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A distributional symmetry is invariance of a distribution under a
group of transformations. Exchangeability and stationarity are exam-
ples. If the group satisfies suitable conditions, ergodic theory provides
a law of large numbers: Expectations can be estimated by averaging
over subsets of transformations, and these estimators are strongly
consistent. We show that, if a mixing condition holds, the averages
also satisfy a central limit theorem, a Berry-Esseen bound, and con-
centration. These are extended further to apply to triangular arrays,
to a generalization of U-statistics, and to randomly subsampled aver-
ages. As applications, we obtain new results on exchangeability, ran-
dom fields, network models, and a class of marked point processes.
We also establish asymptotic normality of the empirical entropy for a
large class of processes. Some well-known results are recovered as spe-
cial cases, and can hence be interpreted as an outcome of symmetry.
The proofs adapt Stein’s method.

1. Introduction. Statistical models that can be characterized by trans-
formation invariance, or symmetry, include stationary processes [43], graphon
and graphex models of networks [2, 3, 8, 14, 30, 46], the exchangeable ran-
dom partitions that underpin much of Bayesian nonparametrics [23, 40],
and rotation- and shift-invariant random fields [5, 26]. Examples from re-
lated fields are various models for relational data and preference prediction
used in machine learning [36], point process representations of nearest neigh-
bor methods and Voronoi tesselations [22, 33, 39], or self-similar stochastic
processes [28]. Recent advances in spin glass theory rely crucially on ex-
changeable arrays [37].

We consider estimation under such invariant models. For each example
above, a canonical estimator for expectations is known. We explain that
these estimators are special cases of a general class of averages. For such
averages, the ergodic theorem of Lindenstrauss [31] provides what a statisti-
cian would call a (strong) law of large numbers. Starting from this result, we
establish central limit theorems, Berry-Esseen bounds, and a concentration
inequality. We then develop several applications in detail.

Primary 62G20; secondary 37A30, 62M99, 60F05, 60G09
Keywords and phrases: asymptotic normality, Berry-Esseen theorems, Lindenstrauss’

point-wise theorem, Stein’s method, symmetry, exchangeability, ergodicity

1



2

1.1. Overview. The remainder of this section is a non-technical overview
of our approach, and of the main results. For the purposes of this introduc-
tion, we sidestep technicalities: A key quantity throughout is an infinite
group G. We assume for now that G is countable, and postpone general
definitions to Section 2.

Consider a random quantity X and a real-valued function f . The purpose
of this work is to understand under what conditions the expectation E[f(X)]
can be estimated by

(1) Fn(f,X) :=
1

|An|
∑

φ∈An
f(φX) ,

where A1,A2, . . . are finite subsets of G. (For uncountable groups, Fn inte-
grates over a compact set An.) Such averages occur in dynamical systems
[20] and statistical mechanics [38]. Various special cases are used in statistics:

Example. (i) Let X be a random field on the grid Z2, i.e. a collection
X = (Xij)i,j∈Z of real-valued random variables. Let f be a function that
depends only on the value at the origin, so f(X) = g(X00) for a suitable
function g. Consider transformations that shift the grid: Each shift is of the
form φ = (k, l) for some k, l ∈ Z. If we choose An := {−n, . . . , n}2, then

(2) Fn(f,X) = 1
|An|

∑
(k,l)∈An

f((Xi+k,j+l)i,j∈Z) = 1
(2n+1)2

∑
|i|,|j|≤n g(Xij)

averages g over all locations on the subgrid of radius n around the origin.
Here, G is the group Z2 of all shifts, with addition as group operation.

More generally, X is a random object—such as a random sequence, matrix,
field, or graph—and f is a function that typically depends only on “a small
part” of X. The group G is a set of transformations that “move the domain”
of f over X, and An contains those elements of G that cover a suitably
defined sample, whose size is a function of n. The next two examples choose
An as Sn, the set of all permutations of the set {1, . . . , n}.
Examples. (ii) Let X = (X1, X2, . . .) be a random sequence, f(X) = g(X1)
a function of the first entry, and let each permutation φ ∈ Sn transform X
by permuting entries, φX := (Xφ(1), . . . , Xφ(n), Xn+1, Xn+2, . . .). Then

(3) Fn(f,X) = 1
|Sn|
∑

φ∈Sn f(φX) = 1
n!

∑
φ∈An

g(Xφ(1)) = 1
n

∑
i≤n g(Xi) .

In this case, the group is G = ∪nSn, the set of all finite permutations of N.

(iii) Let X be a random undirected, simple graph with vertex set N. Denote
by X[i1, . . . , ik] the induced subgraph on the vertices i1, . . . , ik ∈ N. Let g be
a function defined on graphs with three vertices, and set f(X) := g(X[1, 2, 3]).
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Suppose each φ ∈ Sn transforms the graph by permuting the first n vertices,
so (φX)[1, 2, . . .] = X[φ(1), . . . , φ(n), n+ 1, n+ 2, . . .]. Then Fn averages g
over all subgraphs of size 3 in the finite graph X[1, . . . , n]:

Fn(f,X) = 1
|Sn|
∑

φ∈Sn g(X[φ(1), φ(2), φ(3)]) = 1
n(n−1)(n−2)

∑
g(X[i, j, k]) ,

where the sum on the right runs over all distinct triples i, j, k ≤ n.

Example (i) is a standard window estimator for random fields [5, 26], and
(ii) the sample average of g over data X1, . . . , Xn. We revisit Example (iii),
known as the triangle density in network analysis, in Section 8.2.

Tools from ergodic theory. To characterize the behavior of Fn, we borrow
from ergodic theory: Two key conditions are

(4) (i) φX
d
= X and (ii) |φAn∩An|/|An| n→∞−−−→ 1 for all φ ∈ G ,

where
d
= is equality in distribution. If (4i) holds, X is called G-invariant. If

it also satisfies

(5) P (X ∈ A) ∈ {0, 1} for every Borel set A with φA = A for all φ ∈ G ,

it is called G-ergodic. (Uncountable groups require more general formula-
tions of (4ii) and (5), see Section 2.) The same terminology is applied to the
distribution of X, so a G-ergodic probability measure is the law of G-ergodic
random element, etc. Table 1 lists examples.

To motivate the conditions informally, first observe that Fn attempts
to estimate E[f(X)] from surrogate values f(φX). That should require
E[f(X)] = E[f(φX)], which is in turn implied by (4i). Any valid estimator
Fn of E[f(X)] must satisfy Fn ≈ E[f(X)] in some suitable sense for large
enough n, so it must also satisfy

Fn(f,X) ≈ E[f(X)] = E[f(φX)] ≈ Fn(f, φX) .

That is true if φAn ≈ An, which is guaranteed by (4ii). In statistics, this con-
dition was first used by Charles Stein, to characterize groups for which the
Hunt-Stein theorem establishes minimaxity of invariant tests [6]. To moti-
vate ergodicity, consider random elements X and X ′. If E[f(X)] 6= E[f(X ′)]
for some function f , almost sure convergence Fn(f, • )→ E[f( • )] can only
hold if there is some Borel set A for which X ∈ A and X ′ 6∈ A with probabil-
ity 1. In other words: Strong consistency of Fn for some class of distributions
requires a collection of events that are either certain or impossible under this
class, which is just what (5) requires. In this sense, G-ergodic distributions
form a class for which a (strong) law of large numbers might hold.
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This law of large numbers is Lindenstrauss’ ergodic theorem [31]: If (4ii)
holds, and X is G-ergodic,

(6) Fn(f,X)
n→∞−−−→ E[f(X)] almost surely

for any function f with E[|f(X)|] <∞. That requires the sets An to satisfy
certain additional fine print, but they can always be modified to do so if
they satisfy (4ii). Theorem 1 in Section 2 gives a proper statement.

The theorem can be extended to the G-invariant case. The two cases are
related by a property known as ergodic decomposition: G-invariant distri-
butions are mixtures of G-ergodic ones. More formally, if X is G-invariant,
there is a random element ξ of the set of G-ergodic distributions such that
X|ξ ∼ ξ (see Theorem 2 for details). If X is G-invariant, (6) becomes

(7) Fn(f,X)
n→∞−−−→ E[f(X)|ξ] =

∫
f(x)ξ(dx) almost surely.

For example, a random sequence (Xi)i∈Z is stationary if it is Z-invariant
(adding elements of Z shifts the index set). In this case, ergodic decompo-
sition becomes Rohlin’s stationary source theorem [43], and (6) specializes
to Birkhoff’s ergodic theorem. An exchangeable (i.e. permutation-invariant)
sequence is ergodic if it is i.i.d.—see Example (vii) for details. Thus, X|ξ ∼ ξ
means X is “conditionally i.i.d.”, which is de Finetti’s theorem, and (6) is
the strong law of large numbers.

Result sketch. Our results provide rates of convergence for Fn. Like cer-
tain convergence results for stationary processes, they use a mixing con-
dition to control dependence within X: A typical mixing condition for a
discrete-time process (X1, X2, . . .) would be that (Xj , Xk), for j ≤ k, is
approximately independent of the tail (Xk+n, Xn+k+1, . . .) for large n [4].
Informally, we replace the tail by (f(ψX))ψ∈G, for a set G ⊂ G, and require

(8) (f(φ1X), f(φ2X)) ⊥⊥ (f(ψX))ψ∈G | ξ approximately

whenever φ1, φ2 ∈ G are far fromG. The condition is tailored to second-order
results, hence the pair on the left. Since X|ξ ∼ ξ, conditional independence
given ξ suffices. Section 3 gives a precise definition.

Table 1

G-invariant objects X G-ergodic objects ξ explained by eq. (7) specializes to

exchangeable sequences i.i.d. sequences de Finetti’s theorem [28] law of large numbers
stationary Markov chain irreducible aperiodic Rohlin’s source thm. [43] Birkhoff’s theorem [28]
exchangeable graphs graphon models [7, 18] Aldous-Hoover thm. [29] graph limit convergence [7]
graphs generated by graphex models [14] Kallenberg’s represen- empirical graphex [8, 46]
inv. point processes tation theorem [29]

exchangeable arrays dissociated arrays Aldous-Hoover theorem Kallenberg’s LLN [27]
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Our first result is a central limit theorem: If E[|f(X)|2+ε] <∞ for some
ε > 0, and the conditional mixing property above holds, then

√
|An|

(
Fn(f,X)− E[f(X)|ξ]

) d−→ ηZ for Z ∼ N(0, 1) .

The asymptotic variance η2 is a random variable, independent of Z, and
constant if X is G-ergodic. That is Theorem 4. If E[|f(X)|4+2ε] <∞, The-
orem 5 bounds the approximation error as

dW

(√|An|
η

(
Fn(f,X)− E[f(X)|ξ]

)
, Z
)
≤ u(An, η)

for a suitable function u and the Wasserstein distance dW. In either case, the
moment condition can be relaxed to ε = 0, at the price of stronger mixing.

In Section 5, we generalize Fn along three lines: (i) f and X may change
with n. (ii) Each φ may be substituted by a vector of transformations, with
some number kn of elements, replacing G and An by Gkn and Akn

n . (iii) Av-
erages may be subsampled or randomized. In the simplest case, that means
replacing Akn

n by a random subset Ân, and generalizing Fn to

F̂n(fn, Xn) = 1

|Ân|
∑

φ∈Ân
fn(φXn)− E[fn(Xn)|ξn] .

More generally, F̂n is defined by a random measure µn on Akn
n , so that

random subsets are the special case where µn is uniform on Ân. Our main
results are a central limit theorem (Theorem 9) and a Berry-Esseen bound
(Theorem 10) for F̂n. We use the result for kn-tuples to formulate a class of
generalized U-statistics (Corollary 11).

Since certain asymptotic properties of i.i.d. sequences generalize to G-
invariant objects, it is natural to ask whether finite-sample properties do so,
too. Section 6 gives a concentration inequality of the form

P
(
F̂n(f,X) ≥ t

)
≤ 2e−ωnt

2
for all t > 0 ,

for certain constants ωn, where P denotes probability under the joint distri-
bution of X and the (possibly randomized) average F̂n.

