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The nature and origin of the temporal irregularity in the electrical activ-
ity of cortical neurons in vivo are not well understood. We consider the
hypothesis that this irregularity is due to a balance of excitatory and in-
hibitory currents into the cortical cells. We study a network model with
excitatory and inhibitory populations of simple binary units. The internal
feedback is mediated by relatively large synaptic strengths, so that the
magnitude of the total excitatory and inhibitory feedback is much larger
than the neuronal threshold. The connectivity is random and sparse. The
mean number of connections per unit is large, though small compared to
the total number of cells in the network. The network also receives a large,
temporally regular input from external sources. We present an analytical
solution of the mean-field theory of this model, which is exact in the limit
of large network size. This theory reveals a new cooperative stationary
state of large networks, which we term a balanced state. In this state, a bal-
ance between the excitatory and inhibitory inputs emerges dynamically
for a wide range of parameters, resulting in a net input whose temporal
fluctuations are of the same order as its mean. The internal synaptic in-
puts act as a strong negative feedback, which linearizes the population
responses to the external drive despite the strong nonlinearity of the in-
dividual cells. This feedback also greatly stabilizes the system’s state and
enables it to track a time-dependent input on time scales much shorter
than the time constant of a single cell. The spatiotemporal statistics of
the balanced state are calculated. It is shown that the autocorrelations de-
cay on a short time scale, yielding an approximate Poissonian temporal
statistics. The activity levels of single cells are broadly distributed, and
their distribution exhibits a skewed shape with a long power-law tail.
The chaotic nature of the balanced state is revealed by showing that the
evolution of the microscopic state of the network is extremely sensitive
to small deviations in its initial conditions. The balanced state generated
by the sparse, strong connections is an asynchronous chaotic state. It is
accompanied by weak spatial cross-correlations, the strength of which
vanishes in the limit of large network size. This is in contrast to the syn-
chronized chaotic states exhibited by more conventional network models
with high connectivity of weak synapses.
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1 Introduction

The firing patterns of neurons in the cortex of intact animals often exhibit
a strong degree of temporal irregularity. This can be seen by the broad in-
terspike interval histograms (ISI) of cortical neurons, which are typically
close to those generated by a Poisson process with a short refractory pe-
riod (Abeles, 1991; Bair, Koch, Newsome, & Britten, 1994; Burns & Webb,
1976; Douglas, Martin, & Whitteridge, 1991; Softky & Koch, 1993). The ir-
regular neuronal dynamics is also manifested in intracellular recordings of
the membrane potential, which exhibit strong temporal fluctuations. One
of the long-standing problems in cortical dynamics is understanding the
origin of this irregularity and its computational implications (Douglas &
Martin, 1991; Ferster & Jagadeesh, 1992). In vitro experiments show that
cortical neurons fire in a relatively regular fashion when they are injected
with a constant current. Thus, the irregularity of the in vivo neuronal activ-
ity must be due to fluctuations in their synaptic input (Holt, Softky, Koch, &
Douglas, 1996; Mainen & Sejnowski, 1995). These fluctuations may be due
to variations in the intensity of the sensory stimuli or may result from the
stochastic action of synapses. However, since cortical cells have thousands
of synaptic contacts, one would expect that the summation of the synaptic
inputs at the soma averages out most of the fluctuations in the synaptic
input and yields a membrane potential with only a small residual fluctua-
tion. This is a particularly difficult issue in conditions where the cortex is
vigorously active so that the cell receives many synaptic inputs within a
single integration time constant (Holt et al., 1996; Softky & Koch, 1993). One
possible resolution of this problem is to assume that the fluctuating synap-
tic inputs are substantially correlated and therefore are not averaged out.
Indeed, the spike trains of pairs of neurons in cortex and in thalamus are
often correlated in a relatively narrow time scale (of the order of 10 msec)
(Abeles, 1991; Gray & Singer, 1989; Perkel, Gerstein, & Moore, 1967a, 1967b;
Vaadia et al., 1995). However, the observed size of these correlations indi-
cates that in general, only a small fraction of the neuronal activity is tightly
correlated. Another possibility, addressed in this article, is that although the
inputs to a cell are only weakly correlated, the cell is sensitive to the residual
correlations in the somatic potential.

Several mechanisms that generate enhanced sensitivity of a cell to small
fluctuations in its potential have been explored (Bell, Mainen, Tsodyks, &
Sejnowski, 1994; Ermentrout & Gutkin, in press; Gerstein & Mandelbrot,
1964; Shadlen & Newsome, 1994, 1995; Softky, 1995; Troyer & Miller, 1997).
One possibility is that the excitatory and inhibitory inputs to a cortical cell
are balanced in a way that leaves the cell’s average potential close to thresh-
old, and its firing pattern is therefore susceptible to small fluctuations. An
interesting question is what might be the mechanism that leads to this bal-
ance. An interesting recent study (Tsodyks & Sejnowski, 1995) explored the
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possible involvement of local cortical dynamics in balancing excitation and
inhibition. This numerical study invoked a strong stochasticity in the synap-
tic action in the form of a large failure probability. In a related study (Amit &
Brunel, 1997a, 1997b), the variability in the network activity is at least par-
tially due to fluctuating external inputs to the local network. In addition,
neither study properly addresses important issues concerning the behavior
of the models and the robustness of their variability as the network size is
scaled up.

In this article, we investigate the hypothesis that the intrinsic determinis-
tic dynamics of local cortical networks is sufficient to generate strong vari-
ability in the neuronal firing patterns. Neuronal dynamics is highly non-
linear; hence it may seem natural to expect that neuronal networks with
deterministic dynamics will exhibit chaotic behavior. However, studies of
simple models of large networks with a high degree of connectivity (Abbott
& van Vreeswijk, 1993; Gerstner & van Hemmen, 1993; Grannan, Kleinfeld,
& Sompolinsky, 1992; Hansel, Mato, & Meunier, 1995; van Vreeswijk, 1996;
Wilson & Cowan, 1972; Tsodyks, Mitkov, & Sompolinsky, 1993) reveal that in
the absence of external sources of strong stochastic noise, they tend to settle
into temporally ordered states of tonic firing or oscillations. Recent extensive
numerical study (Bush & Douglas, 1991; Hansel & Sompolinsky, 1992, 1996)
of a model of local circuits in visual cortex with realistic conductance-based
dynamics has shown the existence of parameter regimes in which these net-
works exhibit strongly irregular states, denoted as synchronized chaotic states.
These chaotic states are generated by the emergence of strong synchrony in
the fluctuating activity of different neurons, which consistently generates a
strong fluctuating feedback to each cell. Thus, this is a network realization
of the scenario of correlated synaptic inputs. The resulting patterns of ac-
tivity show strongly synchronized bursting patterns, tightly timed by the
common inhibitory feedback. Although bursting patterns are sometimes
observed in cortical networks, these synchronized chaotic states are hard to
reconcile with the Poisson-like weakly correlated firing patterns, commonly
observed in cortex.

In this work, we explore the possibility that local networks with intrinsic
dynamics evolve toward states that are characterized by strong chaos in con-
junction with weak cross-correlations, through the mechanism of balancing
between excitation and inhibition. This possibility raises several questions:

• What are the conditions under which a network evolves to a state in
which the excitatory and inhibitory inputs are balanced?

• What are the characteristics of this balanced state? Does the balanced
state represent a cooperative state that is qualitatively distinct from
the synchronized chaotic state?

• What are the functional advantages of the balanced state?
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We study these questions using a network model with the simplified
dynamics of binary elements. The architecture consists of excitatory and in-
hibitory populations connected by sparse random connections. An essential
ingredient of our model is the introduction of strong connections among the
units. A cell is connected, on the average, to K other cells, and K is large.
However, the gap between the threshold of the cell and its resting potential
is only of the order of

√
K excitatory inputs. Thus, the network will saturate

unless a dynamically developed balance between the excitatory inputs and
the inhibitory inputs to a cell emerges. Indeed, our analytical solution of
the model in the limit of large network size shows that in a broad range of
parameters, the network settles into a stable balanced state. An interesting
feature of our theory is that it goes far beyond calculating the properties
of the macroscopic order parameters. The theory yields a complete statisti-
cal characterization of the balanced state. It shows that the balanced state is
associated with a strong Poisson-like firing pattern and also with a broad in-
homogeneity in the average rates of individual neurons. Finally, we address
the possible functional implications of the balanced state by showing that
the network is capable of fast tracking of temporal changes in the external
input to the network.

In section 2, we present the model’s dynamics and architecture. Section 3
presents the mean-field dynamic equations of the evolution in time of the
two macroscopic order parameters, which are the rates of activity of the two
subpopulations. The mean-field theory is exact in the limit of large network
size, N, and 1¿ K¿ N. In section 4 the behavior of the population rates in
the balanced state is studied. Section 5 is devoted to the spatial and temporal
distribution of activity within the network. Section 6 addresses the stability
of the balanced state. It shows that there is a comfortable parameter regime
where the balanced state is stable. We also discuss what happens to the
network when the balanced fixed point is unstable. Section 7 considers the
effect of inhomogeneity in the local thresholds. We show that in the presence
of inhomogeneity, the distribution of rates acquires a characteristic skewed
shape with a long tail, qualitatively similar to the observed distribution of
rates in populations of neurons in the cortex of behaving monkeys. In sec-
tion 8, we evaluate the sensitivity of the temporal fluctuations in the local
instantaneous activities to a small change in the initial condition. We con-
clude that a small change in the initial condition leads rapidly to a complete
loss of memory of the unperturbed initial conditions. Thus, our network
shows the main characteristics of chaotic systems. Section 9 studies the dy-
namical response of the system to dynamic changes in the external input
and shows the fast tracking capabilities of the network. In section 10 we
discuss the results and some open issues. Details of the theory are outlined
in appendixes A and B.

A preliminary report on this work was published in van Vreeswijk and
Sompolinsky (1996).
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Figure 1: A schematic representation of the network architecture. Excitatory
connections are shown as open circles; inhibitory ones as filled circles.

2 The Model

We consider a network of N1 excitatory and N2 inhibitory neurons. The
network also receives input from excitatory neurons outside it (see Figure 1).
We will use either the subscript 1 or E to denote the excitatory population
and 2 or I for the inhibitory one. The pattern of connections is random but
fixed in time. The connection between the ith postsynaptic neuron of the kth
population and the jth presynaptic neuron of the lth population, denoted
Jij
kl, is Jkl/

√
K with probability K/Nk and zero otherwise. Here k, l = 1, 2. The

synaptic constants Jk 1 are positive and Jk 2 negative. Thus, on average, K
excitatory and K inhibitory neurons project to each neuron. We will call K
the connectivity index. The state of each neuron is described by a binary
variable σ . The value σ = 0 (σ = 1) corresponds to a quiescent (active)
state. The network has an asynchronous dynamics where only one neuron
updates its state at any given time. The updated state of the updating neuron
at time t is

σ i
k(t) = 2(ui

k(t)), (2.1)

where 2(x) is the Heaviside function, 2(x) = 0 for x ≤ 0 and 2(x) = 1 for
x > 0. The total synaptic input, ui

k to the neuron, relative to the threshold,
θk, at time t is

ui
k(t) =

2∑
l=1

Nl∑
j=1

Jij
klσ

j
l (t)+ u0

k − θk, (2.2)

where u0
k denotes the constant external input to the kth population. As ex-

plained in appendix B, the precise definition of the order of updates is not
essential. One model is a stochastic model in which each neuron updates its
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state at time intervals that have Poisson statistics. This model is the simplest
to analyze. However, it has the drawback that it introduces a stochastic ele-
ment (the random choice of the updating neuron). An alternative model is
a fully deterministic one in which each neuron updates its state at equally
spaced times where the time between updates is different for each neu-
ron. We show in appendix B that the two models have the same mean-field
equations. In both cases, the mean interval between consecutive updates of
a neuron of the kth population is τk. We will use time units such that τE = 1
so that the only independent time parameter is τ ≡ τI.

