able x. For identical beakers and tubes (as in Fig. 2a), the differential 
equation governing the dynamics of the uk variables becomes the 
well-known diffusion equation 

∂
∂

=
∂
∂

u
t

D
u
x

2

2

with constant D ∝ g/C. The fluid flow in the original discrete system 
of communicating vessels can be reinterpreted as the diffusion of 
particles or heat along the x-axis, with u(x,t) representing the con-
centration or temperature at position x. Another familiar analogy 
is the cable equation, which governs the diffusion of voltage along 
axons or dendrites.

A unit perturbation introduced at time t = 0 and initially located at 
x = 0 spreads to neighboring locations in the shape of a continually 
broadening Gaussian peak. Its center remains at x = 0, where we read 
out the synaptic efficacy, and while the spatial extent of the perturba-
tion grows as t , the peak decays with time as the desired 1 t .

However, for this slow decay to continue at late times, the system 
requires an extended range of x, corresponding to a large number 
m of variables in the original system. Indeed, the above descrip-
tion of the shape of the perturbation holds only until it reaches the 
maximum value of x, which occurs at a time of O (m2). One can dra-
matically reduce the number of required variables by considering an  

inhomogeneous diffusion process, with parameters C(x) and g(x) that 
depend exponentially on x, which leads to perturbations spreading 
only logarithmically with time (see Online Methods, “Continuum 
space limit and diffusion equation”).

Discretization of the dynamical variables, scaling properties 
and memory capacity
It is unrealistic to assume that each dynamical variable uk can vary 
over an unlimited range and be manipulated with arbitrary precision. 
Therefore, we discretize the uk variables and impose rigid limits on 
them. The dynamics of the model is now described by stochastic tran-
sitions between a discrete set of levels for each variable, arranged to 
approximate the continuous-valued system constructed in Figures 1  
and 2. At every time step the uk values are first updated as in the 
case of continuous variables described above, but then each variable 
is discretized by setting it stochastically to one of the two values in the 
discrete set that are closest to the updated value. The probabilities of 
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Figure 3  SNR of the synaptic model. Memory SNR as a function of the 
number of random uncorrelated memories that are stored after the  
tracked memory. The SNR is computed for a population of N = 5.4 × 109  
synapses. The scales of both axes are logarithmic. Different curves 
correspond to synaptic models with a different number m of dynamical 
variables (corresponding to the number of beakers in Fig. 1; here m = 4, 
6, 8, 10). Each variable can vary on a discrete set of 40 equally spaced 
values. For all curves, the decay approximately follows a power law (1 t )  
for a large number of memories and then becomes exponential where 
the curves visibly bend downwards. The range of the power-law decay 
increases exponentially with m, which is a measure of the complexity of 
the synapse. Memories are assumed to be stored at a constant rate of one 
new uncorrelated memory per unit time, which we choose to be 1 min 
here, so that the SNR decay can also be expressed as a function of time 
(upper horizontal axis). This choice of overall timescale is completely 
arbitrary, and time is considered only to help the reader appreciate the 
wide span of memory lifetimes. The memory lifetime is defined as the 
time elapsed since storage (or number of subsequently stored memories) 
at which the SNR falls below some arbitrary threshold (dashed line).
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Figure 4  Scaling properties of the synaptic model. (a) Doubly logarithmic 
plots of a family of SNR curves versus time according to the approximate 
equation (2) for different values of N. All curves have the same shape 
but are displaced vertically, since the SNR is proportional to N . The 
marked points of intersection with the retrieval threshold (dashed line) 
indicate the respective memory lifetimes. (b) Memory lifetime versus 
N corresponding to the curves in a, illustrating the connection between 
its scaling with N and the time dependence of the SNR. Initially the 
growth is linear, but it slows to a logarithmic increase when N is much 
larger than T. (c) Memory lifetime versus m. This and subsequent panels 
show simulation results from the model in Figure 3. The vertical axis is 
logarithmic, the horizontal one linear, so the line that fits the simulation 
points represents an exponential growth. (d) Initial SNR, denoted by 
SNR(0), versus m. Both axes are linear. As m increases, the initial SNR 
slowly degrades (as ~1 m  ). N = 5.4 × 109 in c and d. (e) Memory 
lifetime versus N on a log–log scale. The memory lifetime, which is 
proportional to the memory capacity (i.e., the total number of memories 
that can be recalled), increases linearly with N, as expected from  
the 1 t  decay of the SNR. This is a substantial improvement over 
previous synaptic models. (f) Initial SNR versus N on a log–log scale. 
SNR(0) grows as N , as in the best previous synaptic models.  
Here and in e we set m = 12.
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ending up in each of the two values are chosen so that the average of 
the discretized uk matches the continuous uk (see also Online Methods, 
“Detailed description of models used in numerical simulations”).

Assuming that memories are presented at a constant rate of one new 
uncorrelated memory per unit of time, we show in Figure 3 the SNR 
as a function of time for memory models in which the complexity of 
the synapse (i.e., the number m of variables) progressively increases. 
The curves are plotted on a log–log scale, so a straight downwards 
line corresponds to a power-law decay. In all cases, the SNR decays 
approximately as 1 t  over a time interval that increases exponen-
tially with the complexity of the synapse, before the decay accelerates 
and becomes exponential. These properties can be summarized by a 
simple approximate formula that expresses the SNR as a function of 
N, m and the age of the memory t: 

SNR
log

t
N
t

e
T

t T
( ) ≈

− /
(2)(2)

where T is the longest timescale of the synapse (T ≈ Cm/gm,m+1 = 
22m+1), which grows exponentially with m. This dependence on  
the parameters follows from the considerations in Supplementary 
Notes 1 and 2.

The memory lifetime of the tracked memory is the maximum time 
since storage for which the SNR is larger than some threshold that 
we set arbitrarily to 1 (Fig. 3). The SNR curves intersect the thresh-
old when their decay is dominated by the exponential, and hence 
the memory lifetime is approximately equal to T, increasing expo-
nentially with m (Fig. 4c). However, increasing T (by adding longer 
timescale variables) cannot improve the memory lifetime indefinitely, 
but only up to a limit of order N, the total number of synapses. If T 
is much larger than N, the SNR curve drops below the threshold in 
the power-law regime, where the exponential factor in equation (2) 
can be considered approximately constant. In this case the memory 
lifetime scales as N because the SNR is proportional to N  and the 
threshold is reached when N t/  is of order one.

These considerations can be illustrated by plotting the SNR of 
equation (2) as a function of time for different values of N (Fig. 4a). 
Graphically, changing N corresponds to shifting the SNR curves verti-
cally in this doubly logarithmic plot. An upward shift moves the point 
of intersection with the threshold horizontally to the right and hence 
increases the memory lifetime. This increase is linear in N only if the 
SNR curve crosses the dashed line in the 1 t  power-law regime.