The remaining sections cover applications. One way to use Theorem 9
is to compute Fn only over a subset of An. Section 7 gives two specific
examples. Section 8 states a general central limit theorem for exchangeable
random objects, Theorem 16, and covers applications to graphon-, graphex-,
and stochastic block models. Section 9 considers a class of marked point
processes, known as random geometric measures, whose value at a location
can depend on points nearby. Section 10 concerns entropy: The entropy of
a stochastic process is a limit, and Lindenstrauss [31] has generalized the
Shannon-McMillan-Breiman theorem to show its existence for a large class
of processes. Theorem 22 characterizes asymptotic normality.
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2. Background and definitions. Throughout, G is a group, with
identity element e. By X, we always mean a standard Borel space, with
Borel σ-algebra B(X), and by P(X) the space of probability measures on X,
topologized by weak convergence. For a random element X of X, and p > 0,
define the norm ‖f‖p := E[|f(X)|p]1/p for measurable functions f : X→ R.
The set of functions with ‖f‖p <∞ is denoted Lp(X). By f ∈ Lp(X), we
refer to a function f , rather than an equivalence class.

2.1. Conditions on the group. To explain the estimator (1) for an un-
countable group G, we must define a topology and a measure on G. Finite
sets then generalize to compact ones, and sums over group elements to in-
tegrals. To cohere with group structure, the topology must make the group
operation continuous. If that is the case, and the topology is locally com-
pact, second-countable, and Hausdorff, or lcscH, then G is a lcscH group.
If G is countable, the discrete topology is lcscH, and G is a discrete group.
We always equip G with its Borel σ-algebra B(G). On every lcscH group,
there is a σ-finite measure | • | that satisfies

(9) |φ−1A| = |A| for all φ ∈ G and A ∈ B(G) ,

called a Haar measure. It is unique up to positive scaling, so c| • | is again
a Haar measure for c > 0 [28]. If a set A ⊂ G is compact, then |A| <∞.
Informally, Haar measures generalize volume, and (9) shows that a set can
be shifted without changing its volume. Examples of Haar measures are
Lebesgue measure on the groups (Rr,+), for r ∈ N, or counting measure
(cardinality) on a discrete group. Our results do assume a specific scaling c,
but in examples we always choose | • | as cardinality if G is discrete.

Like volume, distance can be defined in a shift-invariant way: If G is lcscH,
there exists a metric d on G that is left-invariant,

(10) d(φ−1 • , φ−1 • ) = d( • , • ) for all φ ∈ G .

We write Bt(φ) := {ψ ∈ G|d(ψ, φ) ≤ t} for a metric ball centered at φ, and
abbreviate by Bt := Bt(e) a metric ball around the identity. One can always
choose a left-invariant metric on G such that Bn “grows evenly” with n,

(11) |Bn+1\Bn|
|Bn\Bn−1| = O(1) ,

see [32]. If G and A are sets in G, we write GA := {φψ|φ ∈ G,ψ ∈ A}. A
Følner sequence is a sequence of compact sets A1,A2, . . . ⊂ G such that

(12)
|GAn ∩An|
|An|

n→∞−−−→ 1 for every compact G ⊂ G .
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If G is discrete, its compact sets are the finite sets, and (12) is equivalent
to (4ii). A lcscH group that contains a Følner sequence is called amenable
[20]. A Følner sequence is tempered if

(13)
∣∣⋃

k<n
A−1
k An

∣∣ ≤ c|An| for some c > 0 and all n ∈ N .

Not every Følner sequence is tempered, but every lcscH group containing a
Følner sequence also contains one that is tempered [31, Proposition 1.4].

Convention. We use the shorthand nice group for an amenable lcscH
group G equipped with a metric d satisfying (10) and (11).

Examples. (iv) The group S∞ of all permutations of N with finite support:
Define Sn as the group of permutations of {1, . . . , n}, and S∞ := ∪n∈NSn.
The canonical metric on S∞ is

(14) d(φ, φ′) := min {n ∈ N |φ(n, n+ 1, . . .) = φ′(n, n+ 1, . . .)} .

The sequence (Sn) is a tempered Følner sequence: Each φ ∈ G is in Sn
for n sufficiently large, so φSn ∩ Sn = Sn eventually, and (4ii) holds. Since
S−1
k Sn = Sn whenever k ≤ n, the sequence is tempered.

(v) The shifts of the r-dimensional grid Zr form the group (Zr,+): An
element j of the group shifts a grid point i to i + j. Its canonical metric

(15) d(i, j) = min
k≤r
|ik − jk|

is left-invariant and satisfies (11). The balls Bn = {−n, . . . , n}r, for n ∈ N,
form a tempered Følner sequence, and so do the sets {1, . . . , n}r.
(vi) Similarly, (Rr,+) is the shift group of Rr. Lebesgue measure is a Haar
measure, Euclidean distance is a left-invariant metric satisfying (11), and
the balls Bn and the sets [0, n]r both form tempered Følner sequences.

Recall from the introduction that |An| can be interpreted as sample size.
If G is compact, |An| ≤ |G| <∞. It is hence essential for asymptotics that
G is not compact. Examples of nice, non-compact groups include the groups
above, the group (R>0, ·) (which characterizes self-similarity of stochastic
processes), the group of translations and rotations of a Euclidean space, and
discrete and continuous Heisenberg groups [12]. See [20, 32] for more.

2.2. Invariance and ergodicity. We now let elements of G transform ele-
ments of a space X. We must specify what that means: Permuting a matrix,
say, could mean permuting rows, or columns, or entries. This specification is
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called an action: A measurable action of G on X is a jointly measurable
map (φ, x) 7→ Tφ(x) that satisfies

(16) Te(x) = x and Tφφ′(x) = Tφ(Tφ′(x)) for x ∈ X and φ, φ′ ∈ G .

The conditions ensure that the set of transformations Tφ defined by G on X
is itself a group. We usually simplify notation and write φ(x) := Tφ(x).

A random element X of X with distribution P is G-invariant if

φ(X)
d
= X or equivalently P = P ◦ φ−1 for all φ ∈ G .

We then call P a G-invariant measure. A Borel set A ∈ B(X) is almost
invariant if P (φA M A) = 0 for all φ ∈ G and all G-invariant P , where M
denotes symmetric difference. The almost invariant sets form a σ-algebra
σ(G), and we abbreviate conditioning on σ(G) as

E[ • |G] := E[ • |σ(G)] and P ( • |G) := P ( • |σ(G)) .

A probability measure is G-ergodic if it is G-invariant and P (A) ∈ {0, 1}
for all A ∈ σ(G). This condition is equivalent to (5) if G is countable [20].
A random element is G-ergodic if its distribution is.

2.3. Estimation. We now come to the general form of the estimator (1).
For a group G acting measurably on X, a Følner sequence (An) on G, and
a Borel function f on X, define

Fn(f, x) := 1
|An|

∫

An

f(φx)|dφ| .

If G is discrete, Fn simplifies to the sum (1). The cornerstone of our work
is a remarkable result of Lindenstrauss, which concluded a long line of work
by Ornstein, Weiss, and others [e.g. 47].

Theorem 1 (E. Lindenstrauss [31]). If a random element X of a stan-
dard Borel space is invariant under a measurable action of a nice group, and
if (An) is a tempered Følner sequence, then

(17) Fn(f,X)
n→∞−−−→ E[f(X)|G] almost surely for all f ∈ L1(X) ,

where E[f(X)|G] = E[f(X)] almost surely if X is ergodic.

Where convenient, we center Fn around the limit as

(18) Fn(f,X) := Fn(f,X)− E[f(X)|G] .
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The next result gives an interpretation of the limit: If X is invariant, it can
be generated by selecting an ergodic measure ξ at random, and then drawing
X from ξ. The limit E[f(X)|G] is the expectation of f under the instance
of the latent measure ξ that has generated X.

Theorem 2 (Ergodic decomposition, Varadarajan [45]). If a lcscH group
G acts measurably on a standard Borel space X, the set of G-invariant prob-
ability measures is a convex subset of P(X). Its set of extreme points is the
set E of G-ergodic measures, and is measurable. A random element X of X
is G-invariant if and only if there is a random element ξ of E such that

(19) P [X ∈ • |G] = ξ( • ) almost surely,

and hence P (X ∈ • ) =
∫
Em( • )P(ξ ∈ dm). The distribution of ξ is uniquely

determined by that of X.

Thus, conditioning on σ(G) means conditioning on ξ. If P is ergodic,
then ξ = P almost surely, and E[f(X)|G] =

∫
f(x)dξ(x) = E[f(X)]. The re-

sult is related to theorems of Krein-Milman and Choquet, which generalize
a property of polytopes—every element is a convex combination of extreme
points—to certain compact convex sets [1]. In Theorem 2, the convex set is
that of G-invariant measures (which is not required to be compact), and one
can read the integral below (19) as a generalized convex combination.

Examples. (vii) Let X be the space RN of real-valued sequences. Define an
action of the permutation group S∞ as φ(x) := (xφ(1), xφ(2), . . .), for x ∈ X
and φ ∈ S∞. An exchangeable sequence is a S∞-invariant random se-
quence X = (Xi)i∈N. It is ergodic if and only if it is i.i.d., a fact known as
the Hewitt-Savage 0–1 law [28]. It follows that ξ factorizes as ξ = ξ⊗N0 , for
some random probability measure ξ0 on R. Theorem 2 then takes the form

P (X ∈ • ) =
∫

P(RN)
m( • )P(ξ ∈ dm) =

∫

P(R)
m⊗N0 ( • )P(ξ0 ∈ dm0) ,

which is de Finetti’s theorem [28]. Let f(x) = g(x1) be a function of the first
sequence entry, as in (3). Theorem 1 becomes

1

n!

∑
φ∈Sn f(φX) =

1

n

∑
i≤n g(Xi)

n→∞−−−→
∫

R
g(x1)ξ0(dx1) a.s.

For ergodic X, this is the strong law of large numbers for i.i.d. sequences.
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(viii) Fix r ∈ N, and set X = RZr . An element x = (xi)i∈Zr of X is hence a
scalar field on an r-dimensional grid. Define an action of G = Zr on X as

φ(x) := (xi+φ)i∈Zr for any x = (xi) ∈ X, φ ∈ Zr .

A stationary random field is a Zr-invariant random element X of X.
Recall from Example (v) that An = {−n, . . . , n}r defines a Følner sequence.
Write Ωn := {−n, . . . , n}r to distinguish the subset Ωn of the index set Zr
from the subset An of the group Zr. Since Ωn is the image Ωn := An(0, . . . , 0)
of the origin, (12) can be rephrased in terms of the index set, as

|∂Ωn| / |Ωn| n→∞−−−→ 0 where ∂Ωn = Ωn\Ωn−1 .

In this form, the condition is well-known in statistics [5, 26]. For a function
f(x) = g(x0,...,0) at the origin, Fn is given by (2). We also noted already that
An can alternatively be chosen as {1, . . . , n}r. For the case r = 1 of station-
ary sequences, Theorem 1 then takes the form n−1

∑n
i=1 g(Xi)→ E[g(X1)|G],

which is Birkhoff’s ergodic theorem [43].

3. Conditional mixing. This section formalizes the mixing condition
sketched in (8). The term mixing is broadly applied in the literature to
conditions using terms of the form |P (A)P (B)− P (A ∩B)| to quantify de-
pendence. Their strengths and purposes vary—Bradley [10], for example,
surveys the wide range of mixing conditions used with stationary processes.
Our notion of mixing resembles that used in random field asymptotics [5, 21].
Ergodic theory defines mixing conditions to verify ergodicity, which are typ-
ically much weaker [20].