To correspond to point processes, we define a spike as the transition from
the passive (0) to the active (1) state. Note that the firing rate, ri

k, of neuron i in
population k is different from the average value, mi

k(t), of σ i
k because before

the cell can spike, it has to update to the passive state. However, if neuron i
of the kth population updates to the active state in two consecutive updates,
the synapses projecting from this cell stay active after the second update,
even though no new spike is emitted. However, if mi

k, which we will call
the activity rate, is small, the probability of two consecutive updates to the
active state is low, and thus for small mi

k, the activity rate and the firing rate
are nearly equal. Indeed, if we assume that at each update the probability of
being in the active state is mi

k (very nearly true in this model for low rates,
as shown in section 5.3), the firing rate is given by ri

k = mi
k(1−mi

k)/τk.
A central ingredient of our model is the assumption that the total exci-

tatory feedback current and the total inhibitory current into a cell are large
compared to the neuronal threshold. We model this by choosing thresh-
olds θk that are of order 1 and by assuming that the strength of individual
synapses is of order 1/

√
K, that is, the coefficients Jkl are of order unity. Fur-

thermore, as will be seen later, it is crucial that the excitatory inputs from the
external sources too are large compared to the threshold. This is modeled
by denoting these inputs as

u0
k = Ek m0

√
K k = 1, 2, (2.3)

where Ek is of order unity and 0 < m0 < 1 represents the mean activity of
the external neurons. We will use the notation

E1 = E (2.4)

for the external input to the excitatory population and

E2 = I (2.5)

for the external input to the inhibitory neurons. We assume that the external
input is temporally regular.

Since the model neurons are threshold elements, the absolute scale of uk
i

is irrelevant. We therefore set

JEE = JIE = 1, (2.6)
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so that the only connection parameters from the network are the inhibitory
and external ones. We will denote the former as

JE ≡ −JEI; JI ≡ −JII, (2.7)

where JI, JE > 0.

3 Mean-Field Equations for Population Rates

The dynamics of our model can be described by mean-field theory, which
is exact in the limit of large Nk. To define this limit, we assume that NI/NE is
held fixed as the network size N = NE+NI grows. The nature of the mean-
field theory depends on the assumed relationship between the network size
and the connectivity index. Conventional mean-field theory assumes that
the networks are fully connected, defined here to mean that K/N is fixed as
N → ∞. Here we assume sparse connectivity defined by assuming that K
is fixed as N grows. We are primarily interested in temporal variability that
is present in highly connected networks, which are either fully connected
or sparsely connected with large connectivity index K. Therefore we will
focus on the case of large K. Technically, we will first take the limit N→∞
and then the limit K → ∞. In reality, networks have a large fixed size and
connectivity, so that the distinction between full and sparse connectivity
may be problematic. Nevertheless, the sparse limit is appropriate as long as

1¿ K¿ Nk , k = 1, 2. (3.1)

The mean-field theory of our model for arbitrary fixed K is presented in
appendix A. Taking the large K limit provides a substantial simplification
of the mean-field equations. In this limit, most of the properties of the system
can be expressed in terms of the first and second moments of the neuronal
activity levels, as will be shown here and in the following sections. We
first consider the population-averaged firing rates of the excitatory and
inhibitory cells as

mk(t) = [σ i
k(t)] =

1
Nk

Nk∑
i=1

σ i
k(t) , k = 1, 2, (3.2)

where [. . .] denotes a population average. In appendix A we show that the
average activities satisfy in the large K limit

τk
d
dt

mk(t) = −mk(t) + H
(−uk√

αk

)
. (3.3)

Here H is the complementary error function,

H(z) ≡
∫ ∞

z

dx√
2π

e−x2/2, (3.4)
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Figure 2: Complementary error function H(x). The error function varies sig-
moidally from 1 for x→−∞ to 0 at x→∞.

shown in Figure 2. The quantities uk(t) and αk(t) are

uk(t) =
√

K

(
2∑

l=1

Jkl ml(t)+ Ek m0

)
− θk (3.5)

and

αk(t) =
2∑

l=1

(Jkl)
2 ml(t), (3.6)

respectively. Equation 3.5 denotes the population average of the total input
to a neuron in the kth population, relative to threshold. Equation 3.6 de-
notes the variance of this input. Note that the external population does not
contribute to variance because we assumed that the input is the same for all
the neurons in a population.

In the case of a constant external input, m0(t) = m0, the network settles
into a state in which the average activities are constant, mk(t) = mk, given
by the stable fixed points of equation 3.3,

mk = H
(−uk√

αk

)
, (3.7)
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where the mean inputs are

uE = (Em0 +mE − JEmI)
√

K − θE, (3.8)

uI = (Im0 +mE − JImI)
√

K − θI. (3.9)

The variance of the inputs is

αk = mE + J2
k mI. (3.10)

Equation 3.3 reflects the fact that the instantaneous input to each neuron
uk

i (t) fluctuates across the population of neurons, and these fluctuations
obey a gaussian statistics in the large K limit. The expressions for the mean
and variance of the input to a cell can be derived in the large K limit by the
following arguments. The population average inputs is

uk(t) = [ui
k(t)] =

2∑
l=1

Nl∑
j=1

[ Jij
kl ] [ σ j

l (t) ] + u0
k − θk. (3.11)

The population average [Jij
kl] is equivalent to a quenched average over the

random connectivity and is therefore equal to Jkl
√

K/N, yielding equa-
tion 3.5. Note that on the right-hand side (r.h.s.) of equation 3.11 we have
neglected the correlations between the random fluctuations in the activity
of a cell and the particular realization of its output connectivity. This is jus-
tified since such correlations are weak in the large N limit. Similarly, the
variance αk of the input is

αk(t) = [(δui
k(t))

2] =
2∑

l,l′=1

Nl∑
j,j′=1

[ ( δ(Jij
kl σ

j
l (t)) )

2 ], (3.12)

where δX ≡ X − [X]. Observing that [(Jij
kl σ

j
l (t))

2] = J2
klml/N, whereas

[(Jij
kl σ

j
l (t))]

2 = J2
klm

2
l K/N2, which is negligible, one obtains equation 3.6.

4 Population Rates in the Balanced State

In a balanced state, the temporal fluctuations in the inputs are of the same
order as the distance between the mean input relative to threshold (even
when K is large). To show this, we need to probe the network temporal
properties. Here we study the necessary consequences of the balanced state
on the behavior of the population rates. A necessary condition for a balanced
state is that both the excitatory and the inhibitory populations do not fire
at their maximum rate, or are completely silent, when we take the limit
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K→∞. In other words we look for solutions with 0 < mk < 1 in the large
K limit.

To have equilibrium rates with mk 6= 0, 1 in the large K limit, both uE and
uI have to be finite in this limit. This means that the r.h.s. of equations 3.8
through 3.9 vanish to leading order. This leads to the following equations:

Em0 +mE − JEmI = O(1/
√

K). (4.1)

Im0 +mE − JImI = O(1/
√

K). (4.2)

Thus, in the large K limit we obtain

mE = JIE− JEI
JE − JI

m0 ≡ AEm0. (4.3)

mI = E− I
JE − JI

m0 ≡ AIm0. (4.4)

Since both AE and AI have to be positive, the coupling strengths have to
satisfy

E
I
>

JE

JI
> 1 (4.5)

or

E
I
<

JE

JI
< 1. (4.6)

Besides this balanced solution, we should also examine the possibility
of unbalanced solutions in which either mk = 0 and uk is of order

√
K and

negative, or mk = 1 and uk is of order
√

K and positive. Equation 4.6 admits
an unbalanced solution in which mE = 0. In this solution, mI is to leading
order in k given by mI = Im0/JI (since the leading order in uI should vanish)
so that

uE =
√

K(E− JEI/JI)m0 < 0. (4.7)

Furthermore if JE < 1 and JI < 1, there exists a solution with mE = mI = 1
even for m0 = 0. In this solution, uk satisfies to leading order

uk =
√

K(1− Jk) (k = E, I), (4.8)

so uk is of order
√

K and positive.
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Thus if we require that there be no stationary solutions with mE = 0, 1
or mI = 0, 1 for small m0, the following constraints have to be satisfied:

E
I
>

JE

JI
> 1. (4.9)

JE > 1. (4.10)

It is straightforward to show that these constraints eliminate all possible
unbalanced states.

Throughout the article, we will assume that equations 4.9 and 4.10 are
satisfied and that m0 is small enough so that Akm0 < 1. Equations 4.3 and 4.4
imply that the network activity rates grow linearly with the external rate,
mk = Akm0, even though microscopic dynamics is highly nonlinear. This
is because the network dynamically finds an operating point at which the
net input in both populations is balanced. Thus, the linearity in the network
rates reflects the linearity of the synaptic summation underlying our model.

4.1 The Net Input. Equations 4.3 and 4.4 determine the average rates of
the populations, but they must be consistent also with the general equilib-
rium results of equation 3.7. According to equations 4.3 and 4.4, the leading
O(
√

K) contributions to uk cancel each other. Thus, the net value of uk is
determined by subleading contributions, such as corrections of order 1/

√
K

to mk. In fact, equations 3.7 should be viewed as equations that determine
the net synaptic inputs uk given the mean activity rates mk, equations 4.3
and 4.4. It is useful to denote by h(m) the scaled input of m, defined as the
solution of the equation

m = H(−h). (4.11)

Thus, equation 3.7 reduces to

uk = √αkh(mk). (4.12)

The activity of neurons in cortex is usually much less than the saturation
rate. It is therefore useful to consider the limit where m0 ¿ 1. In this regime,
mk ¿ 1, and we can use the approximation

H(x) ≈ exp(−x2/2)√
2π |x| (4.13)

to obtain

h(m) ≈ −
√

2| log m|. (4.14)
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Substituting this result in equation 4.12 yields

uk ≈ −
√

2αk| log mk| . (4.15)

This relation between mk and uk will be needed to calculate the rate distri-
bution (see section 5.1).