As the memory lifetime approaches the longest timescale T of the 
memory system the decay becomes exponential. In this regime, a shift 
of the SNR curve (which here bends downwards) due to an increase 
of N leads to only a modest (logarithmic) extension of the memory 
lifetime. We show explicitly the corresponding growth of the memory 
lifetime as a function of N, which is initially linear but then almost 
saturates (Fig. 4b). These scaling properties have been verified in 
simulations (Fig. 4e). We can avoid saturation by adjusting T appro-
priately (i.e., increasing m), which leads to a memory lifetime scaling 
as N/logN (see Supplementary Note 1).

The memory lifetime in previous models of complex synapses 
with bounded weights9 scales at most as N . A memory lifetime 
that scales (almost) linearly with the number of synapses constitutes a 
major improvement, especially in large neural systems. This improve-
ment is achieved with a relatively small increase in the complexity of 
the synaptic machinery for memory consolidation, as m grows only 
logarithmically with the memory lifetime. Moreover, the initial SNR, 
which is related to the amount of information stored per memory, has 
the same scaling with N as in previous models (i.e., N ; Fig. 4f), and 
only decreases slowly with m (as 1 m ; Fig. 4d).

Robustness of the model
The equilibrium distributions of the uk variables are approximately 
Gaussian, and we can impose rigid boundaries (i.e., maximum and 
minimum values) on them19 without perturbing their relaxation 
dynamics substantially compared to the unbounded case (Fig. 5a,b).  
The number of discrete levels required per variable scales only  
as logT . Since the width of the distributions decreases with k, longer 
timescale variables require fewer levels than u1, down to only two 
states for um, consistent with bistable processes maintaining their 
state over very long time periods20–25 (Fig. 5c,d).

The model not only is robust to discretization but also can tolerate 
surprisingly large perturbations of the optimal parameters. The SNR of 
the perturbed model clearly deviates from the SNR of the unperturbed 
model (Fig. 6a). However, the deviation increases smoothly with the 
amplitude of the perturbations and the SNR still decays approximately 
as 1 t . Notably, for long timescales there are still synapses that retain 
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for k = 1, 2, …, 12 in a population of synapses at equilibrium. Each 
variable takes values in a discrete set of 35 equally spaced levels. All 
the distributions are approximately Gaussian (discretized and truncated) 
with a width that progressively decreases with k (see Supplementary 
Note 2). (b) SNR versus number of stored memories, as in Figure 3, for 
discretizations with different numbers of levels (namely 20, 30, 40 and 
50). Since the values of almost all variables are well within the boundaries 
in a, the relaxation dynamics of the uk variables is very similar to the 
unbounded case, and the SNR curve changes smoothly when we restrict 
the dynamical range further. (c) Distributions of the uk variables when the 
number of discrete levels decreases with k. Because the distributions are 
narrower for the slower dynamical variables, one can reduce the range 
and the number of levels without affecting the memory performance 
appreciably. Here the number of equally spaced levels decreases linearly 
with k, and the distributions are very similar to those of a. The last 
variable has just two levels. (d) SNR versus number of stored memories for 
constant (black) and decreasing numbers of discrete levels (green).  
The performance remains almost unaffected by the reduction in the 
number of levels. This implies that the slower dynamical variables do 
not require as much precision as the faster ones and can operate with a 
surprisingly small number of levels.
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the tracked memory, even when the SNR is below the threshold for 
retrievability. Indeed, the memory signal is still significantly different 
from zero in a subpopulation of synapses that happen to be well tuned. 
When reading out all synapses, this signal is too small compared to 
the noise. However, a smart selection mechanism11 would enable the 
neural circuit to read out the memory even when the SNR of the 
synaptic population as a whole is too small.

The effects of another type of deformation are illustrated in Figure 6b,  
where we consider a more general class of synaptic models that, in the 
communicating vessels analogy, incorporate additional leakage pipes 
connecting every beaker to a reservoir held at the equilibrium level. 
Mathematically, this corresponds to extra decay terms proportional 
to −uk added to the right-hand side of the equations in Figure 1a,  
after dividing them by Ck. This is in contrast to the unperturbed 
model, in which only the last beaker has such a leak, with a decay 
coefficient inversely proportional to the longest timescale T. The 
deformed model is robust to extra decay terms that are smaller than 
or comparable in magnitude to that of the last variable of the unper-
turbed model. For larger leaks, however, the longest timescale of the 
model is reduced to approximately the inverse of the largest decay 
coefficient, and the onset of the exponential decay of the SNR cor-
respondingly occurs sooner.

These results indicate that the model parameters do not need to be 
finely tuned. The model is less robust to perturbations in the input 
statistics, however. When the synaptic modifications are imbalanced 
(Fig. 6c), the decay remains almost unaltered, but the SNR curves 
shift downwards. The memory system is clearly sensitive to imbal-
ances in the effective rates of potentiation and depression. However, 
even if the input statistics are imbalanced, the synapse may be able 
compensate for this by adjusting the relative magnitudes of the result-
ing plasticity steps (Supplementary Note 3). Malfunction of such a 
homeostatic mechanism could lead to memory decline, as observed 
in the early stages of Alzheimer’s disease, when depression becomes 
more effective than potentiation26.

Generalizations of the model
Above we considered synaptic models that can be represented by lin-
ear chains of dynamical variables. Their simplicity allowed us to illus-
trate the computational principles we used to design them. However, 
they appear too simple and orderly to accommodate the complexity 
and diversity of biological synapses. Here we construct a broad class 
of synaptic models that are equivalent to linear chains in terms of 
memory performance.

Models with arbitrarily complex networks of interactions can be 
constructed by starting from the undiscretized linear chain model 
depicted in Figure 2 and then iteratively ramifying it by splitting off 
and merging branches (Fig. 7a). In Supplementary Note 4 we show 
that with appropriately chosen parameters these complex models 
have the same dynamics for the first beaker and therefore the same 
memory performance as the linear chain models. We also note that 
they are robust to relatively large perturbations, such as the complete 
loss of one interaction pathway, which can be partially compensated 
by parallel branches. We can further generalize the model by con-
sidering plasticity events affecting longer timescale variables (rather 
than altering the synaptic efficacy directly), possibly different ones for 
potentiation and depression (see Supplementary Note 3).

Delayed expression of long-term potentiation and depression, 
metaplasticity and spacing
Our generalized synaptic models can readily reproduce various 
experimental observations, which include delayed expression of 
long-term potentiation (LTP) and depression (LTD), as well as meta-
plasticity15,27, the dependence of plasticity on the history of previous 
synaptic modifications. There are several phenomenological models 
that can reproduce these observations25. However, here we show that 
this rich phenomenology can be captured by synaptic models that are 
also computationally efficient.