Consider f ∈ L1(X) and a set G ⊂ G. The events in X that can be for-
mulated in terms of (f(φX))φ∈G form the σ-algebra

σf (G) := σ(f ◦ φ, φ ∈ G) = σ
(⋃

φ∈G(f ◦ φ)−1B(R)
)
,

where B(R) is the Borel σ-algebra of R. Write Bt(G) := ∪φ∈GBt(φ). The
set of group elements whose distance from G exceeds t is G \Bt(G). The
relevant set of events is then

C(t) :=
{

(A,B) ∈ σf (φ1, φ2)⊗ σf (G)
∣∣G ⊂ G, φ1, φ2 ∈ G\Bt(G)

}
.

The mixing coefficient for f and P is the function

α(t) := sup
(A,B)∈C(t)

|P (A)P (B)− P (A ∩B)| for t > 0 ,
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and P is mixing with respect to f if α(t)→ 0 as t→∞. Similarly,

α(t|G) := sup
(A,B)∈C(t)

E[|P (A|G)P (B|G)− P (A ∩B|G)|] for t > 0

is the conditional mixing coefficient, and P is conditionally mix-
ing if α(t|G)→ 0 as t→∞. Both coefficients are decreasing in t, since
C(t1) ⊂ C(t2) if t1 ≤ t2. Mixing implies conditional mixing:

Lemma 3. The mixing coefficients satisfy α(k|G) ≤ 4α(k) for all k ∈ N.

The first example below shows that the converse need not be true. The
second example describes a case where both properties hold.

Examples. (ix) Any exchangeable sequence X = (X1, X2, . . .) is condition-
ally mixing with respect to f : (x1, x2, . . .) 7→ x1: By de Finetti’s theorem,
its entries are conditionally independent. For subsets F,G ⊂ N, that implies

(Xi)i∈F ⊥⊥ (Xj)j∈G | G if min
i∈F, j∈G

|i− j| ≥ 1 ,

and hence α(k|G) = 0 for all k ∈ N. It need not be mixing: Draw once from
a random variable Y , and set Xi := Y for all i ∈ N. Then X is exchangeable,
but dependence of X1 and Xi does not diminish as i grows.

(x) Let X = (Xi)i∈Zr be a stationary random field with the Markov property,
Xi⊥⊥ (Xj)j∈Zd\{i} | (Xj)j∈B1(i) for each i ∈ Zr. The requirement

ϑ := sup
i|d(i,0)=1

sup
A,B∈B(X)

|P (X0 ∈ A|Xi ∈ B)− P (X0 ∈ A)| ≤ 1
2r ,

is known as the Dobrushin condition [21]. If it holds, X is mixing with re-
spect to all coordinate functions: There are positive constants c1 and c2 such
that α(k) ≤ c1e

−c2k for all k ∈ N [e.g. 21, 8.28]. By Lemma 3, that also im-
plies conditional mixing. In general, if (Xi) is a stationary sequence, α(·|G)
can be bounded by the classical α-mixing coefficients [e.g. 10].

(xi) If X is conditionally mixing for f , it is for g ◦ f , for any function g.

4. Basic limit theorems. The central limit theorem requires condi-
tional mixing and a second-moment condition. The strength of each can be
traded off against the other: The next two theorems assume either

(i) E[f(X)2] <∞ (ii) α(K|G) = 0 for some K ∈ N ,(20)
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or that there exists an ε > 0 such that

(i) E[f(X)2+ε] <∞ (ii)
∫

G
α(d(e, φ)|G)

ε
2+ε |dφ| <∞ ,(21)

where e is the identity element of G. If G is discrete, (21ii) simplifies to
∑

n∈N |Bn+1\Bn|α(n|G)
ε

2+ε <∞ .

We note only en passant that the quantity |Bn+1\Bn| plays a crucial role
in group theory, where it is known as the growth rate of G [32].

Theorem 4. Let G be a nice group with tempered Følner sequence (An),
acting measurably on a standard Borel space X. If a G-invariant random
element X of X and a function f : X→ N satisfy either (20) or (21), then

(22)
√
|An|

(
Fn(f,X)− E[f(X)|G]

) d−−→ ηZ for Z ∼ N(0, 1) .

The asymptotic variance η2 is a random variable that can be chosen inde-
pendently of Z as

η2 =
∫

G
η2(φ)|dφ| for η2(φ) := E[f(X)f(φX)|G] ,

and satisfies η2 <∞ almost surely.

The rate of convergence in Lindenstrauss’ theorem is thus |An|−
1
2 , and

depends only on the Følner sequence. The action does not affect the rate, but
the mixing coefficient and constants. The ergodic decomposition property is
visible in the independence of η and Z: Theorem 2 shows E[ • |G] = E[ • |ξ],
so η is a function of ξ, and constant if X is G-ergodic. Informally, the ran-
domness of Z is due to X|ξ, that of η is due to ξ.

The left- and right-hand side in (22) can be compared in terms of the
Wasserstein distance dW. For two random elements Y and Y ′ of R, this is

dW(Y, Y ′) := sup
h∈L
|E[h(Y )]− E[h(Y ′)]| ,

where L are the Lipschitz functions on R with Lipschitz constant 1 [e.g. 41].
We denote normalized moments of f by

sp := E
[∣∣f(X)

η

∣∣p] 1p =
∥∥f(X)

η

∥∥
p

for p > 0 .

The bound in the next result depends both on the value of the integral in
(21ii), and on the decay of its tail, and we define

(23) τ(b) :=
∫

G\Bb
α(d(e, φ)|G)

ε
2+ε |dφ| for b ≥ 0 .

Condition (21ii) then amounts to τ(0) <∞.
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Theorem 5. Let G be a nice group with tempered Følner sequence (An),
acting measurably on a standard Borel space X. Choose a G-invariant ran-
dom element X of X, and a function f that satisfies (20) or (21). Let Z and
η2 be the limiting normal variable and asymptotic variance in Theorem 4. If
(20) holds, and K ∈ N is the smallest number for which α(K|G) = 0, then

dW

(√|An|
η Fn(f,X), Z

)
≤ κ1

|An M BKAn|
|An|

+
κ2√
|An|

for constants κ1 and κ2 of order κ1 = O(s2
2) and κ2 = O(max(s3

4, 1)|BK |2).
If f satisfies (21) for some ε > 0,

dW

(√|An|
η F(f,X), Z

)
≤ κ4τ(bn) + κ3

|An| − |An ∩BbnAn|
|An|

+
κ4|Bbn |√
|An|

for any sequence b1 < b2 < . . . of positive scalars. The constants are of order
κ3 = O(s2

2+ε) and κ4 = O(max(s3
4+2ε, 1)τ(0)).

Here, O( • ) is the Landau symbol for majorized convergence. The choice
of (bn) trades off |Bb|, which increases with b, against τ(b), which decreases.

Example. (xii) Let X be an i.i.d. sequence, and hence exchangeable and
ergodic. For f ∈ L2(X1), we have α(1|G) = 0, and Theorem 4 is the elemen-
tary central limit theorem. Theorem 5 is the Berry-Esseen bound [e.g. 41]:
The coefficient of κ1 satisfies AnMB1An = O(1/n), and the second term
collapses to 1/

√
n.

A less elementary application is a real-valued random field (Xφ)φ∈G that
is stationary, i.e. invariant under the group G acting on the index set G. For
the groups Zr and Rr, for instance, substituting into Theorem 4 yields:

Corollary 6. Let X = (Xφ)φ∈G be a stationary random field, and f a
real-valued function that satisfies (21). If G = (Zr,+) for some r ∈ N,

√
nr
(

1
nr

∑
i∈{0,...,n}r f(Xi) − E[f(X)|Zr]

)
d−→ ηZ as n→∞

for η2 :=
∑

i∈Zr E
[
f(X0)f(Xi)

∣∣Zr
]
. If G = (Rr,+) instead, then

√
nr
(

1
nr

∫

[0,n]r
f(Xt)|dt| − E[f(X)|Rr]

)
d−→ ηZ as n→∞ ,

where η2 :=
∫
Rr E

[
f(X0)f(Xt)

∣∣Rr
]
|dt|. In either case, η⊥⊥Z.
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The case G = Zr is Bolthausen’s central limit theorem [5]. Thus, The-
orem 4 implies a generalization of Bolthausen’s theorem to random fields
indexed by nice groups, as the second case illustrates. If X satisfies the
condition ϑ < 1/(2r) in Example (x), it is conditionally mixing with re-
spect to each coordinate function, and the corollary holds for all functions
f(X) = g(X0) with g ∈ L2+ε(X0).

If we quantify the approximation error using Theorem 5, additional prop-
erties of the group play a role, and we hence consider a specific class: (Zr,+)
is a so-called finitely generated nilpotent group of rank r. Such groups are
nice, and each contains a finite set called a generator. The minimal number
of elements of this set required to transform one group element into an-
other is a metric, the word metric, whose metric balls Bn satisfy (12) and
1/|Bn| = O(n−r). We refer to [32] for proper definitions. Substituting into
Theorem 5 yields:

Corollary 7. Let G be a finitely generated, nilpotent group of rank
r ∈ N, and set An := Bn for the word metric of a finite generator. If there
exist ε, δ > 0 such that α(k|G) = O(k−(r+δ)) and f(X)/η ∈ L4+2ε(X), then

dW

(√|An|
η (Fn(f,X)− E[f(X)|G]), Z

)
= O(n−rδ/(2(r+δ))) for Z ∼ N(0, 1) .

For G = Zr, the unit coordinate vectors in Zr are a finite generator, and
the word metric it defines is (15).

5. Generalized limit theorems. The results in this section extend
the basic limit theorems above: Let 0 < k1 ≤ k2 ≤ . . . be integers. We now
permit f and X to depend on n, substitute elements of An by kn-tuples,
and randomize averages by subsampling or randomly reweighting An.

For each n ∈ N, let Xn be a random element of a standard Borel space
Xn, and fn : Xn → R a measurable function. If G is a nice group with Haar
measure | • |, the product space Gkn is a nice group with Haar measure
| • |⊗kn . Similarly, if (An)n is a tempered Følner sequence in G, so is (Akn

k )k
in Gkn . To randomize averages, let µn be a random measure on Gkn that
satisfies

(24) (i) µn is σ-finite (ii) µn(Akn
n ) > 0 almost surely.

(Formally, we equip the set of σ-finite measures on Gkn with the σ-algebra
generated by the maps µ 7→ µ(A), for all Borel sets A ⊂ Gkn . The resulting
space of measures is standard Borel [28]. By a random measure, we mean
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a random element of this space.) Let Tn : Gkn ×Xn → Xn be a measurable
action of Gkn , and write

φx = Tn(φ1, . . . , φkn , x) for x ∈ Xn and φ = (φ1, . . . , φkn) ∈ Gkn .

The diagonal action associated with Tn consists of all transformations

(25) (φ, . . . , φ)x = Tn(φ, . . . , φ, x) for φ ∈ G .

The notion of invariance assumed in this section is

(26) (φ, . . . , φ)ψXn
d
= ψXn for every φ ∈ G and ψ ∈ Gkn .

That is a stronger requirement than diagonal invariance, but weaker than
Tn-invariance. To define conditioning, we denote by σn(G) the σ-algebra

σn(G) := {A ⊂ Xn Borel | (φ, . . . , φ)A = A for all φ ∈ G} ,

and abbreviate E[ • |G] := E[ • |σn(G)] and P ( • |G) = P ( • |σn(G)). We then
consider the random, conditionally centered average

(27) F̂n(fn, Xn) :=
1

µn(Akn
n )

∫

Akn
n

fn(φXn) − E[fn(φXn)|G] µn(dφ).

If kn = 1, and µn( • ) = | • | for all n, and if all Xn and all Xn are identical,
we recover σn(G) = σ(G) and F̂n = Fn.

5.1. Mixing. To formulate mixing, we modify the definitions in Section 3:
Again consider two elements φ and φ′ and a subset G, now all in Gkn . We
measure how close the entries φi and φ′k are to the remaining entries of φ or
φ′, or to any entry of vectors in G. To do so, we define the set of “all other”
entries, Ei,k(φ,φ′, G) := {φj |j 6= i} ∪ {φ′j |j 6= k} ∪ {πj |π ∈ G, j ≤ kn}, and

(28) δi,k(φ,φ
′, G) := inf {d({φi, φ′k}, ψ) |ψ ∈ Ei,k} .