4.2 Finite K Corrections. For finite K the residuals of order 1/
√

K in the
rates are not negligible, so that equations 4.3 and 4.4 no longer hold exactly.
For finite K, the equilibrium activities satisfy mk = Fk(mE,mI), with Fk given
by equation A.5. However, as long as

mk À K−1, (4.16)

the gaussian assumption of the input statistics is a good approximation;
hence, equations 3.7 still hold. Thus, the leading finite K corrections can
be incorporated by resorting to the full mean-field equations: equations 3.3
through 3.10. In particular, the finite K equations for the fixed point are

Em0 +mE − JEmI = (θE +√αEh(mE))/
√

K. (4.17)

Im0 +mE − JImI = (θI +√αIh(mI))/
√

K. (4.18)

As long as m0 is not small, the r.h.s. of these equations are small for large
K; hence the corrections to the linear solution, equations 4.3 and 4.4, are
small. When m0 becomes sufficiently small (i.e., of order 1/

√
K or less), the

strong nonlinearity in the single neuron dynamics reveals itself in a strong
nonlinearity in the population response. In particular, the effect of the single
neuron threshold θk becomes important. This is seen in Figure 3, where the
population rates are evaluated by the finite K equations—equations 4.17
and 4.18—with K = 1000. For comparison, we also show the straight lines
predicted by the large K limit. Since the steady-state rates in cortical net-
works are usually low, it is sometimes useful to incorporate the leading finite
K corrections. Whenever we refer in subsequent figures to explicit values
for K, we use equations 4.17 and 4.18, unless otherwise stated. Except for
thresholding the population rates, the finite K corrections affect only the
quantitative results, not the qualitative predictions of the simple large K
theory.

5 Spatial and Temporal Variability

So far we have been concerned only with the population average rates mk.
However, the fact that the population averages are not saturated does not
necessarily imply that the system’s state exhibits strong temporal variations.
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Figure 3: The mean activity of the excitatory population (thick solid line) and
the inhibitory population (thick dashed line) as a function of the input activity.
For a network in which cells receive input from, on average, 1000 cells in each
population. For comparison, the activities in the large K limit are also shown (thin
solid line for the excitatory and thin dashed line for the inhibitory population,
respectively). Parameter values: E = 1, I = 0.8, JE = 2, JI = 1.8, θE = 1, and
θI = 0.7.

Specifically, a population average excitatory rate, mk, may be the outcome
of a fluctuating state where all the cells in the kth population fire a fraction
mk of the time. However, it can also be achieved by a frozen state in which a
fraction mk of the cells fire every time these cells are updated, while all other
cells never fire. In other words, the population average does not distinguish
between temporal and spatial fluctuations of activity levels.

Fortunately, the mean-field theory fully characterizes the statistics of both
the spatial and the temporal fluctuations in the activities in the balanced
state. The statistics can be expressed by writing the instantaneous activity
of a cell as a threshold function of two random variables xi and yi(t),

σ i
k(t) = 2

(
−uk +

√
βk xi +

√
αk − βk yi(t)

)
. (5.1)

The means uk are given by equations 3.8 and 3.9. The parameter βk is given
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by

βk = qE + J2
k qI. (5.2)

The order parameter qk is defined as

qk = 1
Nk

Nk∑
i=1

(mi
k)

2, (5.3)

where mi
k is the time-averaged activity rate of the ith cell,

mi
k ≡ 〈σ i

k(t)〉. (5.4)

The symbol 〈. . .〉 denotes average over long time. Both xi and yi(t) are inde-
pendent gaussian variables with zero mean and unit variance.

Quenched fluctuations of synaptic inputs. The term proportional to xi rep-
resents a quenched random component of the synaptic input received by
different cells and thus represents a spatial inhomogeneity in the rates. The
origin of this inhomogeneity is twofold. Since the connectivity is random
in our model, cells may differ in the number of synaptic inputs they have.
This component is given by

δ1〈ui
k〉 =

2∑
l=1

Nl∑
j=1

δJij
kl [mj

l ]. (5.5)

Here, δJij
kl = Jij

kl− [Jij
kl]. In addition, different neurons are connected to differ-

ent cells so that even if all the cells would have received the same number
of inputs, the system would evolve into a state with a self-consistently de-
veloped spatial inhomogeneity. The second component can be written as

δ2〈ui
k〉 =

2∑
l=1

Nl∑
j=1

Jij
kl δm

j
l , (5.6)

where δmi
l ≡ mi

l −ml. Adding the two contributions yields

[ (δ〈ui
k(t)〉 )2] =

2∑
l=1

J2
klql = qE + J2

k qI = βk. (5.7)

Thus, this variance represents the fluctuation in both the number and the
identity of input cells to the different cells.
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Temporal fluctuations of synaptic inputs. The term in equation 5.1 that is
proportional to yi(t) represents the stochastic component of the inputs to
a cell—a temporally fluctuating component with a short-time correlation.
This can be written as

ui
k(t)− 〈ui

k〉 =
2∑

l=1

Nl∑
j=1

Jij
kl (σ

j
k(t)−mj

k), (5.8)

from which one obtains

[(ui
k(t)− 〈ui

k〉2] =
2∑

l=1

J2
kl(ml − ql) = mE − qE + J2

k (mI − qI)

= αk − βk (5.9)

Note that the variance of the temporal fluctuations in the inputs depends
on mk − qk, which measures the temporal variability of the state.

5.1 Distribution of Time-Averaged Rates. The distribution of rates in
the kth population is defined as

ρk(m) ≡ N−1
k

Nk∑
i=1

δ(m−mk
i ). (5.10)

The statistics of the time-averaged local rates can be derived by averaging
equation 5.1 over yi(t) (which is equivalent to average over time),

mi
k = mk(xi) = H

(−uk +
√
βk xi√

αk − βk

)
. (5.11)

Thus, the distribution of mi
k is fully determined by its first two moments.

Averaging this equation over xi yields equation 3.7. Similarly, squaring equa-
tion 5.11 and averaging over xi yields

qk =
∫

Dx
[

H
(−uk +

√
βk x√

αk − βk

)]2

. (5.12)

Here we have used the gaussian measure, Dx ≡ dx exp(−x2/2)/
√

2π . In
general, qk satisfies (mk)

2 ≤ qk ≤ mk. The smaller qk is, the more homoge-
neous is the rate distribution. In a frozen state in which a fraction mk of the
cells are active every time they are updated, while all other cells are always
quiescent, qk is given by qk = mk. On the other hand, if all cells in the pop-
ulation have a probability mk of being active each time they are updated,
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mk
i = mk, qk = (mk)

2. Equations 5.12 have two solutions: an unstable solu-
tion with qk = mk, corresponding to a frozen state, and a stable solution,
(mk)

2 < qk < mk, which corresponds to a temporally fluctuating state. Al-
though the frozen solution is unstable, its existence highlights the fact that
the temporal variability in our system is purely of deterministic origin and
is not induced by external stochastic sources.

Generalizing equation 5.12, we can write,

ρk(m) =
∫

Dx δ(m−mk(x)). (5.13)

In section A.1 we analyze the properties of this distribution. A numerical
evaluation ofρk(m) is shown in Figure 4, which displays the rate distribution
of the excitatory activity for different values of mE. The distribution is plotted
against m/mE. The synaptic couplings were kept constant, while the mean
rates were varied by adjusting the external rate m0. For high mean activity
levels, the distribution has a pronounced skewed shape. Note, however,
that according to equation 5.11 the distribution of the time-averaged inputs
uk

i to the cells is gaussian for all values of mk.
In the low rate limit, m0 ¿ 1, equation 5.12 can be solved using equa-

tions 4.13 through 4.15, yielding to leading order,

qk = m2
k +O(m3

k | log mk|). (5.14)

Thus, if the network evolves to a state with low average activity levels,
mk ¿ 1, qk is slightly larger than m2

k . The fact that qk ¿ mk implies that the
balanced state is characterized by strong temporal fluctuations in the activity
of the individual cells. On the other hand, the fact that qk is not exactly equal
to m2

k reflects the spatial inhomogeneity in the time-averaged rates within a
population. Equation 5.14 implies that when the mean activity mk decreases,
the width of the distribution is proportional to (mk)

3/2; it decreases faster
than the mean mk. Thus, for low mean activity, ρk(m) becomes narrowly
peaked at m = mk, as shown in Figure 4. The reason for the narrow peak is
that in our model, the fluctuations in the input are related to the fluctuations
in the feedback from the network, hence their variance becomes small as
the activity in the network decreases (see equation 5.2.)

5.2 Time-Delayed Autocorrelations. In order to complete the statistical
characterization of the balanced state, we have to determine the statistics
of the temporal fluctuations in the activities of single cells or, equivalently,
the temporal fluctuations in their input. We have already stated that the
temporal fluctuations in uk

i (t) obey gaussian statistics, with variance given
by αk−βk. To characterize its statistics fully, we have to evaluate its autocor-
relations. Using arguments similar to those already outlined, it is straight-
forward to show that the autocorrelation of the input is linearly related to
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Figure 4: Distribution of the activity rates of the excitatory population for two
different values of the average rate in the large K limit: mE = 0.01 (solid line)
and mE = 0.1 (dashed line). The distributions are shown as a function of the
local rate divided by the mean rate. Parameter values as in Figure 3.

the autocorrelations in the local activities,

βk(τ ) = [〈δuk
i (t) δu

k
i (t+ τ)〉] = qE(τ )+ J2

k qI(τ ), (5.15)

where qk(τ ) is the time-delayed autocorrelations of the local activities,

qk(τ ) = N−1
k

Nk∑
i=1

〈σ k
i (t)σ

k
i (t+ τ)〉, (5.16)

and as before 〈. . .〉 denotes average over t. Note that qk(0) = mk, whereas
qk(τ → ∞) = qk. Likewise, βk(0) = αk, whereas βk(τ → ∞) = βk. Using
this relation, the following self-consistent equation for qk(τ ) (with τ ≥ 0) is
obtained:

τk
dqk(τ )

dτ
= −qk(τ )+

∫ ∞
0

dt
τk

× exp(−t/τk)

∫
Dx

[
H
(−uk −

√
βk(t+ τ) x√

αk − βk(t+ τ)
)]2

. (5.17)
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Figure 5: Population-averaged autocorrelation for the excitatory population in
the large K limit (solid line). The dashed line shows the autocorrelation for a
population of cells with the same rate distribution but Poissonian updating.
Parameter values: τ = 0.9, m0 = 0.1, and other parameters as in Figure 3.

Note that the integral over t in equation 5.17 results from averaging over the
distribution of update time intervals. The solution of this integral equation
yields a function qk(t), which decays to its equilibrium value with a time
constant of the order of τk. A numerical solution of equation 5.17 for qk(τ ) is
shown in Figure 5. As can be seen, the autocorrelations are larger than those
predicted by Poisson statistics. This enhancement of short-time correlations
reflect the refractoriness in the activities of the cells that project the cell.