Metaplasticity is a natural consequence of the existence of hid-
den variables, represented by the beakers that are not directly read 
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out to determine the synaptic efficacy (see Supplementary Note 5  
for more general readout schemes). For example, synapses that 
undergo a long series of potentiating events become more resistant 
to depression27. Figure 7b illustrates these effects by comparing two 
different sequences of plasticity events. A long series of LTP induc-
tion events can increase the liquid levels in several beakers, mak-
ing it more difficult to stabilize a subsequent synaptic depression.  
The different degrees of plasticity (despite equal efficacies  
immediately after the depression event) are determined by the states 
of the hidden variables, which were set by the previous history of 
synaptic modifications.

The model can also replicate the empirical phenomena known as 
spacing effects16,17 (Fig. 7c). The stability of repeatedly stored memories 
is known to depend on the spacing between the times of memorization.  
This phenomenon has been observed in behavioral studies16, but also 
in electrophysiology experiments on synaptic plasticity28,29. In these 
experiments, when the interval between repetitions is too short or 
too long, the memories are less stable than when the repetitions are 
properly spaced.

Testable predictions
A power-law decay of the memory SNR approximating 1 t  is a 
signature feature of our model. Although it is known that memory 
decay can be described by power laws in psychology experiments13,14, 
the power varies substantially from experiment to experiment. This 
variability presumably occurs because the memories are not random 
and uncorrelated, as subjects often experience the same or similar 
episodes multiple times and can even internally rehearse previously 
stored memories. Consequently, the effective memory decay depends 
on the statistics of the memories, their relative importance, and the 
rate at which they are re-experienced, which we have not modeled in 
any generality.

A feasible experiment to test our theory would be to repeatedly 
modify a synapse and observe how the autocorrelation of the synaptic 
efficacy decays with time. A balanced, random series of LTP and LTD 
protocols can induce multiple changes in the synaptic efficacy. We 
expect that the observed autocorrelation would be very broad and its 
decay only logarithmic on long timescales (shorter than the memory 
lifetime; see Supplementary Notes 6 and 7). Such a logarithmic decay 
is a distinctive feature of models with a SNR that approximates 1 t .  
The autocorrelation is approximately a straight line when plotted 
against the logarithm of the time lag (Fig. 8a). We note that the slope 
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Figure 7  Generalizations and features of the model. (a) An example 
of a broad class of models in which variables can exhibit an arbitrary 
network of interactions (see Supplementary Note 4). With properly 
tuned parameters, the memory performance is the same as for the 
linear chain of beakers constructed in Figure 2. (b) When potentiation 
and depression act on intermediate-timescale beakers (indicated by up 
and down arrows, respectively, in a), we obtain delayed expression in 
addition to metaplasticity, the history dependence of the dynamics of the 
synaptic efficacy. We plot the efficacy versus the time elapsed since an 
LTD induction for two different protocols that lead to approximately equal 
initial efficacies. Red: LTD preceded by a short series of 5 LTP events. 
Depression is relatively stable and long-lasting. Blue: LTD preceded by a 
long series of 50 LTP events and another LTD event. Depression is more 
transient (despite two LTD events), revealing that the synapse is more 
resilient to long-term changes. (c) Synaptic efficacy 100 s (arbitrary 
units) after the end of a sequence of three LTP events versus spacing 
interval. Massed repetitions of LTP events (short intervals) and distributed 
repetitions (long intervals) are less effective than properly spaced ones. 
For long lags, the liquid added during potentiation has time to almost 
settle to equilibrium between repetitions, leading to little accumulation 
of synaptic modifications. For massed repetitions, conversely, one of the 
dynamical variables may hit its upper bound, corresponding to liquid 
spillover in our beaker analogy, reducing the overall effect of potentiation. 
The inverted U-shape of the plotted curve qualitatively reproduces 
observations of the spacing effect29.
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Figure 8  Testing the model in experiments. (a) Autocorrelation of the 
synaptic efficacy in a simulated experiment in which a synapse undergoes 
a long random series of 10,000 LTP and LTD protocols. Here we assumed 
a balanced input sequence with 10 protocols per minute. The scale of the 
time lag on the horizontal axis is logarithmic. The three curves represent 
the autocorrelation functions for three different models. Our proposed 
model (light red) has a distinctive decay, which appears almost as a 
straight line on a log–linear plot. Other models with faster decays of the 
SNR (1/t3/4 and 1/t are shown) exhibit autocorrelations with a steeper 
falloff and prominent positive curvature. The shaded areas represent 
the standard error for 20 repetitions of the experiment. To measure 
the autocorrelation function of the synaptic efficacy, several technical 
issues must be overcome (see Supplementary Note 7). The duration of 
the experiment should be long enough for at least 1,000 brief induction 
protocols. Since one of the two protocols might be more effective than 
the other, some calibration is required to ensure LTP and LTD are suitably 
balanced. Unfortunately, the calibration procedure may require a time as 
long as the measurement period, as balance should be achieved on all 
timescales considered. (b) Dependence of the autocorrelation function 
on T. The different lines, again plotted on a log–linear scale, correspond 
to different longest timescales of our model. In the limit of very large 
timescales, this line would become horizontal.
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of the line depends on the longest timescale of the memory system 
under consideration (Fig. 8b).

DISCUSSION
We have presented a broad class of synaptic models that exhibit a 
huge memory capacity. These models show that complexity, which 
is widely observed in biological synapses, is important for achieving 
long memory lifetimes and strong initial memory traces. Complexity 
was shown to be beneficial in previous models, both for synaptic9 and 
for systems level memory consolidation11. In both cases the memory 
traces were initially stored in fast variables and then progressively 
transferred to slower variables. Multiple timescales and memory 
transfer were the two key ingredients needed to achieve simultane-
ously slow decays of memory traces and strong initial signals. A 1/t 
decay, with t the age of the memory, led to initial memory traces and 
memory lifetimes whose magnitudes scale as N , where N is the total 
number of synapses.

We show here that it is possible to combine the same key ingredients 
to markedly extend the memory lifetime without sacrificing the initial 
strength of the memory traces and without dramatically increasing 
the complexity of the synapse (for example, the number of dynamical  
variables). Indeed, the model presented here exhibits a substantially 
slower decay, approximately 1 t , which permits memory lifetimes 
that scale almost as N instead of N  (see Supplementary Note 8  
for a direct comparison between models). When considering  
large systems such as the human brain, this is a huge improvement, 
obtained by introducing bidirectional interactions between fast and 
slow variables.

In our model the interactions between fast and slow variables are 
more important than in previous models. It is possible to build a 
system with noninteracting variables that exhibits a 1 t  decay 
(Supplementary Note 9). However, this requires disproportionately 
large populations of slow variables, which greatly reduce the initial 
SNR to O (N1/4), with memory lifetimes scaling only as N . While for  
previous models interactions led to a considerable improvement9, 
they did not substantially improve the scaling properties. Indeed, the 
model with noninteracting variables exhibited a N  scaling for both 
the memory lifetime and the initial SNR, the same scaling obtained 
when fast and slow variables were interacting.