For the given function fn, we then define the set of events

Ci,k(t) :=
⋃
σfn(φ)⊗ σfn(φ′)⊗ σfn(G)

where the union runs over all pairs (φ,φ′) and all measurable sets G in
Gkn with δi,k(φ,φ

′, G)≥ t. Recall that the conditional mixing coefficient was
defined in terms of P ( • |G). Using Lindenstrauss’ theorem, P ( • |G) can be
written as

P ( • |G) = E[ I{X∈ • }|G] = lim
m→∞

1

|Am|

∫

Am

I{φX ∈ • }|dφ| .
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To measure the effect of transforming only by the ith and kth coordinate,
we substitute this by

Pi,k(A,A
′) := lim

m→∞
1

|Am|

∫

Am

I{ei,ψXn ∈ A, ek,ψXn ∈ A′}|dψ| ,

where ei,ψ := (e, . . . , e, ψ, e, . . . , e) has kn dimensions and ψ is the ith coor-
dinate. We then define the marginal mixing coefficient

αn(t|G) := sup
i≤kn

sup
(A,A′,B)∈Ci,k(t)

|P (A,A′, B|G)− E[Pi,k(A,A
′)I{Xn ∈ B}|G]| .

Choosing (kn, fn, Xn) as (1, f,X) for all n recovers αn( • |G) = α( • |G). The
coordinate-wise definition suggests marginal should be weaker than condi-
tional mixing. If we make definitions comparable by considering processes
of the form Xn = fn(f(φ1X), . . . , f(φknX)), that is indeed the case:

Proposition 8. Let X be G-invariant, f ∈ L1(X), and set Xn = Rkn.
Then the conditional mixing coefficient of (f(φX))φ∈G and the marginal mix-
ing coefficient of (fn(f(φ1X), . . . , f(φknX)))φ∈Gkn satisfy αn( • |G) ≤ α( • |G).

5.2. Spreading conditions for randomization. The random measure µn
should not concentrate on a subset of Akn

n that is “too small”. That is
formalized as follows: For A ∈ B(G2kn) and any measure ν on Gkn , define

Tn(A, ν) :=
1

ν(Akn
n )2

∫

A2kn
n

I((φ,ψ) ∈ A)ν(dφ)ν(dψ) .

Consider the random variable

Γ2
n(A,φ) :=

1

Tn(A, | • |⊗kn)µn(Akn
n )

∫

Akn
n

I((φ,ψ) ∈ A))µn(dψ) .

Informally, one would expect the integrals

1

µn(Akn
n )

∫

Akn
n

Γ2
n(A,φ)µn(dφ) =

Tn(A,µn)

Tn(A, | • |⊗kn)

to be bounded if µn spreads out its mass sufficiently. As µn might be discrete
even if the Haar measure is not, bounds should be formulated only in terms
of “sufficiently large” sets A. We define the family of such sets as

Σn :=
{
A ∈ B(G2kn)

∣∣A is connected and |prk(A)| ≥ 1 for all k ≤ 2kn
}
,
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where prk denotes projection on the kth coordinate. A weak notion of bound-
edness suffices for asymptotic normality: We call the sequence (µn) well-
spread if the variables Γ2

n are uniformly integrable for large sets,

sup
n

sup
A∈Σn

∥∥∥ 1

µn(Akn
n )

∫

Akn
n

Γ2
n(A, φ)I(|Γ2

n(A, φ)| ≥ β)dµn(φ)
∥∥∥

1

β→∞−−−→ 0 .

A Berry-Esseen bound requires a stricter bound and a fourth-order condi-
tion: We similarly define

T∗n(A, ν) :=
1

ν(Akn
n )4

∫

A4kn
n

I((φ1,φ2,φ3,φ4) ∈ A)ν⊗4(dφ1, dφ2, dφ3, dφ4) ,

now for subset A of and a measure ν on G4kn , and

Σ∗n :=
{
A ∈ B(G4kn)

∣∣A is connected and |prk(A)| ≥ 1 for all k ≤ 4kn
}
.

We call (µn) strongly well-spread if

S := sup
n
Sn <∞ where Sn := sup

A∈Σ∗n

∥∥∥ T∗n(A,µn)

T∗n(A, | • |⊗kn)

∥∥∥
1
,

with spreading coefficient S. Since the existence of higher moments im-
plies uniform integrability, strongly well-spread implies well-spread. Either
condition can be applied to a random measure µ by applying it to the se-
quence (µ)n∈N.

Examples. (xiii) Let Π be a Poisson point process on Gk, for some k ∈ N.
Then the random measure µ( • ) := |Π ∩ • |⊗k is strongly well-spread if

sup
A∈B(Gk), |A|⊗k<∞

E
[
|Π ∩A|⊗k

]

|A|⊗k < ∞ .

(xiv) Let G be discrete. For each n, let Πn be a point process on Gkn with

Πn ∩Akn
n

∣∣ (|Πn ∩Akn
n | = m)

d
= (Φ1, . . . ,Φm) for all m ∈ N ,

where the Φi are drawn uniformly with or without replacement from Akn
n .

Then µn( • ) := |Πn ∩ • |⊗kn defines a strongly well-spread sequence.

5.3. Results. If the dimension kn grows with n, we must quantify how
much fn changes with n: For p > 0 and i ≤ kn, define

ci,p(fn) := sup
ψ∈G,φ∈Gkn

1
2 ‖ fn ◦ φ− fn ◦ (e, . . . , e, ψ, e, . . . , e)φ ‖p
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where ψ is the ith coordinate. Hypotheses (20) and (21) are then replaced
by one of the following conditions: Either

(i) sup
n
αn(K|G) = 0 (ii) sup

n

∑
i≤kn

ci,2(fn) <∞(29)

(iii)
(
fn(φXn)2

)
φ∈Gkn is uniformly integrable

holds for some K ∈ N, or

(i) sup
n

∫

G
αn(d(e, φ)|G)

ε
2+ε |dφ| <∞ (ii) sup

n

∑
i≤kn

ci,2+ε(fn) <∞(30)

(iii)
(
fn(φXn)2+ε

)
φ∈Gkn is uniformly integrable

holds for some ε > 0. In either case, (iii) implies (ii) if the sequence (kn) is
bounded. To assemble the asymptotic variance, set

F̂∞,i(ψ) := lim
m→∞

1

|Am|kn
∫

φ∈Akn
m

fn((φ1, . . . ,φi−1, ψ,φi+1, . . . ,φkn)Xn)|dφ|⊗kn−1 .

Let µin be the ith coordinate marginal of µn, scaled to µin(An) =
√
|An|,

µin( • ) :=

√
|An|

µn(Akn
n )
µn(An, . . . ,An, • ,An, . . . ,An) ,

and set

η̂nm :=
∑

i,j≤kn

∫∫

φAn,ψ∈Bm(φ)

E[ F̂∞,i(e)F̂∞,j(φ−1ψ) |G]µin(dφ)µjn(dψ) .

The central limit theorem then takes the following form:

Theorem 9. Let (Xn) be invariant in the sense of (26) for each n, and
let (µn) be well-spread and independent of (Xn). Assume either condition

(29) or (30) holds. If kn = o(|An|
1
4 ), and if the limits

η̂nm
p−−→ ηm as n→∞ and ηm

L2−−→ η as m→∞

exist, then √
|An| F̂n(fn, Xn)

d−−→ ηZ as n→∞ ,

for an independent standard normal variable Z.

The Berry-Esseen bound in Theorem 5 generalizes similarly:
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Theorem 10. Assume the conditions of Theorem 9 hold, and require
that (µn) is strongly well-spread. If condition (29) holds for some K ∈ N,

dW

(√|An|
η

F̂n(fn, Xn), Z
)
≤ κ1

k2
n√
|An|

+
∥∥∥
η̂ 2
n,K − η2

η2

∥∥∥ ,

where κ1 = O
(
(Sn ∧ 1)((

∑
i ci,4)3 ∧ 1)|BK |2

)
. If (30) holds instead, set

Rn(b) :=
∑

t≥b |Bt+1 \Bt|αn(t|G)
ε

2+ε for b ∈ N .

Then for any sequence 0 < b1 < b2 < . . . of integers,

dW

(√|An|
η

F̂n(fn, Xn), Z
)
≤ κ2Rn(bn) + κ3

k2
n|Bbn |√
|An|

+
∥∥∥
η̂ 2
n,bn
− η2

η2

∥∥∥

with κ2 = O
(
(
∑

i ci,2+ε)
2(Sn∧1)

)
and κ3 = O

(
((
∑

i ci,4+2ε)
3∧1)(Sn∧1)Rn(0)

)
.

If we choose (kn, Xn, F̂n) as (1, X,Fn) for all n, the conditions specialize
to (20) and (21), and the results to Theorems 4 and 5.

5.4. Generalized U-statistics. The generalized notion of invariance de-
fined in (26) allows us to formulate a useful generalization of U-statistics,
denoted Xψ in the next result. Substituting these into Theorem 9 shows
they are asymptotically normal:

Corollary 11. Consider a G-invariant random element Y of X, a
function h : Xk → R, and set Xψ := h(ψ1Y, . . . , ψkY ) for ψ ∈ Gk. Suppose
there is an ε > 0 for which the conditional mixing coefficient of Y satisfies∫
G α

ε
2+ε (d(e, φ)|G)|dφ| <∞, and (X2+ε

ψ )ψ∈Gk is uniformly integrable. Then

|An|
1
2
−k
∫

Ak
n

(Xψ − E[Xψ|Gk])|dψ|⊗k d−→ ηZ

for η⊥⊥Z and Z ∼ N(0, 1). If we denote

Hi(φ) := lim
m→∞

1
|Am|k−1

∫

Ak−1
m

Xψ1,...,ψi−1,φ,ψi+1,...,ψkn
|dψ1|· · ·|dψi−1||dψi+1|· · ·|dψk| ,

the asymptotic variance is η2 =
∑

i,j≤k
∫
G Cov[Hi(e), Hj(φ)|G]|dφ|.
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To clarify the relationship to U-statistics, recall that a U-statistic for an
i.i.d. sequence (Yi)i∈Z are usually defined in one of two ways, as

Un :=
(
n
k

)−1∑

φ∈Sn
h(Yφ(1), . . . , Yφ(k)) or Vn :=

1

nk

∑

i1,...,ik≤n
h(Yi1 , . . . , Yik) .

The definitions are equivalent in the sense that
√
n(Un − Vn)→ 0 in prob-

ability [42]. The corollary shows n−1/2(Vn − E[Vn])
d−→ ηZ, if we choose G

as Z and An as {1, . . . , n}. Note h(Yi1 , . . . , Yik) satisfies the invariance (26),
but is not Zk-invariant, since arbitrary shifts may break independence of
(Yi) by duplicating indices.

6. Concentration. The theorems above show that certain asymptotic
properties of i.i.d. processes generalize to symmetric random objects. We
show next that certain finite-sample properties generalize similarly. We use
the definitions of Section 5, but somewhat restrict the spaces and functions
involved: Fix two Borel spaces X and Y, two sequences (fn) and (gn) of
measurable functions fn : X→ Y and gn : Ykn → X, and let (Xn) be a se-
quence of G-invariant random elements of X. We consider concentration for
quantities of the form gn(fn(φ1Xn), . . . , fn(φknXn)). To this end, define

Y n := (Y n
φ )φ∈G where Y n

φ := fn(φXn) .

That implies (Y n
φ )

d
= (Y n

ψφ) for ψ ∈ G. We again work with (conditionally)
centered averages: For φ = (φ1, . . . , φkn), set

hn(φXn) := gn(Y n
φ1 , . . . , Y

n
φkn

)− E[gn(Y n
φ1 , . . . , Y

n
φkn

)|G] for φ ∈ Gkn .