5.3 Numerical Realization of Synaptic Inputs to a Cell. In order to
demonstrate the nature of the fluctuating synaptic inputs to a single exci-
tatory cell in the balanced state, we have numerically generated samples
of stochastic gaussian processes, which simulate the fluctuations of the
synaptic inputs to a single excitatory cell. In order to show explicitly the
effect of balancing, we have simulated separately the total excitatory and
inhibitory components of ui

E(t). The time average of the total excitatory (in-
hibitory) component is itself sampled from a gaussian distribution with a
mean

√
K(mE+Em0) (

√
KJEmI) and a variance qE (JEqI). The time-dependent

fluctuations of the total excitatory (inhibitory) input have a time-delayed au-
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Figure 6: Temporal structure of the input to an excitatory cell. The upper panel
shows the total excitatory input, consisting of the external input and the exci-
tatory feedback (upper trace), the total inhibitory input (lower trace), as well
as the net input (middle trace). They are calculated by sampling from the time-
correlated gaussian statistics predicted by the theory. The times when the cell
switched to the active states are indicated. Parameter values: m0 = 0.04 and
other parameters as in Figure 5. K = 1000 was used to calculate the average
input.

tocorrelation equal to qE(τ ) − qE (J2
E(qI(τ ) − qI)). The results are shown in

Figure 6, where we have used K = 1000. They demonstrate that the total ex-
citatory and inhibitory inputs are large compared to the threshold and have
fluctuations that are small compared to their mean. Because the network is
in the balanced state, the net input is of the same order as the threshold,
and the fluctuations bring the input above threshold at irregular intervals.
In the lower part of the figure, we show the output state of the cell. This is
evaluated by generating the sequence of update times and thresholding the
net input at these times. Because of the update rule, the cell does not switch
from passive to active every time the net input crosses the threshold.

In Figure 7 we present the ISI histogram of the cell. Because the interval
between spikes is a convolution of two random events—first, a transition
from 1 to 0, and then a transition from 0 to 1—the ISI vanishes at small
intervals. Thus, the above definition of a spike to some extent captures the
refractoriness of real spikes. In fact, if we ignore the short time correlations
in the activities, the ISI of the ith (say, excitatory) cell with an average rate
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Figure 7: Interspike interval distribution for the cell shown in Figure 6 (solid
line). The distribution was determined by measuring the time between consec-
utive switches from the inactive to the active state until 5 × 105 intervals had
been accumulated. The dashed line shows the interspike interval distribution
for Poissonian updating with mi = 0.06.

mi can be shown to be simply

Ii(t) = mi(1−mi)

τE(1− 2mi)
(exp(−mit/τE)− exp(−(1−mi)t/τE)), t ≥ 0. (5.18)

This function rises linearly from zero and peaks at t ∝ τE. For intervals
of the order of τE/mi or longer, I(t) decays purely exponentially with a
decay constant mi/τE as in the ISI of a single Poisson process with a rate
mi/τE. Comparison with Figure 7 shows that this is indeed a very good
approximation of the ISI of our model.

Finally, it should be noted that because of the sparsity of the connectiv-
ity, different cells receive input from different subpopulations, so that the
fluctuations in their input will be only very weakly correlated. As a result,
the correlations in their activity will be very small.
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6 Stability of the Balanced State

To determine the stability of the balanced state, we have to study the re-
sponse of the system to small perturbations in the population activity rates.
However, because of the nature of the balanced state, we have to distinguish
two scales of perturbations: local perturbations, in which the deviations in
the rates are small compared to 1/

√
K, and global perturbations, in which

these deviations are large compared to 1/
√

K.

6.1 Local Stability. Local stability of the balanced state requires that a
sufficiently small perturbation in the populations rates will decay to zero. In
our case, a sufficiently small perturbation means that it initially causes only
a small disruption of the balanced state. This means that the perturbations
are small not only compared to mk but also compared to 1/

√
K, so that the

perturbations of the inputs to the cells are initially small. We therefore con-
sider a solution of equations 3.3 with an initial condition mk(0) = mk+δmk(0)
with a small δmk(0) where |δmk(0)| ¿ 1/

√
K. In this case, the perturbation

of the total mean input uk is also small; hence we can linearize the dynamic
equations 3.3 around their fixed point. Thus, δmk(t) = mk(t) − mk satisfy a
linear equation of the form

τk
d
dt
δmk(t) = −δmk(t)+

√
K
∑
l=1,2

fklδml(t). (6.1)

Calculating fkl by partial differentiation of the r.h.s. of equation 3.3 yields

fkl =
exp(−u2

k/2αk)Jkl√
2παk

. (6.2)

Solving equations 6.1 one obtains δmk(t) = δmk,1 exp(λ1t) + δmk,2 exp(λ2t)
where the eigenvalues λ1 and λ2 of the 2 by 2 equations (see equations 6.1)
are both of order

√
K. Requiring that their real part be negative yields a

condition on τ of the form

τ < τL, (6.3)

where τL is of order 1; its precise value depends on the system parameters.
Since both λ1 and λ2 are of order

√
K, if τ < τL, small perturbations will

decay with an extremely short time constant of order 1/
√

K. This is due to
the strong negative feedback, of order

√
K, generated by the strong synaptic

couplings.

6.2 Global Stability. The local stability condition in equation 6.3 guar-
antees that a perturbation smaller than O(1/

√
K)will die out. It is therefore
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important to ask whether the balanced state is stable also to perturbations
that are large compared to this order. However, such perturbations will gen-
erate a large disruption in the inputs uk, of order

√
K; hence, linearization

of the dynamic equations is inadequate. We therefore have to consider the
nonlinear evolution of perturbations in the rates under equations 3.3. In
fact, since the perturbation destroys the balance between excitation and in-
hibition, H(−uk/

√
αk) of equation 3.3 can be approximated by2(uk); hence

the evolution of the perturbations is described by

τk
d
dt
δmk(t) = −δmk(t)+2(δmE − JkδmI)−mk. (6.4)

These equations are piecewise linear and therefore can be solved explicitly.
One finds that the solution of these equations decays to zero provided that
the inhibitory time constant satisfies

τ < τG, (6.5)

where

τG = JE min

{√
JImI(1−mI)

JEmE(1−mE)
,

mI

mE
,

1−mI

1−mE

}
. (6.6)

In conclusion, the global stability condition guarantees that starting from
arbitrary initial values mk(0), the population rates eventually will approach
the balanced regime characterized by local fields uk, which are of order 1
and not

√
K. In other words, the rates will deviate from the values of the

balanced fixed point by at most O(1/
√

K) quantities. Whether they will ac-
tually approach this fixed point or will converge to a limit cycle around it
depends on the local stability condition—equation 6.3. Depending on the
system parameters τG may be greater or smaller than τL. Figure 8 shows
the evolution of mE and mI in a network with K = 1000, for τ = 1.3, when
the network starts far away from the balanced state. The initial evolution is
similar to the global dynamics. It converges to the neighborhood of the bal-
anced fixed point in an oscillatory manner characteristic of the dynamics of
equation 6.4. In Figure 8B, we show the late portion of the dynamics, which
corresponds to the local dynamics (see equations 6.1). For the parameters
used in this figure, the large K critical inhibitory time constants are τL = 1.61
and τG = 1.50.

To illustrate the region of stability of the balanced state, we have calcu-
lated the phase diagram of the network in terms of two parameters: (1) the
inhibitory time constant τ and (2) the ratio between the external input into
the inhibitory population and the external input into the excitatory popu-
lation. We have chosen to scale m0 so that the excitatory population rate is
held fixed. The results are shown in Figure 9, where both the local and global
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Figure 8: Evolution to the stable fixed point. The average inhibitory rate is
plotted against the average excitatory rate. (A) The evolution of the rates when
the rates are initialized far from their steady-state values. (B) A close-up view
of the approach to the fixed point. Parameters: τ = 1.3. The other parameter
values as in Figure 3.

stability lines are presented. For these parameters, τL is always smaller than
τG.

6.3 Regimes of Instability. Stability of the balanced state requires that
τ be smaller than both τL and τG. It is of interest to consider what happens
if this condition is not fulfilled.

1. Unbalanced limit cycle. τ > max{τL, τG}. In this case equations 3.3 pos-
sess a stable unbalanced limit cycle—a stable oscillatory solution with
uk(t) of order

√
K. This is shown in Figure 10A.

2. Balanced limit cycle. τL < τ < τG. In this case, perturbations that are of
order 1 will decrease until they are of order 1/

√
K, while perturbations

that are small compared to 1/
√

K will increase until they are of order
1/
√

K. Since there are no fixed points with δmk of order 1/
√

K, this
means that there has to be a stable limit cycle with an amplitude of
order 1/

√
K. Thus, in this regime, the system converges to a limit

cycle that maintains the approximate balance between excitation and
inhibition. This is described schematically in Figure 10B.

3. Balanced fixed point with shrinking basin: τG < τ < τL. In this case,
perturbations of order 1 go to a global limit cycle, while perturbations
much smaller than 1/

√
K evolve to the fixed point. There must be

an unstable limit cycle with amplitude of order 1/
√

K that separates
perturbations that go to the global limit cycle and perturbations that
go to the fixed point.
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Figure 9: Critical time constants τG (solid line) and τL (dashed line) as a func-
tion of I/E. The external rate was adjusted to keep the excitatory activity level
constant at mE = 0.1. I/E was varied from 0 to (JI−mE)/(JE−mE). For this range
of I/E, mI varies from mE/JI to 1. Parameters: E = 1, JE = 2.0, and JI = 1.8.

7 Inhomogeneous Thresholds

So far we have considered networks of identical neurons, except for their
connectivity. Real neuronal systems exhibit a substantial inhomogeneity in
single neuron properties. It is therefore important to consider how such
inhomogeneities affect the behavior of our system. We will model the inho-
mogeneity by a variability in the thresholds of the neurons. Inhomogeneities
in the local thresholds may have a particularly strong effect in a balanced
state with low mean activity. The reason is that the intrinsic fluctuations
are all generated by feedback from the network activity. Hence, they de-
crease in amplitude as the mean activity in the network drops. In particular,
under these conditions, the intrinsic temporal fluctuations may not be of
sufficiently large amplitude to overcome the quenched dispersion of local
thresholds. Therefore, the important issue we address here is whether the
balanced state remains temporally fluctuating in the limit of low mean ac-
tivity in the presence of inhomogeneous thresholds, or whether it becomes
a frozen state. We will show that the answer to these questions depends not
only on the width of the threshold distribution but also on the form of its
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Figure 10: Different scenarios when the fixed point is unstable. (A) A case where
τ is larger than both τG and τL. Here the rates evolve to the global limit cycle
where the amplitude of the oscillations is of order 1. The solid line shows the
evolution when the network is initiated outside the limit cycle; the dashed line
corresponds to the trajectory for initial rates inside the limit cycle. Parameters
as in Figure 8, except τ = 1.8. (B) Shows schematically a case where τL < τ < τG.
The network evolves to a limit cycle with the amplitude of order K−1/2. The
figure shows the evolution of the rates with initial conditions far from the fixed
point. The insert shows an expanded view of the area around the fixed point,
with the trajectory of rates starting outside the limit cycle (solid line) and the
trajectory of a network that was initiated close to the fixed point.

tail.
We denote the local threshold of a neuron by θ k

i + θk, where θk is the
population-averaged threshold and θ k

i is a quenched random variable with
zero mean. We will call θ k

i the local threshold. The mean activity rate of
neurons in the kth population that have a local threshold θ is

mk(θ) = H
(
θ − uk√
αk

)
, (7.1)

and hence the population-averaged rate is

mk =
∫

dθP(θ)H
(
θ − uk√
αk

)
, (7.2)

where P(θ) denotes the quenched distribution of θ , and uk and αk are given
as before by equations 3.8, 3.9, and 3.10. Note that we have absorbed the
mean threshold, θk in the definition of uk (see equations 3.8 and 3.9).