The proposed model synapse is complex, as it requires processes 
that operate on multiple timescales, but their number is relatively 
small and grows only logarithmically with the memory lifetime. Of 
note, for a given number of synapses there is an optimal number 
of synaptic variables (Supplementary Note 8), beyond which the 
memory performance slowly degrades. This implies that smaller nerv-
ous systems may do better with simpler synapses and larger nervous 
systems can benefit from more complex ones. For example, signaling 
complexity differs markedly between invertebrates and vertebrates30, 
with an expansion of key synaptic components, notably receptors, 
adhesion and cytoskeletal proteins, and scaffold proteins. It is unclear 
how this measure of synaptic complexity relates to the number of 
synaptic variables in our model, but it illustrates that at least some 
forms of complexity grow with the number of synapses.

After discretizing the variables, our model has a finite number of 
states. The memory performance of any such model is bounded by 
the total number of internal states of the synapse31. Even though both 
the number of variables m and the number of discrete levels for each 
of them are small in our model, the space of all possible states of each 
synapse grows exponentially with m, which allows the slow memory 
decay it achieves (see Supplementary Note 10).

Optimality
The approximate 1 t  decay of the memory trace is the slowest 
allowed among power-law decays. Slower decays lead to synaptic effi-
cacies that grow without bound. One can prove (see Supplementary 
Note 1) that the 1 t  decay maximizes the area between the log–log 
plot of the SNR and the threshold for memory retrieval (Fig. 3). This 
statement is true not only when one restricts the analysis to power 
laws, but also when all possible decay functions are considered.

Biological implementations of long timescales
One possible interpretation of the dynamical variables uk is that they 
represent the deviations from equilibrium of chemical concentrations 
(see Supplementary Note 11). The timescales on which these vari-
ables change would then be determined by the equilibrium rates (and 
concentrations) of reversible chemical reactions. However, for the 
slowest variables, which vary on timescales on the order of years, it is 
probably necessary to consider biological implementations in which 
the uk variables correspond to multistable processes. For example, 
we showed that the slowest variable can be discretized with only two 
levels, and hence it could be implemented by a bistable process, which 
would allow very long timescales32–34. For a small number of levels 
that is larger than two, one could combine multiple bistable processes 
or use slightly more complicated mechanisms35.

These biochemical processes could be localized in individual  
synapses. However, these processes could also be distributed across dif-
ferent neurons in the same local circuit or even across multiple brain areas. 
The interaction between two coupled uk variables could be mediated  
by neuronal activity, such as replay activity11. In the case of different 
brain areas, the synapses containing the fastest variables might be in 
the medial temporal lobe—for example, in the hippocampus—and  
the synapses with the slowest variables could reside in the long-range 
connections in the cortex. Our model would predict that the commu-
nication between these different areas should be bidirectional, which 
would imply that replay activity should be observed in both areas. This 
seems to be the case in at least two experimental studies36,37.

Biological interpretations
Experiments on long-term synaptic modifications have revealed that 
synaptic consolidation is not a unitary phenomenon, but consists of 
multiple phases that involves different molecules. Directly mapping 
the variables uk of our model to specific molecular processes would be 
interesting, but is probably difficult as our knowledge of the relevant 
biochemical processes is sparse and their dynamics characterized only 
incompletely. This is a known problem even in phenomenological 
models of synaptic processes.

One example involves models based on the synaptic tagging and 
capture (STC) hypothesis, which states that LTP consists of at least 
four steps38,39: first, the expression of synaptic potentiation with the 
setting of a local synaptic tag; second, the synthesis and distribution 
of plasticity-related proteins; third, the capture of these proteins by 
tagged synapses; and forth, the final stabilization of synaptic strength. 
Phenomenological models24,25,40 of STC are characterized by four 
dynamical variables, whose dynamics may be triggered by neural 
inputs (see Supplementary Note 12), and can explain experiments on 
the induction of protein-synthesis-dependent late LTP. Two variables  
are related to tagging and probably involve calcium/calmodulin-
dependent kinase II (CaMKII). The other two are important for 
protein-synthesis-based synaptic stabilization and may be related to 
protein kinase Mζ (PKMζ). However, each dynamical variable is likely 
to involve more than one molecular process. This suggests that they 
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should not be interpreted as concentrations of individual molecular 
species, but rather as ‘reporters’ indicating important changes in the 
molecular configuration of the synapse25.

The situation is analogous for our uk variables. Mapping them  
onto the dynamical variables of the phenomenological models would 
provide a different type of biological interpretation. This might require 
a complex transformation in which multiple uk variables describe 
one or more nonlinear functions of the phenomenological variables. 
For example, in the STC model the synaptic efficacy is obtained as 
a sum of at least two components that depend on different dynami-
cal variables. Although we discussed the case in which only u1 is  
read out, our model can be extended to the case in which more than 
one dynamical variable determines the synaptic efficacy (see also 
Supplementary Note 5).

Memory retrieval
The ideal observer approach allowed us to analyze the scaling proper-
ties of memory systems with hardly any assumptions about the archi-
tecture of the neural circuit, the specific learning rule and the neural 
representations. However, it is important to test whether these scal-
ing properties are preserved in specific neural circuits. We analyzed 
two simple cases of memory retrieval: a perceptron storing random 
patterns by one-shot learning and a fully connected recurrent neural 
network10,41. In both cases, the ideal observer approach predicts that 
the number of storable memories scales (almost) linearly with the 
number of neurons Nn (or synapses per neuron; see Supplementary 
Note 13). For the perceptron architecture, the linear scaling is verified 
in simulations. For attractor networks, the almost linear scaling pre-
dicted by the ideal observer approach well approximates the growth 
of the capacity with Nn observed in simulations and provides a con-
sistently better description of the numerical results than the square 
root scaling that characterizes previous models of complex synapses9 
(Supplementary Note 13). This indicates that the approximately lin-
ear scaling of the ideal observer capacity may be preserved also with 
recurrent retrieval dynamics.

To study generalization, we trained a perceptron to classify random 
input patterns and then retrieved memories by imposing on the input 
neurons degraded versions of the stored patterns. The generalization 
ability can be expressed in terms of the minimum overlap between 
the input and the memory to be retrieved that can be tolerated (i.e., 
that produces the same response as the stored memory). This overlap 
is directly related to the SNR42, and we show that it scales as 1/SNR. 
This demonstrates the importance of large SNRs, which allow better 
generalization ability.

We also presented the recurrent networks with degraded memory 
cues and tested that they could correctly retrieve the original memo-
ries. The scaling of the memory capacity with Nn was similar to that 
in the case of unperturbed cues, with the total number of retriev-
able memories decreasing smoothly with the level of degradation 
(Supplementary Note 13).