The average F̂n, as defined in the previous section, is then

F̂n(hn, Xn) =
1

µn(Akn
n )

∫

Akn
n

hn(φXn)µn(dφ) .

A function f : Yk → R is self-bounded if there are constants δ1, . . . , δk,
the self-bounding coefficients, such that

1

2
|f(x)− f(x′)| ≤

∑
i≤k δiI{xi 6= x′i} for all x,x′ ∈ Yk ,

see e.g. [9]. We call f uniformly L1-continuous in G if

sup
φ,ψ∈Gk

d(φi,ψi)≤ε for i≤k

‖f(φXn)− f(ψXn)‖1 −→ 0 as ε→ 0 .
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We measure interactions within a process Y = (Yφ)φ∈G as follows: Write L
for the law of a random variable, ‖ • ‖TV for the total variation norm, and
abbreviate Y6=φ := (Yψ)ψ 6=φ. If G is countable, define

Λ[Y ] :=
∑

φ∈G\{e} sup
x,y∈YG
x 6=φ=y 6=φ

‖L(Ye|Y 6=e = x 6=e)− L(Ye|Y6=e = y 6=e)‖TV

If G is uncountable, we discretize: For ε > 0, a set C ⊂ G is an ε-net if

(i) e ∈ C (ii) d(φ, φ′) ≥ ε for φ, φ′ ∈ C distinct (iii) ∪
φ∈C

Bε(φ) = G .

By a decreasing sequence of nets, we mean a sequence (Ci)i∈N, where Ci is
an εi-net and εi → 0. Define

ρ[Y ] := sup
(

1− lim
i→∞

1− Λ[(Yφ)φ∈Ci ]
|Bεi |

)

where the supremum is taken over all decreasing sequences of nets for which
the limit on the right exists. Discretizing continuous processes on nets is a
standard tool in the context of concentration inequalities [see 9, Chapter
13]. Note that ρ = Λ if the group is discrete. For G = Z, it is known as
the Dobrushin interdependence coefficient [44]. A continuous example is a
Markov process Y = (Yt)t∈R on G = R, where

ρ[Y ] = lim
t→∞

1

t
sup
x,y∈R

‖L(Y0|Yt = x)− L(Y0|Yt = y)‖TV .

Theorem 12. Let (An) be a tempered Følner sequence in G, let (ci)
be the self-bounding coefficients of hn, and require that (hn) is uniformly
L1-continuous in G. Define

τn := sup
j≤kn

sup
B∈B(G)

|An|µn(Aj−1
n ×(B ∩An)×Akn−j

n

∣∣Akn
n )

|B ∩An|
.

Then

P
(
F̂n(hn, Xn) ≥ t

)
≤ 2E

(
exp
(
−(1− ρ[Y n])|An|

(
∑

i≤kn ci)
2τ2
n

t2
))

for all t > 0 .

The coefficients τn are only required if averages are randomized. If (µn)
is non-random, the statement can simplify considerably. For example:
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Corollary 13. If µn = | • |⊗kn almost surely for each n, then

P
(
F̂n(hn, Xn) ≥ t

)
≤ 2 exp

(
−(1− ρn)|An|

(
∑

i≤kn ci)
2
t2
)

for t > 0 and n ∈ N.

Theorem 12 implicitly assumes fairly strong mixing: If G is discrete, for
example, then α(n|G) ≤ c1α(n) ≤ c2Λ[X] for some positive constants c1 and
c2 and all n ∈ N. The mixing condition is hence no weaker than that required
in the asymptotic case, and conditioning on X6=e in the definition of Λ[X]
means it is typically stronger.

7. Approximation by subsets of transformations. According to
Theorem 9, Fn may be computed using only a subset of An. We briefly
discuss a few cases in more detail. First suppose we “factor out” a compact
subgroup K of G to obtain a subgroup H, and then compute Fn using a
Følner sequence of H. For exchangeable sequences, factoring Sk out of S∞
amounts to including only every kth observation in the sample average, so
rates slow by a constant. The general behavior is similar:

Proposition 14. Let G be generated by the union of a non-compact
group H and a compact group K, and let (AH

n ) be a Følner sequence in
H. Then An := AH

nK is a Følner sequence in G. If X is G-invariant, and
f ∈ L2(X) satisfies (21) with respect to G, there exist random variables
η, ηH ∈ L2(X) and an independent standard normal variable Z such that

1√
|AH
n|

∫

AH
n

(
f(φX)− E[f(X)|G]

)
|dφ| d−→ ηHZ

and 1√
|An|

∫

An

(
f(φX)− E[f(X)|G]

)
|dφ| d−→ ηZ .

The ratio β :=
√
|K| ηHη is given by

β2 − 1 =
1

η2

∫

H

∫

K
E[f(X)(f(φX)− f(ψφX))|G]|dψ||dφ| a.s.

For example, let X = (Xt)t∈Rr be a continuous random field that is both
shift- and rotation invariant—formally, that is Rr ×Or-invariant, where Or

is the (compact) orthogonal group of order r. Factoring out Or means one
averages only with respect to shifts. Convergence then slows by a factor

(31) β2 − 1 =
1

η2
E
[
f(X)

∫

Rr

∫

Or
(f(X + φ)− f(θX + φ))|dθ||dφ|

]
.

One might also discretize An (e.g. to avoid integration), or subsample it. For
example: A tempered Følner sequence in Rr ×Or is given by ([−n, n]r ×Or)n
[32]. If we discretize [−n, n]r deterministically, and Or at random, we obtain:
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Corollary 15. Let X = (Xt)t∈Rr be a random field invariant under
rotations and translations of Rr, and require (21). Fix m ∈ N. For z ∈ Zr,
let Θz

1, . . . ,Θ
z
m be independent, uniform random elements of Or. Then

1

m
√

(2n)r

∑

z∈{−n,...,n}r
j≤m

(
f(Θz

j (X + z))− E[f(X)|G]
) d−→ ηmZ

as n→∞, for an almost surely finite random variable ηm⊥⊥Z. Relative to
Fn defined by integration over the entire set [−n, n]r ×Or, convergence slows
by a coefficient β2

m − 1 = (β2 − 1)/(2m2η2
m), where β is given by (31).

If the random rotations Θz
j are not independent—for example, if one gen-

erates m rotations once and uses them repeatedly—the rate may slow.

8. Applications I: Exchangeable structures. A particularly com-
mon type of distributional symmetry is permutation invariance, often re-
ferred to as exchangeability. It can broadly be categorized into three types:
Finite exchangeability is invariance under Sn, for some fixed n ∈ N [29].
This is an example of invariance under a compact group, and has no asymp-
totic theory. Countably infinite exchangeability, or henceforth simply ex-
changeability, is invariance under S∞. This type is common in statistics
and probability. By uncountable exchangeability, we refer to invariance
under permutation groups of uncountable sets. Such groups are not nice,
and Lindenstrauss’ theorem is not applicable, but Section 8.5 gives an ex-
ample where reduction to our results is possible.

8.1. Exchangeability. The next theorem adapts our results to exchange-
able structures, including the examples in Table 2. In this case, the mixing
condition can be eliminated.

Theorem 16. Let X be a random element of a standard Borel space
X, and invariant under a measurable action of the group S∞. Let f be a
function satisfying E[f(X)2] <∞ and

(32)
∑

i∈N lim supj‖f(X)− f(τijX)‖2 < ∞ ,

where τij denotes the transposition of i and j. As n→∞,

(33)
√
nFn(f,X) =

√
n
(

1
n!

∑
φ∈Sn f(φX)− E[f(X)|S∞]

)
d−→ ηZ
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where Z ∼ N(0, 1) is independent of η. Define

Fi(φ) := lim
n→∞

1
|Sin|
∑

φ′∈Sin f(φ′φX) where Sin := {φ ∈ Sn |φ(i) = i} .

The asymptotic variance satisfies

η2 =
∑

i,j∈N Cov
[
Fi(e),Fj(τij)

∣∣S∞
]
<∞ a.s.

If in addition E[f(X)4/η4] < ∞ and
∑

i∈N lim supj
∥∥f(X)−f(τijX)

η

∥∥
4
<∞,

the Wasserstein distance to the limit is

dW

(√n
η Fn(f,X), Z

)
= O

(
min
k∈N

[
k2√
n

+
∑

i>k max
(

lim sup
j

∥∥f(X)−f(τijX)
η

∥∥
4
, 1
)])

.

Typically, X is of the form (Xt)t∈T for some countable set T , and permu-
tations act on X by acting on T . If f depends only on a finite number of these
indices—e.g. if X is a random matrix and f a function of a finite number of
entries—(32) always holds, although this condition is far from necessary. If
X is conditionally mixing for f , the result can be deduced from Theorem 4.
The proof of the general case, in Appendix D, defines surrogate variables
Xn := (f(τ1,i1 ◦ · · · ◦ τknn,iknX))i1,...,ikn for a suitable sequence (kn), and ap-
plies an idea similar to the generalized U-statistics of Corollary 11.

Remark. (a) Our definition of exchangeability permits trivial cases, for
example: Mapping each φ ∈ S∞ to the identity map of X is, technically
speaking, a valid action. It makes all distributions exchangeable, point masses
are ergodic, and Fn(f,X) = E[f(X)|G] = f(X) for all n. (b) Exchangeabil-
ity can also be defined as invariance under the group S(N) of all bijections
of N, as is often done in Bayesian statistics. This definition is equivalent to
ours—any measurable action of S(N) and its restriction to S∞ ⊂ S(N) have
the same invariant and ergodic measures [35]—but less useful in the context
of convergence, since S(N) is not a nice group.

8.2. Jointly exchangeable arrays. We discuss one class of examples in
Table 2 in more detail. A collection x = (xi1,...,ir)i1,...,ir∈N of scalars is called
an r-array indexed by N ⊆ N. The subarray indexed by M ⊂ N is denoted
x[M ]. We let permutations φ of N act on x by permuting each index dimen-
sion separately, φ(x) := (xφ(i1),...,φ(ir)). A jointly exchangeable array is a

random array X that is indexed by N and satisfies φ(X)
d
= X for all φ ∈ S∞.

A result known as the Aldous-Hoover theorem characterizes ergodicity: To
keep notation simple, assume r = 2. Then X is ergodic if and only if there
is a measurable function h : [0, 1]3 → R such that

(34) X
d
= (h(Ui, Uj , Uij))i,j∈N where (Ui, Uij)i,j∈N ∼iid Uniform[0, 1] .
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random structure X ergodic structures CLT (33) due to

exchangeable sequence [29] i.i.d. sequences H. Bühlmann [11]
edge-exch. graph [13, 17, 24] (special case of exchangeable sequences)

exchangeable partition [40] “paint-box” distributions
exchangeable graph [18] graphon distributions Bickel et al. [3]

Ambroise and Matias [2]
jointly exch. array [29] dissociated arrays Eagleson/Weber [19]
separately exch. array [29] dissociated arrays

Table 2

For r > 2, the function h has additional arguments [29]. Kallenberg [27] first
proved the relevant case of Lindenstrauss’ theorem: If X is ergodic,

1
n!

∑
φ∈Sn f((Xφ(i1),...,φ(ir))i1,...,ir)

n→∞−−−→ E[f(X)] a.s. for f ∈ L1(X) .

Eagleson and Weber [19] showed a version of (16) for such averages (but
require additional conditions).

An exchangeable 2-array with binary entries and (almost surely) zero
diagonal is the adjacency matrix of a random graph with vertex set N, and
is called an exchangeable graph [18]. That makes the range of h binary,
and one can eliminate one degree of freedom: An exchangeable graph is
ergodic if and only if (34) holds for a measurable function w : [0, 1]2 → [0, 1]
and h(u, v, z) := I{z ≤ w(u, v)}. For undirected graphs, w can be chosen to
satisfy w(u, v) = w(v, u), and is called a graphon [7].