7.1 Distribution of Thresholds with Long Tails. We first consider a
distribution with a long tail of low thresholds. A concrete example is

P(θ) = 1

1
√

2π
exp

(
−1

2
(θ/1)2

)
. (7.3)
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In this case, the spatial fluctuations in the inputs (relative to thresholds)
consist of two gaussian terms. One is induced by the random connectivity
and has a variance αk, and the other is induced by the thresholds and has
a variance 1. The balance conditions that determine the population rates
(equations 4.3 and 4.4) still hold. In addition,

mk = H

(
−uk√
αk +12

)
, (7.4)

which determines uk, and

qk =
∫

Dx
[

H
(−uk −

√
1+ βk x√

αk − βk

)]2

. (7.5)

Now let us consider the limit of low mean rates, which is achieved by
assuming that m0 is small. For fixed1, if the mean rates become sufficiently
low so that mk ¿ 1, the intrinsic variances αk and βk can be neglected
compared with 1; hence one obtains

mk ≈ qk ≈ H
(−uk

1

)
. (7.6)

The fact that qk ≈ mk implies that the state is essentially frozen, namely,

mk(θ) ≈ 2(uk − θ), (7.7)

and, consequently, the distribution of mean rates has a distinct bimodal
shape,

ρk(m) ≈ (1−mk)δ(m)+mkδ(m− 1) , mk ¿ 1, (7.8)

as shown in Figure 11A. Thus, an unbounded threshold distribution has a
relatively strong qualitative effect on the balance state, in the limit of low
mean rate.

7.2 Bounded Distribution. We next consider the case of a bounded dis-
tribution of thresholds. As an example, we take a distribution of θ that is
uniform between −1/2 and +1/2, and zero otherwise. In this case, equa-
tion 7.2 yields

mk = 1
1

∫ 1/2

−1/2
dθ H

(−uk + θ√
αk

)
. (7.9)

To assess the effect of1, we analyze equation 7.9 in the low mk limit. In this
case, the solution for uk is

uk +1/2 = O(
√

mk). (7.10)
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Figure 11: Distribution of the activities of the cells in the excitatory population
in the large K limit. (A) Distribution for a network of neurons with a gaussian
distribution of thresholds. The distribution is shown for population-averaged
rates mE = 0.01 (solid line) and mE = 0.1 (dashed line). The insert shows the
divergence at m = 1 of the distribution for mE = 0.01 with the density in arbitrary
units. Parameter values1 = 0.2 and other values as in Figure 3. (B) Distribution
of activity levels of the cells in the excitatory population in the large K limit for a
network of neurons with a bounded distribution of thresholds. The distribution
is shown for mean rates mE = 0.01 (solid line) and mE = 0.1 (dashed line).
Parameter values as in A. (C) Firing rate distribution for neurons in the right
prefrontal cortex of a monkey attending to a complex stimulus (light source and
sound) and executing a reaching movement. The rates were averaged over the
duration of events that showed a significant response. The average rate was
15.8 Hz.

Thus, the population rates adjust themselves so that synaptic input is slightly
below the smallest threshold in the population, θk − D/2; see equation 3.8.
The small gap between the mean synaptic input and the minimal threshold
is such that the temporal fluctuations of the network, with the low variance
αk, are sufficient to bring the neurons to threshold levels. Indeed, analyzing
the rate distribution for this case, we find that it is unimodal with width
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√
qk, where

qk ∝ 1α3/2
k . (7.11)

This means that the rate distribution is extremely broad and skewed. The
full shape of the rate distribution is given by

ρk(m) ≈
√
αk/212

m
√| log m| ,m− < m < m+ (7.12)

and zero otherwise. The bounds of m are:

m− ∝ exp(−12/(2αk)). (7.13)

m+ ∝ 1
√
αk/| log(αk)| À mk. (7.14)

The results (see equations 7.9–7.14) show that in the case of a bounded
threshold distribution, the temporal variability remains strong even in the
limit of low mean rates. However, the inhomogeneity strongly affects the
shape of the rate distribution, making it more skewed and broader. Fig-
ure 11B shows the results of numerical calculation of the rate distribution
for the excitatory population, with a uniform distribution of thresholds
between−1/2 and1/2, for different values of mean rates. Comparing Fig-
ures 4, 11A, and 11B, we see that for moderate mean rates mk = 0.1, 1 does
not have a big effect on the shape of the distribution. However, when the
network mean activity is lowered, the distribution peak shifts to values that
are much smaller than the mean, while its tail extends to rates of the order
of
√

mE. In contrast, in the case of a homogeneous threshold, lowering the
mean rates shifts the peak toward the mean and decreases the width of ρ(m)
(see Figure 4). In the case of a gaussian distribution, lowering the mean rates
creates a pronounced bimodal distribution, characteristic of a frozen state,
as seen in Figure 11A.

In general, for small mk, a threshold distribution P(θ) will yield a rate
distribution ρk for population k that is given by

ρk(m) =
√

2πP
(
−√αk(h(m)+ h̃k)

)
eh2(m)/2, (7.15)

where h̃k ≡ h(mk) is determined by∫
dm mρk(m) = mk. (7.16)

If P(θ) has tails that fall off as slow as or slower than a gaussian, ρk will
diverge for m = 0 and m = 1; if P(θ) falls off faster than a gaussian, ρk will
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be negligible for m < m− and for m > m+ with, for small mk, m− ¿ mk and
mk ¿ m+ ¿ 1. In this case, ρk can be approximated by

ρk(m) ∝
P
(
−√αk

(√
2 log(m)− h̃k

))
m
√

log(m)
(7.17)

for m− < m < m+. Furthermore P(−√αk(
√

2 log(m)−h̃k))varies only slowly
with m for these rates.

Thus for a threshold distribution with a tail that falls off faster than a
gaussian, the distribution of the rates goes to 0 for m = 0 and m = 1 and has
a long power-law tail that extends up to a rate m+ that is much larger than
the average rate. In contrast, if the tails of the distribution fall off as slow
as or slower than a gaussian, the rate distribution will peak at m = 0 and
m = 1 if the average rate is sufficiently low.

7.3 Experimental Rate Distribution. The above results make a clear
prediction about the shape of the rate distribution in a local population
of neurons with low mean rates. It seems reasonable to compare these pre-
dictions with the distribution of rates in cortical neuronal pools of behaving
animals. Figure 11C presents an experimentally determined rate histogram
of neurons in the right prefrontal cortex of a monkey (Abeles, Bergman, &
Vaadia, 1988). The data was taken from time intervals when the monkey
was attending to a variety of stimuli (light sources and sound) or executing
simple reaching movements. The average rate (of the neurons that showed
any activity during the time of measurement) was 15.8 Hz. The observed
histogram has a distinct unimodal skewed shape with a tail extending up
to 80 Hz. These results are consistent with the theoretical predictions of
Figure 11B.

8 Chaotic Nature of the Balanced State

The strong temporal fluctuations of the neuronal activity in our model and
the resultant fast decay of temporal correlations strongly suggest that the
balanced state corresponds to a chaotic attractor. However, to justify charac-
terizing this state as chaotic, we need to study the sensitivity of the dynamic
trajectory to small perturbations in the initial conditions. If the network
evolves to a chaotic attractor, small perturbations in the state of the network
should grow at least exponentially. After some time, the state of the net-
work is far from the state the network would have been in had it not been
perturbed. This definition of chaos is technically inapplicable to a system
with discrete degrees of freedom such as ours, since in this case the size
of a perturbation of the system state is bounded by the discreteness of the
system’s state. In our case, the minimum perturbation is changing the state
of a single neuron. Nevertheless, in the limit of large network size, we can
consider such a perturbation as infinitesimal, as described below.
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We consider two copies of the network. In one copy, the states of the neu-
rons are given by σ i

1,k(t); in the other, they are given by σ i
2,k(t). Both networks

have the same connection matrices Jij
kl and the same update schedule. The

networks get the same constant input m0(t) = m0 and are assumed to have
reached a balanced state with the same population rates,

1
Nk

Nk∑
i=1

〈σ i
p,k(t)〉 = mk for p = 1, 2. (8.1)

The distance between the network states at time t is defined as

Dk(t) = 1
Nk

Nk∑
i=1

〈(
σ i

1,k(t)− σ i
2,k(t)

)2
〉

= 1
Nk

Nk∑
i=1

{〈
σ i

1,k(t)
〉
+
〈
σ i

2,k(t)
〉
− 2

〈
σ i

1,k(t)σ
i
2,k(t)

〉}
. (8.2)

Here the angular brackets do not mean average over time but average over
all initial conditions of the two networks subject to the constraints that each
individual network is at equilibrium (e.g., its mk and qk have the equilibrium
values), and that the distance between the initial states of the two networks
equals a given Dk(0). If the network is in a chaotic state, the distance Dk(t)
of the cells in population k, defined by equation 8.2, should grow at least
exponentially for small Dk, The maximum Lyapunov exponent λL, defined
by

λL ≡ lim
Dk→0

D−1
k

dDk

dt
, (8.3)

should be positive. Note that in calculating λL, we will first take the large N
limit of Dk and then Dk → 0 limit. To write the dynamics of Dk, it is useful
to write Dk(t) as

Dk(t) = 2(mk −Qk(t)), (8.4)

where Qk(t) denotes the overlap of the two trajectories. In appendix A, we
show that Qk(t) satisfies an equation similar to that of qk(τ ),

τk
dQk

dt
= −Qk

+
∫

Dx
[

H
(−uk +

√
γk(t)x√

αk − γk(t)

)]2

, (8.5)
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with uk and αk are as above, and γk(t) given by

γk(t) =
2∑

l=1

(Jkl)
2Ql(t) = QE(t)+ J2

k QI(t). (8.6)

This equation has two stationary solutions. One is

Qk = mk, (8.7)

which corresponds to a fully locked trajectories. This solution is unstable,
as will be shown below. The stable fixed point is

Qk = qk, (8.8)

which corresponds to a fully desynchronized trajectory so that at long times,
the correlations between the two trajectories at the same time are those in-
duced by the time-independent average activities. Starting from any non-
identical states, the two trajectories eventually will desynchronize them
completely. To find the initial rate of divergence, we expand equation 8.5
for small Dk and find that to leading order, the distances satisfy

τk
dDk

dt
= 2
π

e−u2
k/2αk

√
αk

√
αk − γk. (8.9)

Since αk − γk ∝ Dk, equation 8.9 has a growing solution even if Dk(0) =
0. This implies that the Lyapunov exponent λL is infinitely large in the
balanced state. Figure 12 shows the evolution of DE. DE increases rapidly to
the equilibrium value DE = 2(mE − qE), for arbitrarily small initial positive
value. This should be contrasted with systems with finite positive Lyapunov
exponents, where the initial rate of growth depends on the magnitude of
the initial perturbation of the initial conditions. The divergence of λL in
our system is related to the discreteness of the degrees of freedom, which
implies an infinitely high microscopic gain: a small change in the inputs to
a cell can cause a finite change in its state.