Sparseness of neural representations
Sparseness can increase the memory capacity both for synapses that 
can vary in a unlimited range43 and for bounded, bistable synapses3. 
In both cases the number of storable memories scales almost quad-
ratically with the number Nn of neurons when the representations are 
sparse enough (i.e., when f, the average fraction of active neurons, 
scales approximately as 1/Nn). This is a notable improvement over 
the linear scaling obtained for dense representations. However, this 
capacity increase entails a reduction in the amount of information 
stored per memory.

The synaptic model we propose can also benefit from sparsifica-
tion, with the SNR increasing by a factor of O  1 f( ) (Supplementary 
Note 14). When f ∝ 1/Nn the memory capacity scales approximately 
quadratically with Nn, as in previous models3, but with an initial SNR 
that is O (Nn) times larger. While an f of order 1/Nn may be compatible  
with electrophysiological data when Nn is the number of neurons 
of the local circuit, this is no longer true for much larger systems. 
Moreover, sparseness can also be beneficial for generalization, but 
only if f is not too small44. For these reasons, sparse representations 
are unlikely to be the sole solution to the memory problem.

Limitations of our approach
Our estimates of memory capacity are based on the ideal observer 
approach, and hence they only provide us with an upper bound on 
the memory signal. We validated our results in two local circuits, 
but it remains unclear how to perform this validation in large neural 
systems respecting the observed sparse connectivity and modular 
organization of the brain. Scalability has been studied only in specific 
cases45,46 and is an important future direction for our work.

A second limitation, related to the first, arises from the assump-
tion of random and uncorrelated synaptic modifications. Although 
it is reasonable to assume that the brain processes information to be 
stored so as to memorize only what is not already in memory, it is 
known that synaptic modifications are correlated, even when memo-
ries are not3,47. Fortunately, the disruptive effects of these correlations 
seem to disappear when neural representations are sparse3 (see also 
Supplementary Note 14). Furthermore, the initiation of long-term 
synaptic modifications typically requires the coincidence of relatively 
rare events. It is not unreasonable to think that these mechanisms can 
also greatly contribute to the decorrelation of synaptic modifications. 
If this is the case, the theoretical framework that we developed will be 
applicable to a large number of memory systems.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Formal definition of memory signal and noise. We assume that memories are 
stored through synaptic modification, with each new memory being encoded 
in a change in the efficacies of (a subset of) the synapses of a neural network. 
To formalize this problem, we will represent each memory as a random binary 
pattern ∆wij(t) = ±1 of desired modifications (with +1 representing potentiation 
and −1 depression) of the synaptic weights between neurons labeled j and i. We 
will consider the components of ∆wij(t) to be uncorrelated (both across differ-
ent memories and different synapses in a certain set), as would be the case if a 
suitable preprocessing step had decorrelated a stream of incoming patterns for 
optimal compression.

Note that we are not considering any particular network architecture and 
learning rule, but instead are working with synaptic modifications directly, thus 
sidestepping the learning rule that would determine them from the activities 
of pre- and postsynaptic neurons. This makes sense in the context of the ideal 
observer approach, where the underlying assumption is that all the information 
stored in the synaptic weights can be recovered, but of course it must be stressed 
that it is not obvious a priori whether there exists a network architecture that can 
in fact read out this information (see also the Discussion).

Nevertheless, classical memory models support the notion that the ideal 
observer approach correctly captures the scaling behavior of the achievable 
memory performance. For example, in the standard Hopfield model10 the desir-
able modifications for a set of synapses that share a postsynaptic neuron would be 
uncorrelated (as assumed above), and a simple signal-to-noise analysis using the 
ideal observer approach correctly predicts a memory lifetime that scales linearly 
with the number of neurons.

If we index the set of N synapses under consideration by a (instead of i and j),  
the signal relevant for the retrieval of a particular memory that was stored  
at time t′ is given by the overlap between the pattern of the associated (desirable)  
synaptic modifications ∆wa and the current state of the synaptic weights  
wa at time t:

S ′
=

( ) ≡ ( ) ′( )∑t
a

N
a at

N
w t w t1

1
∆

Here angle brackets indicate an average over the ensemble of random uncor-
related patterns that form the sequence of memories impinging on this set of 
synapses, and we have assumed for simplicity that the expectation value of ∆wa 
vanishes (i.e., the inputs are balanced); otherwise, a term proportional to this 
expectation value would have to be subtracted from the above.

Similarly, the corresponding (squared) noise term, again for the pattern stored 
at time t′, is given by the variance of this overlap 

N S′
=

′( ) ≡ ( ) ′( )








 − ( )∑t

a

N
a a tt

N
w t w t t2

2
1

2
21 ∆

The quotient of the signal and its standard deviation, the SNR, is the key quantity 
to consider when assessing the possibility and fidelity of recall of a previously 
stored memory. While we have considered a particular pattern stored at time t′, 
we will assume that all memories are initially encoded with the same strength 
(though it is easy to generalize to a distribution of initial strengths), so that there 
is nothing special about any one memory. In this context, if the distribution of 
the synaptic weights reaches a steady state (as it does in the cases we are inter-
ested in), the SNR really only depends on the time t – t′ elapsed since storing the 
memory in question (i.e., the age of the memory). Accordingly, we will write it 
simply as a function of this time difference, which for a wide range of models will 
be monotonically decreasing.

A good memory system is one that has a large initial SNR, such that recent 
memories can easily be retrieved (using only a small—i.e., potentially highly 
corrupted—cue), and a long memory lifetime. The latter is defined as the time 
elapsed until the SNR drops below a certain retrieval threshold, the minimum 
value of S / N  at which recall is still possible. The precise value of this threshold 
will depend on the details of the network architecture and the retrieval dynamics, 
but as long as it is of order unity this will not affect the scaling results derived 
below, and thus in what follows we will simply set it to one unless otherwise noted. 
If the rate of memory storage is constant, the memory lifetime is proportional 

(3)(3)

to the capacity of the system—i.e., the total number of memories that can be 
recalled at a given time. The tradeoff between the two goals of large initial signal 
and long memory lifetime will be discussed in detail below and will eventually 
lead us to optimizing an appropriately defined area under the signal-to-noise  
curve that captures the joint target of having as large a SNR as possible for  
as long as possible.

Desiderata for a useful synaptic memory model. Our aim here is to build a model 
of long-term memory that exhibits a number of properties we consider essential. 
We would like our model synapse to be able to learn online (one pattern at a time) 
and to forget gradually and smoothly without a phase transition such as the cata-
strophic forgetting in standard Hopfield-type models41. In addition to exhibiting 
a large initial SNR and long memory lifetime, the synaptic weights should reach 
a steady state distribution (given constant input statistics) that has support in 
only a small range of values (i.e., that does not allow arbitrarily large weights 
or, equivalently, weights in a finite range that must be read out with arbitrarily 
high precision). Note that one can easily obtain a model with bounded synaptic 
weights by restricting (hard-limiting) the range of a standard unbounded synapse 
(with plasticity events of unit magnitude) to values of order N , which is still an 
unrealistically large number5,19. We will consider much more tightly bounded 
synaptic weights. Finally, all this has to be achieved while keeping the complex-
ity of the model relatively small, avoiding overly baroque internal mechanisms 
involving too many variables.