Consider the subgraph probability t(y) := P (X[1, . . . , k] = y), where y is a
given, finite graph with vertex set {1, . . . , k}. Some authors interpret t(y) as a
moment statistic [3]. For n ≥ k and a graph x with vertex set {1, . . . , n}, the
homomorphism density t(x, y) := 1/n!

∑
φ∈Sn I{x[φ(1), . . . , φ(k)] = y} is

the (normalized) number of times y occurs as a subgraph of x [7, 34]. If X is
ergodic, and a finite subgraph X[1, . . . , n] is observed as data, substituting
into Kallenberg’s result above shows that

(35) t(X[1, . . . , n], • )
n→∞−−−→ P (X[1, . . . , k] = • ) = t( • )

holds almost surely. The sample homomorphism density t(X[1, . . . , n], y) is
hence a strongly consistent estimator of t(y). Borgs et al. [7] and Lovász and
Szegedy [34] have also obtained (35), using different arguments. For these
estimators, (33) is due to Bickel et al. [3] and Ambroise and Matias [2].

8.3. Stochastic block models with a growing number of classes. Suppose
we choose h in (34) as follows: Fix some m ∈ N. Choose a measurable func-
tion π : [0, 1]→ {1, . . . ,m} and a symmetric function v : {1, . . . ,m}2 → [0, 1].
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For each i ≤ m, set πi := P(π(U) = i), where U is uniform in [0, 1]. We
can read (πi)i≤m as a distribution on m categories, and v as a matrix
(v(i, j))i,j≤m. Define a random undirected graph with vertex set N as

X(π, v) :=
(
I{Uij < v(π(Ui), π(Uj))}

)
i<j∈N .

Since this is a special case of (34), X(π, v) is an ergodic exchangeable graph,
represented by the piece-wise constant graphon w = v ◦ (π ⊗ π). A family of
such distributions, indexed by some range of pairs (π, v), is a stochastic
block model with m classes [e.g. 2]. Since each law is specified by a finite
vector (πi) and matrix v, the model is parametric.

Nonparametric extensions let m grow with sample size [e.g. 16]: Choose an
increasing function m : N→ N and a parameter sequence (πn, vn)n∈N such
that Xn := X(πn, vn) has m(n) classes. An observed graph on n vertices is
then explained as the finite subgraph Xn[1, . . . , n]. Since Xn changes with
sample size, Theorem 16 is not applicable, but Theorems 9 and 10 can be
used instead. For illustration, consider the triangle density, P (Xn[1, 2, 3] = y),
where y is the complete graph on three vertices. Set f(x) := I{x[1, 2, 3] = y}.
If vertex 1 is in class i, but the classes of 2 and 3 are unknown, the probability
that Xn[1, 2, 3] is a triangle is

E[f(Xn)|πn(Un1 ) = i] =
∑

j≤m(n) π
n
j

(
vn(i, j)

∑
k≤m(n) π

n
k v

n(i, k)vn(j, k)
)
,

which we abbreviate Ei(n).

Corollary 17. Let Z be a standard normal variable. As n→∞,

√
n

ηn

(
1

n(n−1)(n−2)

∑
I{Xn[i1, i2, i3] = y} − P (Xn[1, 2, 3] = y)

) d−→ Z ,

where the sum runs over all distinct triples i1, i2, i3 ≤ n, and

η2
n =

∑
i≤m(n) π

n
i Ei(n)

(
Ei(n)−∑j≤m(n) π

n
j Ej(n)

)
almost surely.

The Wasserstein distance to the limit is O
(
η−3
n n−

1
2 ‖f(Xn)‖

3
4
4

)
.

A SBM is an Erdős-Rényi (ER) graph if v := p is constant, i.e. each
edge is an independent Bernoulli variable with success probability p.

Example. (xv) If X is an ER graph, t(X[1, . . . , k], • ) is known to satisfy
a degenerate central limit theorem, with η = 0, see [2]. To see this in the
corollary, set Xn := X for all n. We can then consider the limit ηnZ. Since
Ei(n) does not depend on i nor n, we obtain ηn = 0.
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Theorem 9 assumes uniform integrability to handle dependence. In models
without any dependence, that can be restrictive:

Example. (xvi) Let each Xn be an ER graph, with edge probability p(n),
and let p(n)→ 0. In principle, Corollary 17 holds: The limiting triangle den-
sity is 0, and ηn = 0. However, more bespoke results rescale by 1/

√
p(n) to

make small-scale behavior visible [25]. These do not follow from Theorem 9,
since the variables I{Xn[1, 2, 3] = y}/p(n) are not uniformly integrable.

8.4. Separate exchangeability. A random r-array X is separately ex-
changeable if it is invariant under the action

φx := xφ1(i1),...,φr(ir) for all x ∈ X and φ = (φ1, . . . , φr) ∈ Sr∞ .

Comparing to (25) shows that joint exchangeability is the diagonal invari-
ance corresponding to separate exchangeability. Some models for relational
data in machine learning assume separate exchangeability for matrices whose
rows and columns are indexed by distinct sets (e.g. consumers and products),
and joint exchangeability if the sets are identical (e.g. vertices of a graph)
[36]. Separate exchangeability is the stronger property, and results in a faster
rate and simpler asymptotic variance:

Corollary 18. Let X be a separately exchangeable r-array, and let
f ∈ L2(X) be a function that satisfies (32). As n→∞,

√
nr Fn(f,X) =

√
nr
(

1
(n!)r

∑
φ∈Srn f(φX)− E[f(X)|Sr∞]

)
d−→ ηZ ,

where Z is standard normal and independent of η. The asymptotic variance
satisfies η2 = Var[f(X)|Sr∞] <∞ almost surely.

Example. (xvii) The convergence rate for homomorphism densities is in
general n−1/2 if a graph is exchangeable, but n−1 if it is Erdős-Rényi [e.g.
2]. Corollary 18 shows that is a consequence of additional symmetries in ER
graphs, since they are not only jointly but even separately exchangeable.

8.5. Graphex models. Caron and Fox [14] have proposed a class of ran-
dom graphs that, with extensions and refinements by other authors [8, 46],
are referred to as graphex models. Recall from (34) how an ergodic ex-
changeable graph is generated by a graphon w : [0, 1]2 → [0, 1] and indepen-
dent uniform variables. A graphex model is defined similarly, by a sym-
metric measurable function ω : R2

≥0 → [0, 1] and a unit-rate Poisson process
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Π = {(U1, V1), (U2, V2), . . .} on R2
≥0. Let Uij , for i ≤ j ∈ N, again be i.i.d.

uniform elements of [0, 1]. Define a random countable subset Xω of R2
≥0 as

(Vi, Vj) ∈ Xω ⇐⇒ Uij < ω(Ui, Uj) .

This set is interpreted as a graph, in which vertices Vi and Vj are connected
if the pair (Vi, Vj) is in Xω. The set Xω thus functions as a form of adjacency
matrix, but each vertex is identified by the value Vi, rather than the index i.
A subgraph is not selected by choosing an n× n submatrix, but by placing
a rectangle [0, s)2 in the plane: The subgraph gs(Xω) for s ∈ (0,∞] is

(i, j) ∈ gs(Xω) ⇔ (Vi, Vj) ∈ Xω ∩ [0, s)2 .

Suppose an instance gs(Xω) with N vertices is observed. Veitch and Roy
[46] have shown that one can estimate the restriction ω|[0,s]2 of ω, provided s
is known: Subdivide [0, s)2 into quadratic patches Iij , and define a piece-wise
constant function ω̂s on [0, s)2 by specifying its value on each patch as

ω̂s|Iij := I{(i, j) ∈ G} where Iij :=
[
i−1
N s, iN s

)
×
[ j−1
N s, jN s

)
.

This estimator is consistent on bounded domains [0, t)2, in the following
sense: Regard ω̂s as a function R2

≥0 → [0, 1], with constant value 0 outside

[0, s)2. Generate Xω̂s according to (8.5), using a Poisson process and uniform
variables that are independent of Xω. Then

(36) gt(Xω̂s)
d−→ gt(Xω) as s→∞ ,

for every fixed t ∈ (0,∞) [46]. If f is a measurable function of finite graphs,
the Veitch-Roy estimator of E[f(gt(Xω))] is therefore

f̂s := E[f(gt(Xω̂s)) | gs(Xω)] .

Distributional convergence (36) implies f̂s → E[f(gt(Xω))] a.s. for s→∞.
We illustrate how to obtain rates for a simple example: Fix t > 0. For a

finite graph g, choose f as

(37) f(g) := 1
t2
|edge set of g| hence f(gt(Xω)) = 1

t2
|Xω ∩ [0, t)2| .

The function (ω, t) 7→ E[f(gt(Xω))] is then similar to the edge density in a
graphon model. Consider the random sets

Vmn := Xω ∩ [m,m+ 1)× [n, n+ 1) for m,n ∈ N .

If we choose s ∈ N, we have

f̂s = 1
t2
∑

(i,j)∈gs(Xω) P ((i, j) ∈ gt(Xω̂s)|gs(Xω)) = 1
s2
∑

m,n<s |Vmn| .
The random array (|Vmn|)m,n is, by construction of Xω, jointly exchangeable
and ergodic, and Theorem 16 yields:
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Corollary 19. Let ω : R2
≥0 → [0, 1] be a measurable and symmetric

function, and fix t > 0. Define f as in (37). Then, for Z ∼ N(0, 1),

√
s
(
f̂s − E

[
f(gt(Xω))

]) d−→ ηZ as s→∞ ,

where η2 = 4 Cov
[
|Xω ∩ [0, 1]2|, |Xω ∩ [0, 1]×[0, 2]|

∣∣G
]

is a finite constant.

The random set Xω is invariant under an uncountable permutation group
that transforms each axis R≥0 [14], and is in fact ergodic [29]. That is an
example of uncountable exchangeability, as described at the beginning of
this section. The local counts |Vmn| are a device to reduce uncountable to
countable exchangeability, and hence to invariance under a nice group.

9. Applications II: Marked point processes. Random geometric
measures are point processes whose behavior at a given point may depend
on points nearby. They originate from so-called germ-grain models in physics
[33], and are used to study e.g. nearest neighbor methods and Voronoi tes-
selations [22, 39]. Theorems 4 and 5 are directly applicable to these models.

9.1. Setup. We adapt definitions from those of Penrose [39]: Consider
two Polish spaces X (which we think of as a set of points) and Y (a set of
marks, or covariates), both equipped with their Borel σ-algebras. Denote by
M the space of σ-finite measures on X × Y, equipped with the σ-algebra
generated by the evaluation maps, and by F the set of finite subsets of
X × Y. Let µ : X×Y ×F →M be a measurable map, and W ⊂ X×Y
a compact set. Loosely speaking, µ assigns to each marked point (x, y) a
measure µ(x, y, F ) that depends on a set F of points close to x, and on
their marks. These close points are collected by using W as an observation
window, which is moved over X×Y by elements of a group: Let G be a nice
group that acts measurably on X. We extend the action to one on X ×Y
by defining

(38) φ(x, y) := (φ(x), y) for all φ ∈ G, (x, y) ∈ X×Y .

For compact A1,A2, . . . ⊂ G, write AnW = {(φ(x), y)|φ ∈ An, (x, y) ∈W}.
If Π is a point process on X×Y, then

(39) νn( • ) :=
1

|An|
∑

(x,y)∈Πn
µ(x, y,Πn)( • ) for Πn := Π ∩AnW

is a random measure on X × Y. The sequence (νn) is called a random
geometric measure if Π is invariant under the action (38), and if the sets
Πn are almost surely finite [39].
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9.2. Asymptotic normality. A central theme in the literature on random
geometric measures is the limiting behavior of statistics of the form

νn(h) :=
∫

X×Y
h(x, y)νn(dx, dy) for h : X×Y → R .