9 Tracking of Time-Dependent Input

We have shown that for a large range of parameters, a network with synaptic
strengths of order 1/

√
K will evolve to a balanced state, and we investigated

some of the characteristics of this state. But so far we have not addressed
the question of potential functional advantages of this state. Why should a
network generate an excitatory input that is much larger than the threshold
input and then counterbalance this with a nearly equally large inhibitory
input? If we consider the metabolic costs of such large currents, it seems
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Figure 12: Evolution of the distance DE starting from a small initial distance in
the large K limit. Parameters as in Figure 3 and τ = 0.9.

clear that a biological system would not choose such a mechanism unless it
has some advantages over other mechanisms.

In this section we present one possible advantage of the balanced net-
work. We have already shown that perturbations in the network rates, which
are small compared to 1/

√
K, die out in a time on the order of 1/

√
K. There-

fore, the network is very stable against small fluctuations in the rates. We
now consider the consequences of this for the response of the system to
time-dependent change in the external driving force m0.

If the external activity m0 changes suddenly by a small amount, on the
order of 1/

√
K, the equilibrium rates will change by an amount that is of the

same order. So just after the change in external rate, the network rates differ
slightly from the equilibrium rate. They will approach the new equilibrium
rate on a time scale that is of the order 1/

√
K, so the network rates adapt very

fast to a sudden change in m0. This means that if m0 changes continuously
with time, the network rates will track m0 very fast, provided that m0 does
not change too rapidly. To quantify the speed of the tracking of a balanced
network, we compare the network rates with the rates of a hypothetical
network that tracks changes in the external rates instantaneously. In such
a network, the rates m∞k satisfy m∞k (t) = mk(m0(t)), where mk(m0) is the
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equilibrium rate for m0(t) = m0, which are given by

m∞k (t) = H

(
− u∞k (t)√

α∞k (t)

)
, (9.1)

with

u∞k (t) =
√

K(Jk0m0(t)+
2∑

l=1

Jklm∞l (t))− θk (9.2)

and

α∞k (t) =
∑
l=1,2

(Jkl)
2m∞l (t). (9.3)

Note that to leading order in K m∞k satisfies the balance condition

m∞k (t) = Ak m0(t) (9.4)

However, equations 9.1 through 9.3 take into account also the 1/
√

K correc-
tions in m∞k (t).

We now assume that

mk(t) = m∞k (t)+m1
k(t)/
√

K, (9.5)

namely, that the deviation from perfect tracking of the instantaneous is only
of order 1/

√
K. The rates mk satisfy equation 3.3. To leading order in K this

is

τk
dm∞k (t)

dt
= −m∞k (t)+H

(
−u∞k (t)+

∑
l Jklm1

l (t)√
α∞k (t)

)
, k = 1, 2. (9.6)

Using equation 9.4 we obtain,

Ak

(
τk

dm0(t)
dt

+ m0(t)
)
= H

(
−u∞k (t)+

∑
l Jklm1

l (t)√
α∞k (t)

)
, k = 1, 2, (9.7)

which determines the small deviations m1
k(t)/
√

K as functions of the time-
dependent drive m0(t). Since H(x) is between 0 and 1, equations 9.7 have a
solution only for

0 < m0 + τk
dm0

dt
< 1/Ak.
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This implies that the almost perfect tracking occurs for rates of change of
the external input, which obeys the following bounds:

max
k=1,2
−m0

τk
<

dm0

dt
< min

k=1,2

1
τk

(
1

Ak
−m0

)
. (9.8)

To understand these results qualitatively, let us consider a system in the
balanced state with a fixed m0, where at time t = t0, m0 is suddenly changed
to m0 + δm0. We assume that δm0 is much smaller than m0 but δm0

√
K is

of order 1. This is shown in Figure 13, where m0 is increased by a series of
small steps. Because the input is

√
Km0(t), the small change in m0 initially

causes a change of order 1 in the total input. Hence, the probability Pk that
the cells in the kth population, which are updated at time t0, will go to the
active state is initially increased by a large amount. This is denoted as 1Pk;
1Pk is of order 1, as shown by the dashed curve in the figure. In fact, this
probability is given by the r.h.s. of equation 9.4, which differs substantially
from the previous equilibrium probability, Akm0. This initial increase in the
number of active cells causes a large inhibitory feedback, which causes Pk
to decrease quickly to its new equilibrium value, which is only slightly
increased from its original equilibrium value, as seen in Figure 13. Thus,
the initial response is highly nonlinear due to the initial disruption of the
balance in the inputs and the highly nonlinear dynamics of single cells. This
initial large response causes a fast rate of increase in the population rates,
since δmk ≈ τ−1

k dt1Pk, implying that δmk reaches the value Akδm0 in time
of order τk/δm0 ≈ τk/

√
K; see the dotted line in Figure 13. The final change

in the population rates linearly follows the change in the external input as
required to maintain the balance between excitation and inhibition.

The limitation on the change in the external rate is readily explained by
the maximum increase (decrease) in the network rate that the microscopic
dynamics allows. The fastest the network rates can increase (decrease) is by
putting all newly updated cells in the active (passive) state, that is, Pk = 1
(Pk = 0), so that the change in the network rates is bounded by

−mk < τk
dmk

dt
< 1−mk. (9.9)

If the external rates increase (decrease) faster than the bound, equations 9.8
the network will not stay in the balanced state during the rate change, so uk

is of order
√

K. Consequently, the input is above (below) the threshold for
all cells of the kth population that are updated, and all updated cells are in
the active (passive) state.

To compare the tracking capabilities of balanced networks with those of
an unbalanced network, we consider a network of threshold linear neurons
with synapses of strength Jkl/K for internetwork connections and J̃k0/K for
the strengths of the synapses projecting from the external population and
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Figure 13: Reaction of the excitatory population to input that is increased by
small steps. The solid line shows the activity of a network that responds instanta-
neously. The dashed line shows the probability PE of updating to the active state
for neurons that happen to update. The dotted line represents the population-
averaged activity of the population in a balanced network. Parameter values:
K = 1000, τ = 0.9. Other parameters as in Figure 3.

the thresholds Tk chosen so that the equilibrium rates of this network are
the same as those for the balanced network. We choose the same neuronal
time constants as in the balanced network. In this network, the rates satisfy

τk
dmk

dt
= −mk + (J̃k0m0 + JkEmE + JkImI − Tk)+, (9.10)

with (x)+ = (x+ |x|)/2. If we set mk(t) = m∞k (m0(t))+m1
k(t), the difference

between the network rates and the rates of a perfectly tracking network,
m1

k(t), satisfies

τE
dm1

E

dt
= (JEE − 1)m1

E + JEIm1
I − τEAE

dm0

dt
(9.11)

τI
dm1

I

dt
= JIEm1

E + (JII − 1)m1
I − τIAI

dm0

dt
. (9.12)

In other words, m1
k will be of order 1.



1356 C. van Vreeswijk and H. Sompolinsky

0.06

0.16

0.26

0 1 2 3 4 5

E
xc

it
at

or
y 

ac
ti

vi
ty

t
Figure 14: Population-averaged activity of the excitatory cells for an input that
varies with time. The input is constant from time t = 0 to t = 1. Between t = 1
and t = 2, the input increases linearly. After t = 2, the input is again constant. The
solid line shows the excitatory rate of a network that responds infinitely quickly;
the dashed line shows the response of the balanced network. Also shown is
the response of an unbalanced network of threshold linear neurons (dotted
line). Parameters for the balanced network as in Figure 13. For the unbalanced
network, see the text.

Thus, in the unbalanced network, the difference between the network
rates and the rates in a perfectly tracking network will be of order

√
K times

larger than in a balanced network.
Figures 14 and 15 show a comparison of the tracking capabilities of a bal-

anced network with K = 1000 and an unbalanced network with threshold
linear units. Between t = 0 and t = 1, the networks are at equilibrium. In
Figure 14 the external activity is ramped between t = 1 and t = 2,

m0(t) = m0 + v0t, (9.13)

and after t = 2 m0 is kept constant again. The graph shows m∞E and mE
for both networks plotted against time. Clearly the balanced network is
much better than the unbalanced network in tracking the change in external
rate. Similar results are seen in the case of a sinusoidal external input (see
Figure 15). Finally, in Figure 16, we plot the rate of change of mE versus
v0 for the ramped input case. The results of this, as well as Figures 14 and
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Figure 15: Average rate of the excitatory population for a sinusoidally varying
input. The rates of the excitatory population in an instantaneously respond-
ing network (solid line), a balanced network (dashed line), and an unbalanced
network (dotted line) are shown. Parameters as in Figure 13.

15 are based on a full finite K solution of the dynamics. We also show in
Figure 16 the large K predictions according to which there is a sharp upper
bound for fast tracking at a value of v0 given in equation 9.8.

10 Discussion

10.1 Asynchronous and Synchronized Chaos. The purpose of our the-
ory is to identify the different mechanisms by which the deterministic dy-
namics generates strongly irregular states in large neural networks, in which
each cell receives input from many other cells. To understand these mecha-
nisms from a theoretical point of view, it is important to study the network
behavior in the limits of large system size N and large connectivity index
K. In a finite network with fluctuating dynamics, there will always be some
degree of synchrony and some compensation between inhibition and ex-
citation. It is thus impossible to single out balancing between excitation
and inhibition as a mechanism for variability separate from synchronized
chaos (Bush & Douglas 1991; Hansel & Sompolinsky, 1992, 1996). It is only
in the limit of large N, where states with synchrony that does not vanish
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Figure 16: Rate vE with which the average excitatory rate changes as a function
of the rate of change v0 of the external input. The solid line shows vE for a
network with K = 1000. The dashed line shows the same for the large K limit.
Parameters as in Figure 13.

in this limit can be distinguished from states where the synchrony does
vanish, that the different mechanisms become clearly separate. Similarly,
the importance of the limit of large K is that for fixed finite K, network pa-
rameters may be tuned so that fluctuations in individual synaptic inputs
generate fluctuations in the membrane potential of the postsynaptic cells.
These fluctuations can be due to stochastic synaptic failures or variability
in the presynaptic cells from within or outside the network. In other words,
for a finite fixed K, the issue of balancing between excitation and inhibition
is a quantitative one. Only in the large K limit can the distance between the
net input and the threshold clearly be separated, in the balanced state, from
the corresponding distance for the excitatory and inhibitory components.

The outcome of the present theory combined with our previous studies
is that chaotic states in large, highly connected networks can be classified as
synchronized chaos and asynchronous chaos. Synchronized chaos is likely
to occur in fully connected networks, where K is proportional to N, yielding
a strong overlap between inputs to different neurons. In this case, the chaotic
state is characterized by cross-correlations between neuronal pairs whose
amplitude is of order 1 even in the limit of N→∞, thereby creating strong
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fluctuations of the common feedback. Thus, synchronized chaos can be
viewed as resulting from an instability in the dynamics of the macroscopic
degrees of freedom that comprise the common fluctuating mean field.