Abstract models with linear superpositions of memories. Basic assumptions. 
To build an efficient synapse with bounded weights, we will start by considering a 
continuous synaptic variable with an additive plasticity rule and a time-dependent 
kernel r(t – t′), which we take to be the same for all synapses and plasticity events 
(i.e., across all stored patterns): 

w t w t r t t
t t

ij ij( ) = ′( ) − ′( )
′<
∑ ∆

By additive plasticity rule we simply mean that the efficacy wij is a weighted sum 
over past plasticity events, which we take to be of fixed magnitude ∆wij(t) = ±1 
(with a plus sign for potentiation and minus for depression). The ∆wij(t) may 
be computed from the neural activations ξi corresponding to the patterns we 
want to store. For example, they could be determined according to a covariance  
rule ∆w tij i i j j( ) ∝ − 〈 〉( ) − 〈 〉( )x x x x , where the ξi = ±1 patterns are binary  
with equal probability for both values (such that 〈 〉 =xi 0). Recall could be 
achieved by the network dynamics of an autoassociative Hopfield-type network10  
that completes the stored pattern of neural activations from a partial  
(or corrupted) cue xi .

However, we deliberately divorce our analysis from the choice of learning 
rule and the network dynamics by focusing on a subset of synapses that receive 
statistically independent inputs and taking an ideal observer approach. Successful 
retrieval of a previously stored memory then requires the SNR of this set of  
synapses to be larger than a certain threshold (which we will set to 1).

We are assuming that potentiation and depression events are equally  
likely and are uncorrelated between different synapses and memories. In other 
words, we consider storing random patterns of synaptic modifications in which 
each bit of each memory can be thought of as determined independently by 
the flip of an unbiased coin. If this was not the case, a homeostatic mechanism 
would be needed to adjust the relative magnitude of these types of plasticity 
events to achieve a steady state without introducing any explicit bounds on the 
synaptic variables wij. (More generally, one could imagine a distribution over 
magnitudes of plasticity events, and again the existence of an equilibrium without  
explicit bounds on the weights would require a balance condition: namely,  
that the expectation value of the initial size of plasticity events vanishes. Another 
conceivable generalization would be to introduce different kernels for potentia-
tion and depression events.)

Signal-to-noise ratio. We have introduced a time-dependent kernel r(t – t′) 
above since otherwise the synaptic weight would grow without bound as more 
and more patterns are stored. This can avoided, however, if r(t – t′) decays suf-
ficiently fast as a function of the age of the corresponding memory (i.e., the time 
elapsed since storage).

Following the definition in equation (3), the signal (at time t) associated  
with a particular memory is given by the overlap of the corresponding pattern 

(4)(4)
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of synaptic modifications (stored at time t′) with the current synaptic weights, 
which using the ansatz (4) leads to 

S t t
N

w t w t r t t
a

N
a a− ′( ) = ( ) ′( ) = − ′( )

=
∑1

1
∆

where the neuronal indices i and j have now been replaced by a single synaptic 
index a ranging over the set of synapses under consideration. Combining this 
with the corresponding noise term, we obtain the SNR 

S N/
,

t t
Nr t t

r t tt t t t
− ′( ) = − ′( )

− ′′( )′′< ′′≠ ′∑
2

2

It will be convenient in what follows to approximate the sum in the denomina-
tor by an integral over the full range of past t′′ values (see also Supplementary 
Note 6 for details), neglecting the small correction that arises from the fact that 
there is a term corresponding to t′′ = t′ missing in the sum (since this term is the 
signal, rather than part of the noise). The noise will then be represented by an 
integral of the form 

1

2
∞

∫ ( )r t td

and thus if the decay kernel is a power law r(t) = t−γ then we must have γ > 1/2 or 
else this integral will not converge. Crucially, the divergence of this noise inte-
gral also implies that the variance of the synaptic weight would blow up, so that 
even if we regularized the integral appropriately for γ < 1/2, the resulting range 
of synaptic efficacies would be large. Therefore, the slowest power-law decay we 
can afford is r(t) ≈ t−1/2, which is the critical case in which the synaptic variance 
just starts to diverge (see also Supplementary Note 1).

Constructing models by coarse-graining random walks. Here we describe 
the procedure for building a model of a complex synapse that implements the 
required forgetting curve (1 t ) in a natural and parsimonious fashion. We will 
begin with general considerations of random walks and diffusion processes, and 
then refine as well as generalize the model step by step, in the following sections 
and Supplementary Note 4.

The present section serves primarily to provide a more systematic background 
for the model construction steps leading from Figure 2a to Figure 2c and fur-
nish some mathematical details. Reducing the analogy of fluid flowing through a 
system of communication vessel to its most basic ingredients, we will consider a 
random walk of particles (which can be thought of as the molecules in the liquid) 
along a chain of discrete sites (which correspond to the beakers). Even though 
more abstract and general, this construction is equivalent to that of the main text in 
the particular case discussed there. See the next section for an alternative point of 
view using the (approximately equivalent) language of diffusion processes, which 
leads to a particularly simple description of the proposed synaptic dynamics that 
allows analytical derivations of some important properties of the model.

Linear chain models. Consider a random walk of particles on a semi-infinite 
chain in discrete time steps. We denote the number of particles at location j at  
time t by vj(t) for j = 1 ... . (Note that this number can be negative; we can 
think of the particle number as being measured relative to a constant background  
density.) At every time step each particle has a finite probability of moving one 
step to the left or to the right. This probability is the same for both directions and 
for all locations except j = 1, which has no left neighbor. For such a stochastic 
process the time derivative of the particle numbers is equal to a discrete Laplacian: 
dvj/dt ∝ vj–1 −2vj + vj+1 for j > 1. In other words, we have a spatially discretized 
diffusion process with constant diffusivity (see Supplementary Note 4 for an 
illustration of a similar construction).

To make contact with systems of exponentially varying diffusivities that we 
are interested in, we will now consider discretizing the above random walk even 
further, on a coarser scale. We introduce a new set of coarse-grained variables 
ui that are located at positions j = 2i−1 on top of v i2 1− ; i.e., they are exponentially 
spaced. Our goal is to find an effective, approximate description of the system in 
terms of the u variables alone, where we think of each ui as reflecting the average 
behavior of the system in the interval between its own location and that of its 
right neighbor ui+1.

(5)(5)

We can achieve this by assuming that the particle density profile is  
piecewise linear, with kinks located only at positions j = 2i−1, such that  
all the curvature (which drives diffusion) is concentrated there. We can then 
use simple linear interpolation to eliminate all the vj values from the equations  
of motion except those that coincide with the ui. This would lead to the  
following expressions: 

d

d

v

t
v v v v

i i
i i

i
i i2 2

2 2 2 1
1

2 1 2
1

2 2
−

∝ −( ) − −( )− +
− −

− +
−

 
for i = 2, 3, 4 ..., while the time derivatives of the other vj variables (for which j is 
not a power of two) would vanish because they are situated in regions of linear 
particle density.