Such results typically define W and νn to prevent the window from col-
lecting any point more than once. A simple condition that excludes such
repetitions is as follows: Require (i) that G contains a subgroup H such that
φ(W ) ∩ ψ(W ) = ∅ for distinct φ, ψ ∈ H, and (ii) that HW = GW . Infor-
mally, HW “tiles” the set GW ⊂ X of points reached by the window. We also
require that (iii) the set {φ ∈ G|φ(W )∩W 6= ∅} is compact. If G = X = R2,
for example, one might choose W = [−1, 1]2 and H = {(2i, 2j)|i, j ∈ Z}. The
relationship to our results becomes clear if we define

fn(F ) :=
∫

X×Y
h(x′, y′)

∑
(x,y)∈F∩W µ(x, y,Πn)(dx′, dy′)

and f(F ) :=
∫

X×Y
h(x′, y′)

∑
(x,y)∈F∩W µ(x, y,Π)(dx′, dy′)

for F ∈ F , and observe that νn(h) ≈ 1
|An∩H|

∫
An∩H fn(φ(Π))|dφ| = Fn(fn,Π).

Using Theorems 4 and 5, we obtain:

Proposition 20. Require that (i)–(iii) above hold, and that the sets An

in (39) form a tempered Følner sequence. For each n, let α(n)( • |G) be the
conditional mixing coefficient of Π and fn. If

sup
n

∫

G
α(n)(d(e, φ)|G)

ε
2+ε |dφ| <∞ and ‖fn(Π)2+ε‖1 <∞

holds for some ε ≥ 0, then as n→∞,

√
|An ∩H|

(
νn(h)− E[νn(h)|G]

) d−→ ηZ for Z ∼ N(0, 1) ,

where η2 =
∫
H Cov[f(Π), f(φΠ)|G]|dφ| and η⊥⊥Z. Moreover,

dW

(√|An ∩H|
η

(
νn(h)−E[νn(h)|G]

)
, Z
)

= O
(

1√
|An ∩H|

max {1, ‖fn(Π)‖34}
)
.

9.3. Relationship to existing results. Versions of the result above are
known in the case where X is Rr, G = Rr consists of shifts, and An is
the Euclidean ball Bn [22, 33, 39]. These are not phrased in terms of con-
ditional mixing, but instead use a “stabilization condition”. The next result
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translates between the two. For (x, y) ∈ X × Y and F ∈ F , let Ft be the
truncated set {(x̃, ỹ)∈F | d(x, x̃) ≤ t}. The stabilization radius of µ is

R(x, y, F ) := inf {t > 0 |µ(x, y, F ) = µ(x, y, Ft)} ,

where we use the convention inf ∅ =∞. If

(40) sup
s>0

sup
(x,y)∈W

sqP
(
R(x, y,Π) > s

)
< ∞ for some q > 1 ,

µ is polynomially stable with index q [39]. The condition implies condi-
tional mixing if the metric balls in G do not expand too quickly:

Proposition 21. Let Π be a Poisson process, and µ polynomially stable
with index q. If the metric balls Bn in G satisfy supn∈N n

−r|Bn| <∞ for

some r > 0, then supn
∫
G α

(n)(d(e, φ)|G)
ε

2+ε |dφ| <∞ whenever q > 2+ε
ε r.

That holds in particular for the groups Rr, since an r-dimensional Eu-
clidean ball has volume |Bn| = (

√
πn)r/Γ( r2 + 1). Geometric group theory

provides further examples: A group that satisfies supn∈N n
−r|Bn| <∞ and

is also finitely generated is said to be of polynomial growth [32]. Nice
groups of polynomial growth include Zd, the groups in Corollary 7, or the
discrete Heisenberg groups [e.g. 12].

10. Applications III: Entropy. The entropy of a stationary process is
defined as a limit. This limit exists almost surely, by the Shannon-McMillan-
Breiman (SMB) theorem [43]. It has a natural generalization to invariant
processes [e.g. 20], which again converges almost surely [31]. An adaptation
of Theorem 4 gives conditions under which it is asymptotically normal. In
this section, we assume G is discrete, and finitely generated, which means
there is a finite subset G ⊂ G such that G is the smallest group containing
G. That is, for example, true for Zr (choose G as the set of unit coordinate
vectors), but not for S∞.

10.1. Entropy. Let Y be a discrete random variable with mass function
p(k) := P (Y = k) for k ∈ N. If Y1, Y2, . . . are i.i.d. copies of Y , the law of
large numbers guarantees almost sure convergence

− 1
n log(p(Y1)× . . .× p(Yn))

n→∞−−−→ −E[log p(Y )] =: H[Y ] .

The constant H[Y ] is the entropy of Y [28]. If X = (Xi)i∈Z is a stochastic
process with values in the finite set [K], the entropy can be defined similarly:
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If pn is the joint mass function of (X1, . . . , Xn), and X is stationary and
ergodic, there is a constant h[X] ≥ 0 such that

(41) − 1
n log pn(X1, . . . , Xn)

n→∞−−−→ h[X] almost surely.

This is the SMB theorem, and h[X] is again called the entropy, or the entropy
rate [43]. The term − 1

n log pn(X1, . . . , Xn) is the empirical entropy.

10.2. Entropy of invariant distributions. Let G be countable, and (An)
a tempered Følner sequence with |An|/ log(n)→∞. Let X be a G-ergodic
random element of X. To define entropy, regard (φX)φ∈G as a stochas-
tic process on the group, and discretize its state space: Choose a partition
λ := (λ1, . . . , λK) of X into a finite number of Borel sets, and write λ(x) = k
if x ∈ λk. Let pn be the joint mass function of (λ(φX))φ∈An . Then there is
a constant hλ[X] ≥ 0 such that

hn(λ,X) := − 1
|An| log pn

(
(λ(φX))φ∈An

) n→∞−−−→ hλ[X] almost surely.

This result is again due to Lindenstrauss [31]. To recover (41), choose X as
a stationary process (Xi)i∈Z, and λk := {x = (xi)i∈Z |x0 = k}.

10.3. Asymptotic normality. Suppose G admits a total order � that is
left-invariant (i.e. φ � ψ if and only if πφ � πψ for φ, ψ, π ∈ G). The process
values indexed by a set G ⊂ G are predictive of the value at φ if

Lφ(G) := logP [λ(φX) |λ(ψX), ψ ∈ G]

is large, where P denotes probability under the law of X. The scalar

ρm := sup
A⊂G
‖Le(A)− Le(A ∩Bm)‖2

measures how well the value at the identity is predicted by values within a
radius m. Recall that the definition of mixing in Section 3 uses pairs φ1, φ2

in G. We extend it to k-tuples: For k ∈ N, define

C(t, k) :=
{

(A,B) ∈ σf (φ1, . . . , φk)⊗ σf (G)
∣∣G ⊂ G, φ1, . . . , φk ∈ G\Bt(G)

}
,

and α(t, k) := sup(A,B)∈C(t,k) |P (A,B)− P (A)P (B)|. The mixing coefficient
in Section 3 is hence α(t) = α(t, 2).

Theorem 22. Let G be a finitely generated, nice group with left-invariant
total order, and let X be G-ergodic with supA⊂G ‖Le(A)‖2+ε <∞ for some
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ε > 0. Choose a tempered Følner sequence satisfying |AnMBbnAn| / |An| → 0
and

√
|An|ρbn → 0, for some sequence (bn) of positive scalars. If

(42)
∑

i∈N |Bi|min
m≤i

(
ρm + α(i−m, |Bm|)

ε
2+ε
)
<∞

holds for the mixing coefficient of the function f := λ, then

1√
|An|

(
hn(λ,X)− hλ[X]

) d−→ ηZ as n→∞ ,

where the asymptotic variance is independent of Z and satisfies

η2 =
∑

φ∈G Cov
[
Le({ψ � e}), Lφ({ψ � φ})

]
<∞ almost surely.

Condition (42) can be interpreted as follows: The proof represents hn as

log pn
(
(λ(φX))φ∈An

)
=
∑

φ∈An
Lφ({ψ ∈ An|ψ � φ}) ,

and approximates it by the average Fn of f ′(X) = Lφ({ψ|ψ � φ} ∩B(φ,m)).
The approximation error is a function of ρm, and decreasing in m. Mixing, on
the other hand, involves tuples in Bm, and since α( • , |Bm|) is non-decreasing
in |Bm|, a smaller m means better mixing. Informally, dependence within
the process is both beneficial (it makes predicting one value from others
easier) and detrimental (it reduces mixing).

Remark. (a) Left-invariance of the order is not required for asymptotic
normality, but simplifies η. Provided it holds, η does not depend on the
choice of �. (b) Examples of groups satisfying Theorem 22 are (Zr,+) and
the groups in Corollary 7, or discrete Heisenberg groups [32]. (c) Existence of
a total order implies φm 6= e for all m ∈ N, unless φ = e. In algebraic terms,
G is torsion-free [32].
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[11] H. Bühlmann. Le problème “limite central” pour les variables aléatoires échangeables.
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APPENDIX A: PROOF OVERVIEW AND AUXILIARY RESULTS

The proofs are presented in three parts, for the basic limit theorems in
Appendix B, for the general ones in Appendix C, and for all other results
in Appendix D. The basic results (Theorems 4 and 5) are special cases of
the general ones (Theorems 9 and 10), but we prove them first to clarify the
approach. The general proofs require changes, but follow the same layout.

A.1. Proof overview. The proofs of the main results, Theorems 4, 5,
9 and 10, use Stein’s method [e.g. 41]: For the function class

(43) F :=
{
t ∈ C2(R)

∣∣ ‖t‖∞ ≤ 1, ‖t′‖∞ ≤
√

2/π, ‖t′′‖∞ ≤ 2
}

and a real-valued random variable W , Stein’s inequality guarantees

(44) dW(W,Z) ≤ sup
t∈F

∣∣E[Wt(W )− t′(W )]
∣∣ for Z ∼ N(0, 1) .

The distance dW metrizes convergence in distribution for variables with a
first moment [e.g. 41]. One can therefore establish a central limit theorem
for a sequence (Wn) of such variables by showing dW(Wn, Z)→ 0, and hence
by showing that the right-hand side of (44) vanishes as n→∞.

Basic case. In broad strokes, Theorems 4 and 5 are proven as follows:

• Choose W = Wn as a suitably scaled version of η(n)−1Fn, where η(n) is
a (for now unspecified) positive random variable.

• To upper-bound (44), split W at a cut-off distance bn in G, into a short-
range and a long-range term. Adapting (44) to these modifications yields a
refined bound, in Lemma 29. The leg work of the proof is then to control
each term in this bound.

• Stein’s method involves the notion of “dependency neighborhoods” [41]:
A set, say N (i), of indices for a random variable Xi such that Xi⊥⊥Xj

if j 6∈ N (i). In our proofs, the neighborhood is the area within the cut-
off bn, but terms inside and outside the neighborhood are not completely
independent. We hence bound long-range terms using conditional mixing.

• Split f into small and large values at a threshold γn. Since no fourth
moment is assumed, large values must be controlled explicitly.

• The resulting bound is a function of η(n). Choose η(n) as an approxi-
mation to the quantity η defined in the statement of Theorem 4.

The central limit theorem then follows by showing that the bound vanishes
as n→∞, and the Berry-Esseen bound by additionally requiring a third
and fourth moment, and substituting these into the bound.
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General case. Proving Theorems 9 and 10 requires a number of modifications:

• Since the dimension kn of the group may grow with n, we work with
surrogate functions that depend only on the first few entries of φ ∈ Gkn .

• Working in Gkn complicates the dependency neighborhoods.

• Since F̂n is now random, we must also control the probability of selecting
elements of the dependency neighborhood, using the spreading conditions.

A.2. Comments on other proof techniques. Central limit theo-
rems can be proven with a range of tools, including Fourier techniques, Lin-
deberg’s replacement trick, or martingale methods. Unlike Stein’s method,
these do not seem adaptable to our problems. In the case of concentra-
tion, the Efron-Stein inequality and other standard techniques similarly fail.
There are several obstacles: (i) Topology of the group. Many martingale
proofs, and the Efron-Stein approach to concentration, combine observations
into blocks, and control dependence between blocks via an isoperimetric ar-
gument (i.e. block boundaries are of negligible size). That applies to some
groups, such as G = Z, but fails even for G = Z2. Bolthausen [5] used Stein’s
method to address an instance of this problem. (ii) Lack of a total order. Re-
placement arguments (e.g. Lindeberg’s method and the Efron-Stein inequal-
ity) rely on the left-invariant total order of Z to replace random variables
sequentially. That makes them inapplicable, for example, to permutation
groups. (iii) Group size, since replacement arguments require countability.