Asynchronous chaotic states are distinguished by weak cross-correlations.
In the present case, this is due to the sparseness of the connections. More
specifically, in our networks, the amplitude of the cross-correlations has a
broad distribution in the network due to inhomogeneity in the connectivity.
Most of the cross-correlations are of the order 1/N, where N is the network
size. The maximal value of the cross-correlations occurs for pairs that are
directly connected, and this cross-correlation is of the order of the strength
of the synapse, O(1/

√
K). Thus, chaos in this state is the result of instability

in local degrees of freedom, similar to chaos in asymmetric spin glasses and
neural networks.

10.2 Balanced State with Strong or Weak Synapses. The scaling of con-
nection strength in our theory of the balanced state is different from conven-
tional mean-field theories of highly connected networks. Most mean-field
theories of large, highly connected neural networks assume that each con-
nection is scaled as the inverse of the mean number of inputs to a neuron, K.
In contrast, we scale the connections as 1/

√
K. This aspect, together with the

relative sparseness of the connections and the asynchrony of the dynamics,
yields a highly irregular dynamical state, despite the fact that the single-
neuron dynamics in our model is the simple threshold updates of binary
units. The presence of relatively large connections is again analogous to the
scaling of connections in highly connected spin glasses and random neural
networks, where the interactions have to scale as the inverse square root
of the connectivity index (Derrida, Gardner, & Zippelius, 1987; Sompolin-
sky, Crisanti, & Sommers, 1988). In Sompolinsky et al. (1988) the network
is a fully connected asymmetric analog circuit with connections that are
independent random variables with zero mean. The connections possess a
square-root scaling with the number of inputs, as is natural for mean-field
spin glasses (Mezard, Parisi, & Virasoro, 1987). In Derrida et al. (1987), the
connectivity is randomly sparse, as in our model. The connections store
random memories so that in the limit of a large K (and correspondingly
large number of stored patterns), they are effectively random in sign and
exhibit chaotic dynamics similar to the asymmetric spin glass. In contrast,
in our case the connections are not random in sign but are organized in an
excitatory-inhibitory two-population architecture. Consequently, the bal-
ance between excitation and inhibition that gives rise to the temporally dis-
ordered state is entirely a dynamic effect. Our results should be contrasted
with a conventional, fully connected network with the same simple two-
population architecture with more conventional 1/K scaling of connections.
Such networks converge to either static states or globally coherent limit cy-
cles (Abbott & van Vreeswijk 1993; Gerstner & van Hemmen, 1993; Grannan



1360 C. van Vreeswijk and H. Sompolinsky

et al., 1992; Hansel et al., 1995; van Vreeswijk, 1996; Wilson & Cowan,
1972).

An important consequence of our assumption of relatively strong synap-
tic connections concerns the size of the external input to the local network.
According to our theory, the balanced state is robust only when the DC
external input to the local network is large—of the same order as the local
excitatory and inhibitory feedback, and much larger than the net synaptic
input to a cell. In the notation of our model, the external input to an excita-
tory cell is Em0

√
K, whereas the net input to this cell, uE, is smaller than the

external input by a factor of the order of 1/(m0
√

K), where m0 is the rate of an
input cell and is assumed to be much larger than 1/

√
K. Figure 3 shows that

lowering the strength of the external input—that is, reducing m0—will turn
off the activity of the network. In fact, equation 3.3 implies that to maintain
the balanced activity in the case of an external input that is only of order 1
requires the vanishing of the denominators in equations 4.3 and 4.4, which
means that the interaction strengths have to be fine-tuned to a very narrow
range.

Because of the importance of the scaling of the synapses in our theory, it
is very informative to consider the behavior of our model if we use a con-
ventional scaling of synapses: that each synapse scales as 1/K—the weak
synapses scenario. In this scenario, each component of the synaptic inputs,
including the total external input to a cell, is of order 1. The solution of this
model (van Vreeswijk & Sompolinsky, 1997) shows that when K is not large,
the network settles in a strongly disordered state. This is not surprising
given that the connectivity is randomly asymmetric and there is no danger
of averaging of the fluctuating inputs to a cell. However, the fate of the tem-
poral variability as K is increased is highly sensitive to the presence of local
inhomogeneity. If the neurons have the same threshold, the chaotic state
is maintained as K increases. In this case, the population rates adjust their
value so that the net input is close to the threshold level within a distance
of the order of 1/

√
K. This is shown in Figure 17. This figure displays the

time course of the various synaptic inputs to a cell, evaluated by simulating
a sample from the statistics predicted by the mean-field solution with the
weak-synapses scaling. The results of this figure should be contrasted with
the behavior of the strong synapses scenario (see Figure 6). In Figure 17
the variability is caused by the fact that the cell is always hovering close to
its threshold. In contrast, in the case of Figure 6, the distance between the
net input and the threshold is not small compared to the distance between
threshold and rest. In this case, the variability is caused by the presence
of excitatory and inhibitory inputs, each of which is much larger than the
threshold.

Despite the difference in behavior between the two scenarios, the dy-
namic mechanism for these balanced chaotic states is the same. In both
cases, the distance between the net input and the threshold is smaller (by
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Figure 17: Inputs to an excitatory cell in a network with synaptic strengths Jkl/K.
The total excitatory input (upper trace), the total inhibitory input (lower trace),
and the net input (middle trace) are shown in the upper panel. At the bottom, the
times when the cell switches from the passive to the active states are indicated.
Parameters: K = 1000, E = 2.0, I = 1.6, JE = 2.0, JI = 1, 8, θE = 1.0, θI = 0.8,
τ = 0.9, and m0 = 0.503.

a factor of 1/
√

K) from the distance to threshold of the excitatory and in-
hibitory components. Thus, it would seem that choosing between these
scenarios is largely a matter of biological interpretation. However, there are
some qualitative differences between the two scenarios. Since the synaptic
inputs are all of the same order as the threshold, it is harder to obtain states
with low mean rates in both the excitatory and inhibitory populations. To
achieve low rates, the ratio between the external inputs to the two popula-
tions (I/E in the notation of equations 2.4 and 2.5) has to be close to the ratio
of their thresholds θI/θE. More important, the weak-synapses scenario of
Figure 17 breaks down in the presence of inhomogeneity in the local thresh-
olds. In this case, the population rates are incapable of accommodating the
different thresholds. As a result, in the case of inhomogeneous thresholds,
when K increases, the network state becomes increasingly frozen; neurons
with high thresholds become inactive, whereas neurons with low ones fire
close to saturation. This freezing occurs as soon as the width of the inho-
mogeneity in threshold is larger than 1/

√
K. In contrast, in the scenario of
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strong synapses, the state becomes frozen only when the inhomogeneity is
large compared to 1. Note that in the case of Figure 17, the external input is
of the same order as the net input to the cell. Equally important is the fact
that in the weak scenario case and homogeneous networks, the collective
time constants are of the same order as the single cell time constant so that
the network will not exhibit the phenomenon of fast tracking predicted in
our theory.

Finally, the model can be generalized to a model with synaptic strengths
that scale as K−α , with 0 < α < 1. Of course, these models can be distin-
guished from the present model only in the large K limit. In this limit, the
net average inputs into the populations scale as K1−α , while the quenched
and temporal fluctuations in the inputs scale as K1/2−α . Therefore the lead-
ing order in the inputs has to cancel, leading to the balance condition. For
any α, this leads to asynchronous chaotic activity in a homogeneous net-
work, similar to the case α = 1/2. However, if we introduce a distribution
of the threshold with width of order 1, we have to distinguish two regimes,
apart from α = 1/2 of our model. If α > 1/2, the fluctuations in the input
decrease with K so that the network goes to the frozen state in the large K
limit. On the other hand, if α < 1/2, the fluctuations grow with K, and there-
fore the inhomogeneity in the threshold becomes negligible in the large K
limit. Thus, a network with inhomogeneous thresholds will act in the same
way as a network with homogeneous thresholds. Specifically for low rates,
the rate distribution will become narrow. Thus, only for a network with
synaptic strengths of order 1/

√
K is there a nontrivial interaction between

the fluctuation in the input and the threshold inhomogeneities.

10.3 Comparison with Other Network Models. Some of our results are
consistent with those of the integrate-and-fire network models of Tsodyks
and Sejnowski (1995) and Amit and Brunel (1997a, 1997b). Although con-
structing an exact mean-field theory for the integrate-and-fire dynamics
similar to the one presented here for binary units is much more difficult, we
believe that most of the predictions of our mean-field theory are applicable
to the integrate-and-fire dynamics as well, provided that the same connec-
tivity architecture and scaling of parameters with N and K are used. How-
ever, a direct comparison between our theory and the results of Tsodyks
and Sejnowski (1995) and Amit and Brunel (1997a, 1997b) is difficult be-
cause of their introduction of stochasticity in the network, the combination
of mechanisms such as resetting potential close to threshold, and the lack
of full, explicit specification of scaling of parameters with N and K. Tsodyks
and Sejnowski (1995) show numerically that their model is capable of “fast
switching” in response to a fast change in the external stimulus. This may
be related to the fast tracking predicted in our model. The fact that our
model does not respond quickly to a sudden switching of the stimulus (see
Figure 13) is probably a result of the dynamics of binary neurons. However,
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the switching time constants observed in Tsodyks and Sejnowski (1995) is
of the same order as the single-cell integration time constant, while the fast
tracking should occur on a much shorter time constant. In recent numer-
ical simulations of integrate-and-fire networks, Amit and Brunel (1997b)
showed that the strength of the average cross-correlations decreases as N
increases (keeping the connectivity index constant). However, they do not
show whether as N increases, the variability in the single cell remains the
same. If this would be the case, their results are consistent with our predic-
tions regarding asynchronous chaotic state.

10.4 Biological Implications. With regard to the biological systems, we
should reemphasize that most likely temporal irregularity is a result of sev-
eral mechanisms, including those mentioned in section 1. Our discussion
makes it clear that even with regard to deterministic network mechanism
in a finite system, the temporally irregular state is likely to be at best in-
termediate between the synchronized and the balanced chaotic states. An
important question is whether external input is large relative to net input to
a cortical cell. Recent experimental findings of Ferster, Chung, and Wheat
(1996) in cat primary visual cortex suggest that the input from the lateral
geniculate nucleus (LGN) to layer 4 cortical cells are in fact a fraction of
the net input. Stratford, Tarczy-Hornoch, Martin, Bannister, and Jack (1996)
show that the total strength of the LGN synapses is about 2.5 to 3 times
smaller than the total strength of the excitatory feedback synapses from
layer 4 cells; however, this study does not measure the strength of the feed-
back from the inhibitory interneurons, so it does not allow for the estimation
of the net feedback. Further experimental clarification of this issue is called
for. Measurements of the distribution of time-averaged rates within a local
population of neurons and the change in its shape when the overall level of
response increases, similar to those of Figure 11B, would be an interesting
test of the underlying statistical characteristics of the network spatiotempo-
ral fluctuations.