However, for the piecewise linear approximation to be self-consistent (i.e., still 
applicable at the next time step), changing the particle number at the end of a 
line segment must be accompanied by an appropriate change everywhere along  
the segment to maintain linearity. In other words, the time derivative of the  
endpoint v i2 1−  must be distributed among all variables along the line segment. 
Thus if our effective variable ui is proportional to v i2 1− , its time derivative must 
be proportional to the average derivative along the line segment to its right.  
(The details of this coarse-graining procedure are a matter of choice. The mathe
matically inclined reader might find it more appealing to have a symmetric 
prescription in which we average over the left and right line segments or, alter-
natively, to think of the ui variables as living in the middle of a line segment. This 
would merely change the overall timescale of variation, which is unimportant 
here, so for ease of illustration we stick with a one-sided prescription.)

There are 2i−1 variables on this line segment, and denoting the constant of 
proportionality by α/2 this leads to dui/dt = 2−2i+2α(ui–1 – ui) – 2−2i+1α(ui – ui+1), 
which describes a discretized diffusion process on a logarithmic scale (i.e., as if 
viewed on a plot in which the spatial axis is logarithmic). In such a random walk 
model a plasticity event would correspond to adding or removing a particle from 
the leftmost location, which modifies the equation for i = 1. If we denote this time-
dependent input of unit magnitude (and sign discriminating potentiation from 
depression) by I, we find d du t u u1

1
1 22= − −( )−I a . Similarly, if the chain is not 

semi-infinite the equation for the last (mth) variable will only contain a coupling 
to its (sole) left-hand neighbor, but we can add a leak (exponential decay) term 
to it to render the variances of all particle numbers finite. This is easily achieved 
by simply setting the value of the (nonexistent) right-hand neighbor to zero, such 
that dum/dt = 2−2m+2α(um–1 – um) – 2−2m+1αum.

Models with different ratios of timescales. While above and in the main text we 
have chosen parameters that vary as powers of two for ease of illustration, this 
can easily be generalized to arbitrary exponents 

d
d
u
t

n u u n u ui i
i i

i
i i= −( ) − −( )− +

−
− +

+
2 2

1
2 1

1a a

which still approximates the desired 1 t  behavior of the Green’s function for 
arbitrary real-valued n > 1, with ratios of successive timescales of O (n2). The 
tradeoff in the choice of n is that for large n this approximation is not very 
good (since a superposition of a small number of exponentials leads to a rather 
bumpy surrogate for a power law), while for n only slightly bigger than unity a 
large number m of variables are needed to cover a given range of timescales, say 
between 1 and T, namely m ≈ logT/(2logn).

Note that even within the space of linear (and first order in time) equations 
with nearest neighbor interactions on a chain, we could generalize equation (6) 
even further by introducing different ratios of successive timescales instead of 
just one global parameter n, while still approximating the inverse square root 
Green’s function.

Continuum space limit and diffusion equation. In the preceding section we 
discussed a set of first-order differential equations describing a random walk  
of a large number of particles (or, equivalently, the flow of water between  
connected beakers). In this construction space was discrete from the beginning 
(represented by a number of sites or beakers), but we could have chosen instead 
to step back even further and start from a model in which space is continuous.  
This even simpler model, which is highly instructive and allows an intuitive  
explanation of important properties such as the 1 t  decay, connects the  
proposed synaptic dynamics to heat diffusion on a line (for example, along  
a thermally insulated wire).

(6)(6)
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Consider the one-dimensional diffusion equation (with u(x′,t) interpreted  
as the temperature profile along a homogeneous rod) 

∂
∂

= ∂
∂ ′

u
t

D u
x

2

2

Its Green’s function for a δ-function input (of one unit of heat energy)  
at time t = 0

G x t
Dt

eu
x Dt′( ) = − ′, 1

4

2 4
p

decays as 1 t  at the origin (i.e., at x′ = 0, where the δ-function is located). Thus 
if we represent the input to the system by such an instantaneous pulse, the correct 
decay of the signal is already built in, as long as we read out the synaptic weight  
at x′ = 0. Since the equation is linear, we can simply superimpose Green’s  
functions for a sequence of such inputs (positive for potentiation and negative 
for depression) and they will behave as required by equation (4).

Even though the Green’s function we wrote here is for an infinite line, it is sym-
metric around the origin, and thus we can simply fold the system in half (leading 
to a Neumann boundary condition) and use the same Green’s function (up to a 
factor of 2) on the semi-infinite line. A δ-function input at the origin will then 
evolve into a half Gaussian bump that will gradually spread, the peak remaining 
at the origin, with a standard deviation that grows in proportion to t .

To revert back to the system of communicating beakers described above,  
we simply have to spatially discretize this diffusion process by chopping up  
the rod into finite chunks and considering the resulting interactions of the  
average temperatures of those chunks. The piece closest to the origin corresponds 
to the synaptic weight, while the other ones give rise to the hidden variables.  
If all those chunks have the same (say, unit) size, this will lead to the system 
shown in Figure 2a. While it has the correct decay behavior, the system cannot 
be of infinite extent. There will be some finite number m of separate chunks, and 
when the width of the Gaussian bump becomes comparable to the total size of the 
system, the 1 t  decay of the Green’s function (equation (8)), which assumes an 
infinite system, will break down. In other words, if there is a second boundary, 
we have to choose a boundary condition there, which will modify the power-
law decay on a timescale T ∝ m2. Thus if want to achieve an extensive memory 
lifetime T ∝ N, the number of variables that would be required is m N∝ , which 
is unrealistically large.

Note that we have assumed that the system is purely diffusive and free of any 
drift term. If that were not the case, the situation would be even worse, since the 
peak of the Green’s function would move at a finite velocity and hit the second 
boundary at a time T ∝ m, so that we would need even more variables (m ∝ N) 
to obtain an extensive memory lifetime.

Fortunately, drastically reducing the number of required variables while main-
taining a close approximation to power-law decay is not difficult. Recall that the 
(thermal) diffusivity D in equation (7) in general is a ratio of a thermal conductiv-
ity g(x) and a heat capacity C(x) and that those can vary spatially, which leads to 
the more general diffusion equation 

∂
∂

=
( )

∂
∂

( ) ∂
∂







u
t C x x

g x u
x

1

If we break the homogeneity of the system by introducing exponentially varying 
parameters C(x) ∝ eβx and g(x) ∝ e−βx, we obtain the differential equation 
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parameterized by positive constants D and β, which has a Green’s function  
given by 

G x t
Dt

eu
e x Dt, ( )( ) = − −1

4
1 2 4

p

β

It describes a signal (in the form of a temperature difference) that propagates only 
very slowly toward larger x. This is because the thermal conductivity decreases 
exponentially while the heat capacity increases with x, and thus an input given 
by a certain amount of heat energy at x = 0 will lead to a noticeable temperature 
difference at finite x only at exponentially large times, when t ≈ (eβx – 1)2/4D. 