10.5 Future Work. On theoretical grounds, our work raises several inter-
esting issues worth pursuing. First, it would be important to know whether
the theory of the balanced state applies also to networks with more inter-
esting connectivity architecture. Thus, it would be interesting to extend our
theory to networks that model associative memory or hypercolumns in vi-
sual cortex. It is important to study the consequences of nonlinearities of
synaptic summations, for example, by treating synaptic inputs as conduc-
tance changes instead of currents.

In considering the functional implications of our theory, it is important
to distinguish between the sensitivity of a chaotic autonomous system to
changes in its initial condition and its ability to lock to a changing external
drive. The analysis of tracking capabilities of our network shows that the
macroscopic state of the network responds fast to changing input. In the
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case of a homogeneous input, it can be shown that the microscopic state is
not tightly locked to the changing stimulus. On the other hand, preliminary
analysis (van Vreeswijk & Sompolinsky, 1998) shows that in the case of
spatially inhomogeneous input fluctuations, the microscopic state of the
network will tightly lock to the stimulus temporal variations. These findings
are consistent with recent findings that cortical cells respond highly reliably
to the fluctuations in the stimulus (Bair & Koch, 1996; Britten, Shadlen,
Newsom, & Movshon, 1992). Elucidation of the computational aspects of
balanced states in neuronal networks is a challenging issue.

Recently Markram and Tsodyks (1996) have shown that the synapses
between cortical pyramidal cells show a marked degree of depression.
It should be investigated how such dynamical synapses affect the bal-
anced state. If one assumes synaptic depression between the excitatory-
to-excitatory synapses only, and facilitation between the synapses from the
inhibitory to the excitatory and from the excitatory to inhibitory populations
(Thomson, West, & Deuchars, 1995; Thomson, West, Hahn, & Deuchars,
1996), the equilibrium rates in the network decrease, relative to those in a
network without facilitation. This synaptic depression and facilitation also
has the effect that the constraints on the synaptic strengths (see equations 4.9
and 4.10) can be relaxed. Because the synaptic depression and facilitation
become effective only on a time scale that is as slow as or slower than the
membrane time constant, the response of such a network to an external in-
put that changes with time is more complicated than in the model studied
here. If the input is suddenly increased by a small amount, the network
rates increase to the rate the network would have in equilibrium if the
synaptic strengths were not changed in a time of order 1/

√
K and then, on a

much slower time scale, the rates decrease due to the change in the synaptic
strengths.

Since in the balanced state the finite K corrections of the rates are deter-
mined by both the first and the second moment of input, the change in rate
due to synaptic depression or facilitation depends not only on the average
change in the synaptic strength but also on its fluctuation. Thus, synaptic
depression due to a change in the height of the excitatory postsynaptive
potentials (EPSPs), but without a change in the probability of release, will
affect the rates differently from synaptic depression that leaves the height
of the EPSPs unaffected but decreases the probability of release, even if both
mechanisms result in the same average depression. Another effect of synap-
tic depression to take into account is that the effect of a spike is decreased if it
follows shortly after the preceding spike. This will decrease the fluctuations
in the input, relative to the fluctuations in the activity of the presynaptic
cells. Facilitation will have the opposite effect, since it increases the effect of
a spike if it closely follows the previous one. These issues warrant further
study.
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Appendix A: Derivation of the Mean-Field Theory

A.1 Population Rates. We first consider the population-averaged activ-
ities mE(t) and mI(t) in the limit of large NE and NI and finite K. We first
assume that each cell in the kth population is updated stochastically at a
rate τk. When a cell is updated, it moves to the active state if its total input is
above threshold. Otherwise its updated state is 0. It is convenient to define
a time-dependent local rate variable,

mi
k(t) = 〈σ i

k(t)〉. (A.1)

Here, the symbol 〈. . .〉 does not mean average over time, as in equation 5.4
and thereafter. Instead, it means average over all initial conditions that are
consistent with given values for mk(0) and also over the random sequence
of update times. It is well known that the rate of a binary variable that obeys
the update rule satisfies the following continuous time dynamics (Ginzburg
& Sompolinsky, 1994; Glauber, 1963),

τk
d
dt

mi
k(t) = −mi

k(t)+2(ui
k(t)), (A.2)

where ui
k(t) is the total synaptic input into a cell i in the kth population rela-

tive to its threshold and is given in our case by equation 2.2. If a cell receives
nE(t) and nI(t) excitatory and inhibitory feedback inputs, respectively, then
its input is

ui
k(t) =

√
KJk0m0 + JkE√

K
nE(t)+ JkI√

K
nI(t)− θk. (A.3)

The main assumption underlying the mean-field theory is that the activities
of the different input cells to a given cell are uncorrelated. Technically, this
holds rigorously provided that K¿ log Nk (Derrida et al., 1987). Using this
assumption, the population average of equation A.2 yields the following
mean-field equations for the population activities,

τk
d
dt

mk(t) = −mk(t)+ Fk(mE(t),mI(t)), (A.4)

where Fk denotes the probability that the updating cell at time t will be in
an updated active state. It is given by

Fk(mE,mI) =
∞∑

n1,n2=0

p1(n1)p2(n2)2

(√
KJk0m0 +

∑
l

Jkl√
K

nl − θk

)
, (A.5)

where pl(n) is the probability that a cell receives n active inputs from the lth
population.
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For NE,NI →∞ the probability of s synapses of population l projecting
to a cell is Kse−K/s!. On average each of these synapses has a probability ml
to be active, hence,

pl(n) =
∞∑

s=n

Ks

s!
e−K

(
s
n

)
mn

l (1−ml)
s−n

= (mlK)n

n!
e−mlK. (A.6)

Equations A.4 through A.6 define the mean-field equations for the pop-
ulation activity levels for finite K. The average values of nE and nI sat-
isfy 〈nk〉 = mkK. The standard deviations σ(nE) and σ(nI) are given by
σ(nk) = mkK. In the large K limit, the probability distributions pk(n) can be
replaced by gaussian distributions. According to equation A.6, the means
and variances of this distribution are [nk] = [(δnk)

2] = Kmk. Therefore, in
the limit K→∞, Fk(mE,mI) is given by

Fk(mE,mI) =
∫

Dx2(uk +√αkx) = H
(−uk√

αk

)
, (A.7)

where Dx = dx exp(−x2/2)/
√

2π . From the above statistics of nl, one obtains
that the average input, relative to threshold, uk into a cell of population k
given by

uk = (Jk0m0 + JkEmE + JkImI)
√

K − θk (A.8)

and standard deviation of the input αk,

αk = (JkE)
2mE + (JkI)

2mI, (A.9)

from which equations 3.3 through 3.6 follow.

A.2 Autocorrelations. We now extend the analysis to evaluate the dy-
namics of the autocorrelation function qk(τ ), (see equations 5.16). Using
similar arguments as for equations A.2, qk(τ ) satisfies an equation of the
following form,

τk
dqk

dτ
= −qk(τ )+

∫ ∞
0

dt′

τk
exp(−t′/τk)Fk({ml}; {ql(t′ + τ)}), (A.10)

where

Fk =
[〈
2(ui

k(t))2(u
i
k(t+ t′ + τ)) 〉] . (A.11)

Here the averaging is also over absolute time t. The integral over time in the
r.h.s. of equation A.11 takes into account the correlation between the inputs
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to a cell that updates its state at time t+ τ and its inputs at the last update
before time t. Thus, the time integral is an integral over the exponential
distribution of update interval of the last update before time t. Separating
the total number of active inputs into those that come from sources in the
kth population that are active in both times (n1,k) and those that are active
only in one of the times (n2,k and n3,k, respectively), one can write

Fk =
∏

l=1,2

∑
nkl

pl(n1l,n2l,n3l)2

(√
KJk0m0 +

∑
l

Jkl√
K
(n1l + n2l)− θk

)

×2
(√

KJk0m0 +
∑

l

Jkl√
K
(n1l + n3l)− θk

)
, (A.12)

where

pl(n1,n2,n3) = (qlK)n1

n1!
((ml − ql)K)n2+n3

n2!n3!
e−(2ml−ql)K. (A.13)

In the large K limit, this can be written as

Fk =
∫

Dx1

∫
Dx2

∫
Dx32(uk +

√
βkx1 +

√
αk − βkx2 − θk)

×2(uk +
√
βkx1 +

√
αk − βkx3 − θk)

=
∫

Dx
[

H
(
θk − uk −

√
βkx√

αk − βk

)]2

, (A.14)

with uk and αk as above, and βk given by

βk(τ ) =
∑
l=1,2

(Jkl)
2ql(τ ). (A.15)

So qk satisfies equation 5.17.

A.3 Sensitivity to Initial Conditions. The derivation of equation 8.5
for the overlaps Qk(t) = (mk +Dk)/2 of two trajectories, equation 8.2 which
start with slightly different initial conditions, is similar to that of qk. Here
the inputs n1,k are the sources to a given cell that are active at time t in both
trajectories. The only difference between the equation for the delayed-time
autocorrelations and the equal-time overlap between two trajectories is the
integral over the previous update times which appears in equations A.10
and 5.17. This results from the fact that in the latter case, the update sequence
is identical in the two trajectories.
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Appendix B: Determinstic Update Rules

The general form of equation A.4 is usually derived for a binary variable
that is updated stochastically at a rate τk. One might therefore argue that the
irregular firing in our model is due to the stochasticity of the update times
of the model neurons. To show that this is not the case, we define here a
completely deterministic dynamic model and show that it leads to exactly
the same equations for the mean rates of activity as those given above.

Consider the same network model, except that a neuron i of population
k is updated at times t = (n + δi

k)τk with n = 0, 1, 2, . . . and δi
k is randomly

chosen between 0 and 1. Let m+k (t) be the probability that the neuron of
population k, updated at time t, goes into (or stays in) the active state. Since
all neurons of population k are updated exactly once between times t − τk
and t, mk(t) is given by

mk(t) = 1
τk

∫ τk

0
dt′m+k (t− t′). (B.1)

Going through arguments similar to those shown above, one can show that
mk satisfies

mk(t) = 1
τk

∫ τk

0
dt′Fk(mE(t− t′),mI(t− t′)), (B.2)

with Fk given by equation A.5.
If we introduce inhomogeneities in the rate with which the cells are up-

dated so that cell i of population is updated at times t = (n + δi
k)τ

k
i , where

τ k
i has a probability Rk(τ )dτ of being between τ and τ + dτ , we find that mk

evolves as

mk(t) =
∫ ∞

0
dτ

Rk(τ )

τ

∫ τ

0
dt′Fk(mE(t− t′),mI(t− t′)). (B.3)

For Rk(t) = te−t/τk/τ 2
k , this can be written as

mk(t) = 1
τk

∫ ∞
0

dt′e−t/τk Fk(mE(t− t′),mI(t− t′)), (B.4)

and this is equivalent to equation A.4.
Thus, in this completely deterministic model, the mean rates mk satisfy

exactly the same equations as the model with stochastic updating. This also
holds true for the other mean-field equations of the model.
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