(7)(7)

(8)(8)

(9)(9)

Therefore, to reach an extensive memory lifetime, the largest value of x we need 
to consider, which is proportional to m, will now only scale as logN.

Throughout this diffusion process, the heat energy Q x C x u x t= ( ) ( )∫d ,  is a 
conserved quantity, modulo a leakage term potentially introduced by the second 
boundary condition at x ∝ m. Spatially discretizing this system as above leads 
to the model of communicating vessels shown in Figure 2c, which achieves the 
correct power-law decay and extensive memory lifetime with only a logarithmic 
number of variables.

Note that the two continuum models (7) and (9) we have discussed in this 
section are in fact equivalent under the change of variables x′ = eβx −1. This 
implies that there is another way of arriving at the simple linear chain model we 
want. We can start from a homogeneous diffusion process (constant diffusivity), 
but instead of discretizing space on a linear scale (into chunks of equal length) 
we can discretize on a logarithmic scale (i.e., divide the system into chunks of 
exponentially increasing size). This is precisely in the spirit in which we have 
described the transition from the homogeneous random walk (communicating 
vessels of constant size) to the desired linear chain model in Figure 2 and the 
previous section. Both are approximations to a simple one-dimensional diffusion 
process, but spatially discretized in different ways, with the latter being much 
more efficient in terms of the number of variables needed.

Detailed description of models used in numerical simulations. While above 
we have written equations for a continuous time system, it is a simple matter to 
discretize time, as is appropriate for an incoming stream of temporally discrete 
patterns representing different experiences to be stored. We will choose one time 
step to correspond to one such memory and write 

u t u t n u t u t n u t u ti i
i

i i
i

i i+( ) = ( ) + ( ) − ( )( ) − ( ) − ( )(− +
−

− +
+1 2 2

1
2 1

1a a ))

Again, the last equation (for i = m) is obtained from this by simply setting um+1 = 0  
for all times (thus introducing an exponential decay term on very long times-
cales), while the first equation (for i = 1) is modified by introducing the binary 
input of unit magnitude I (t): 

u t u t t n u t u t1 1
1

1 21+( ) = ( ) + ( ) − ( ) − ( )( )−I a

α is a free parameter in these equations that determines the overall timescale  
of the dynamics (but its value should be chosen small enough such that the  
transition matrix on the right side of these equations has no negative  
eigenvalues, which could lead to oscillations). We will take α = 1/4 below and  
in all numerical experiments.

Having discretized time, we are now left with a model of a complex synapse 
consisting of a small number m of coupled variables operating in discontinuous  
time steps, one step per incoming memory, according to the deterministic  
(given I (t)) dynamical equations (10) and (11). However, the values of these 
variables are still continuous, and in the next step we will discretize those as well, 
thus turning the model into a Markov chain with inputs given by the random 
patterns to be stored and stochastic transition dynamics for the ui.

To achieve this discretization, we will simply declare that every variable can 
take only one of a finite number of values (which we will refer to as levels) at every 
time step. We assume that these levels are integer-spaced and distributed sym-
metrically around zero (such that for an odd number of levels the allowed values 
are integers, while for an even number they are odd multiples of one half), though 
the algorithm described below can easily be generalized to arbitrary choices of 
discrete levels.

For every time step, we first compute the right sides of equations (10) and (11),  
with the ui(t) from the previous time step entering as (half) integers (and similarly 
the input I (t) as ±1). If the resulting ui(t + 1) happens to coincide with one of the 
quantization levels there is nothing further to be done, but in general the result 
will fall between two levels, and in that case we must decide which of the two 
neighboring levels will be the new state of that variable. This can be done by inde-
pendently flipping a biased coin for each such decision, with the odds ratio of the 
coin (corresponding to one or the other level being chosen) equal to the inverse 
ratio of the distances from the desired (unquantized) value to the respective levels, 
such that the closer one of the neighboring levels will be more likely.

The number of levels for each variable is finite, and if the right sides of  
equations (10) and (11) lead to a desired update for any variable ui that would 

(10)(10)

(11)(11)
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cause it to become larger than the value of its highest level, we set it to this level 
with probability one (and similarly for the lower end of its dynamical range).

This is the fully discretized, stochastic model that we use for simulations (with 
n = 2), in particular those shown in Figures 3–6. It should be stressed, however, 
that the quantization of the variables is neither necessary for the model to work 
nor required for a plausible biophysical implementation. In fact the SNR will be 
somewhat higher without the additional noise introduced by the stochasticity of 
the random choices between nearby levels (though the scaling behavior appears 
to be the same). However, even though we do not need stable, discrete levels, we 
do perform this quantization in order to emphasize that the variables never need 
to be kept track of with high precision (as long as there is no systematic drift) 
and that there is no biologically implausible information hidden in exactly read 
out continuous variables.

For the simulations of Figure 7, by contrast, we use continuous-valued vari-
ables to better illustrate the transient dynamics of the synaptic efficacy. There 
we also generalize to a broad class of complex synaptic models in which each 
dynamical variable is coupled to two or more other variables, forming more 
complicated networks of interactions. These models are constructed iteratively 
starting from the linear chain of beakers of Figure 2. For example, the second 
beaker could be connected to two identical beakers on its right instead of one, 
splitting the chain into two. Each of the two beakers would then be connected 
to a series of progressively larger ones. Pairs of corresponding beakers would 
have the same total capacity as the associated single beaker of the original chain.  

This ramification process can be iterated an arbitrary number of times, with any 
choice of relative importance weights assigned to different branches. Furthermore, 
such branches can merge again, leading to complex networks of interactions, as 
described in detail in Supplementary Note 4. When the cross-sections of the 
tubes are properly tuned, the memory performance of the model is the same as 
for the original linear chain of beakers.

Another generalization we introduce in Figure 7b to model delayed  
plasticity is inputs affecting longer timescale variables. Until now we have 
considered models in which the synaptic efficacy is instantaneously modified 
by adding or removing liquid from the first beaker. The long-term memory 
performance remains basically unaltered when liquid is added or removed 
from other beakers instead, but the expression of a synaptic modification is 
delayed by the time it takes the liquid to flow into the beaker representing the 
efficacy. This suggests that LTP and LTD induction protocols may affect distinct 
biochemical processes that correspond to different beakers in the model and 
do not need to operate directly on the same variable, as discussed further in 
Supplementary Note 3.

For the simulated experiments comparing synapses with different decay func-
tions in Figure 8, we use the abstract model of equation (4) above.

Code availability. The code for the simulations was written in C++ and Matlab, 
and is available upon request.

A Supplementary Methods Checklist is available.
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