Remark. Martingales are applicable if G contains compact subgroups
G1 ⊂ G2 ⊂ . . . such that G = ∪nGn. That is the case for S∞, with Gn = Sn.
If so, (Gn) is a Følner sequence, and (Fn) is a reverse martingale adapted
to the filtration σ(G1) ⊃ σ(G2) ⊃ . . .. That implies (17). The corresponding
case of Theorem 4 (with more restrictive moment and mixing conditions)
follows from the reverse martingale central limit theorem. Such arguments
are used in [34] for convergence, and in [19] for asymptotic normality. How-
ever, the method has limitations even for G = S∞. For example: If (Xi) is an
exchangeable sequence and h a function of two arguments, (h(Xi, Xj))ij is
an exchangeable array, but even with proper normalization,

∑
i<j h(Xi, Xj)

is not a reverse martingale unless h is symmetric in its arguments.

A.3. Auxiliary results. We begin with a result that allows us to
bound the Wasserstein distance dW. Recall that L denotes the set of Lips-
chitz functions with constant 1. It is a standard result that

(45) dW(X,Y ) = sup
h∈L
|E[h(X)]− E[h(Y )]| = inf E[|X ′ − Y ′|] ,
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where the infimum is taken over all couplings (X ′, Y ′) of X and Y . This iden-
tity is sometimes known as the Kantorovich-Rubinstein formula. In analogy
to dW, we define the conditional (and hence random) distance

dW(X,Y |G) := sup
h∈L
|E[h(X)|G]− E[h(Y )|G]| .

The next lemma shows how it relates to dW.

Lemma 23. Let X and Y be random variables in L1(R), defined on an
abstract probability space (Ω,A,P). Then

dW(X,Y |G) = inf E
[
|X ′ − Y ′|

∣∣G
]

P-a.s.,

where the infimum runs over all couplings (X ′, Y ′) of the conditional vari-
ables X|σ(G) and Y |σ(G), and

dW(X,Y ) ≤ E[dW(X,Y |G)] = ‖dW(X,Y |G)‖1 .

Proof. Let p and q be regular conditional distributions of X and Y , that
is, pω(dx) = P (dx|G)(ω) holds for P-almost all ω ∈ Ω, and analogously for
q and Y . Since pω and qω are probability measures for each ω, applying (45)
pointwise in ω shows that P-almost surely,

sup
h∈L
|E[h(X)|G](ω)− E[h(Y )|G](ω)| = dW(pω, qω) = inf E|X ′ − Y ′| ,

where the infimum is taken over all (X ′, Y ′) with marginal distributions pω
and qω. That shows the first identity. The second claim holds since

dW(X,Y ) = sup
h∈L

∣∣E[h(X)]− E[h(Y )]
∣∣ = sup

h∈L

∣∣E[E[h(X)|G]− E[h(Y )|G]]
∣∣

≤ E[sup
h∈L

∣∣E[h(X)|G]− E[h(Y )|G]
∣∣] = E[dW(X,Y |G)] ,

where we have used the tower property and the relation supE ≤ E sup.

Conditioning in dW lets us swap a random variable Y (which in the proofs
will be the asymptotic variance) between arguments:

Lemma 24 (Random scaling). Let X, Y , and Z be random variables
in L2(R), such that Y is σ(G)-measurable. If Y ≥ c almost surely for some
c > 0, then dW(X,Z/Y ) ≤ ‖dW(XY,Z|G)‖1/c.
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Proof. By Lemma 23, dW(X,Z/Y ) ≤ ‖dW(X,Z/Y |G)‖1. Fix any ε > 0.
Since Y is σ(G)-measurable, there is a coupling X ′ of X|σ(G) and Z|σ(G)
such that E[|X ′Y − Z ′||G] ≤ dW(XY,Z|G) + ε. This coupling satisfies

E[|X ′Y/Y − Z ′/Y ||G] ≤ E[|X ′Y − Z ′||G]/c ≤
(
dW(XY,Z|G) + ε

)
/c .

Since ε is arbitrary, it follows that dW(X,Z/Y ) ≤ ‖dW(XY,Z|G)‖1/c.

We must repeatedly “separate off” conditioning, via bounds of the form

‖E[ • |G]‖1 . ‖ • ‖ 2+ε
2
α(k|G)

2
2+ε . The next two lemmas capture all cases needed

in the proofs, for both ε = 0 and ε > 0. The first version applies to condi-
tional mixing. Recall this involves a pair φ1, φ2 of distance at least k from
a set G ⊂ G. The set is here of finite size m. If a transformation π does not
move the pair too close to G, the desired inequality holds.

Lemma 25 (Conditional mixing bound). Let X be G-invariant, Y a real-
valued random variable, and h : Xk+2 × R→ R a measurable function with
E[|h(X, . . . ,X, Y )|] <∞. Fix φ1, φ2, ψ1, . . . , ψm ∈ G, and set

Hτ := h(ψ1X, . . . , ψmX, τ
−1φ1X, τ

−1φ2X,Y ) for τ ∈ G .

Let π be an element of G. If

Y⊥⊥X |σ(G) and k ≤ min
i≤2,j≤m

d(τ−1φi, ψj)

for both τ = π and the identity τ = e, then

∥∥E[Hπ|G, Y ]− E[He|G, Y ]
∥∥

1
≤ 4‖Hπ −He‖ 2+ε

2
α(k|G)

2
2+ε

for any ε ≥ 0.

Proof. Case 1: ‖Hπ −He‖∞ finite. We approximate h by a step function

(46) h∗( • , • , • ) =
∑N

i=1 ciI( • ∈ Ai, • ∈ Bi, • ∈ Ci) ,

for some N ∈ N, measurable sets Ai in Xm, Bi in X2 and Ci in R, and
scalars |ci| ≤ ‖h‖∞. Define H∗τ analogously to Hτ , by substituting h∗ for h.
Fix any δ > 0. Since h is integrable, h∗ can be chosen to make ‖h− h∗‖1
arbitrarily small, and hence such that ‖(Hπ −He)− (H∗π −H∗e )‖1 ≤ δ. If we
abbreviate

Ii := IAi(ψ1X, . . . , ψkX) ICi(Y )
(
IBi(φ1X,φ2X)− IBi(π

−1(φ1X,φ2X))
)
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and Ei := E[Ii|G, Y ], we have ‖E[H∗π −H∗e |G, Y ]‖1 ≤
∑Nδ

i=1 |ci|‖Ei‖1 for some
Nδ ∈ N. Using the definition of conditional mixing, we have

∑
i≤Nδ |ci|‖Ei‖1 ≤ E

[∑
i|Ei>0 |ci||Ei|+

∑
i|Ei≤0 |ci||Ei|

]

≤ ∑
i|Ei>0 |ci|E[Ei]−

∑
i|Ei≤0 |ci|E[Ei]

≤ max
i
|ci|
(
‖∑i|Ei>0Ei‖1 + ‖∑i|Ei≤0Ei‖1

)
(47)

≤ 2‖Hπ −He‖∞ α(k|G) .

Since the right-hand side does not depend on δ or h∗, that implies

‖E[Hπ −He|G, Y ]‖1 ≤ 2‖Hπ −He‖∞ α(k|G) .

Case 2: ‖Hπ −He‖∞ infinite. For r > 0, define

∆H := Hπ −He ∆Hr := ∆H · I{∆H ≤ r} ∆Hr := ∆H −∆Hr .

The triangle inequality gives ‖E[Hπ −He|G, Y ]‖1 ≤ ‖∆Hr‖1 + ‖∆Hr‖1, and
case 1 above implies ‖∆Hr‖1 ≤ 2rα(k|G). Since ‖h‖ 2+ε

2
is finite, we can

assume ‖∆H‖ 2+ε
2
≤ 1 without loss of generality. By Hölder’s inequality,

‖∆Hr‖1 ≤ ‖∆H‖ 2+ε
2
· ‖I{∆H > r}‖ 2+ε

ε
≤ 2r−

ε
2 .

We hence obtain ‖E[Hπ −He|G, Y ]‖1 ≤ 2rα(k|G) + 2r−
ε
2 = 4α(k|G)

ε
2+ε by

choosing r = α(k|G)
−2
2+ε .

The second version is the analogous result for marginal mixing coefficients.
As in Section 5, ei,τ = (e, . . . , e, τ, e, . . . , e) denotes a vector with kn entries
and τ as the ith entry, and δi,j is defined as in (28).

Lemma 26 (Marginal mixing bound). Let X be a random element of Xn,
invariant under the diagonal action of Gkn, and Y a real-valued random vari-
able. Let h : Xk+2

n × R→ R be measurable, with E[|h(X, . . . ,X, Y )|] <∞.
Fix φ1,φ2,ψ1, . . . ,ψm ∈ Gkn. For any i, j ≤ kn, set

H ij
τ := h(ψ1X, . . . ,ψkX, ei,τφ1X, ej,τφ2X,Y ) for τ ∈ G ,

where Let π be an element of G. If

Y⊥⊥X |σ(G) and k ≤ δij(ei,τφ1, ej,τφ2, {ψ1, . . . ,ψm})
for both τ = π and the identity τ = e, then

∥∥E[H ij
π |G, Y ]− E[H ij

e |G, Y ]
∥∥

1
≤ 4‖H ij

π −H ij
e ‖ 2+ε

2
αn(k|G)

2
2+ε

for any ε ≥ 0.
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The proof is almost identical to that of Lemma 25, and we only highlight
what changes are required.

Proof. If ‖H ij
π −H ij

e ‖∞ is finite, again use (46), now with measurable
sets Ai in Xm

n and Bi in X2
n, and define H ij∗

τ by substituting h∗ for h. For
δ > 0 given, choose h∗ such that ‖(H ij

π −H ij
e )− (H ij∗

π −H ij∗
e )‖1 ≤ δ. If we

change the definition of Ii to

Ii := IAi(ψ1X, . . . ,ψkX) ICi(Y )
(
IBi(φ1X,φ2X)−IBi(ei,πφ1X, ej,πφ2X)

)
,

repeating (47) shows
∑

i≤Nδ |ci|‖Ei‖1 ≤ 2‖H ij
π −H ij

e ‖∞ αn(k|G), and hence

‖E[H ij
π −H ij

e |G, Y ]‖1 ≤ 2‖H ij
π −H ij

e ‖∞ αn(k|G) .

If ‖H ij
π −H ij

e ‖∞ is infinite, we set ∆H := H ij
π −H ij

e . Repeating the argu-
ment in the previous proof shows ‖∆Hr‖1 ≤ 2rαn(k|G) and ‖∆Hr‖1 ≤ 2r−

ε
2

for any r > 0, and hence ‖E[H ij
π −H ij

e |G, Y ]‖1 ≤ 4αn(k|G)
ε

2+ε .

The next result is used to relate mixing to the growth of volume under
the metric d. The function g below is later chosen as t 7→ α(t|G)

ε
2+ε in the

basic case, and t 7→ αn(t|G)
ε

2+ε in the general case.

Lemma 27. Let g : [0,∞)→ [0,∞) be a measurable function. Then
∑

i≥m |Bi+1 \Bi|g(i)∫
G\Bm−1

g(d(e, φ))|dφ| <∞ for all m ∈ N .

Proof. Abbreviate r := supi
|Bi+1\Bi|
|Bi\Bi−1| . Then

∑
i≥m|Bi+1\Bi|g(i) ≤ r∑i≥m|Bi\Bi−1|g(i) ≤ r

∫

G\Bm−1

g(d(e, φ))|dφ| ,

where we have used (11).

We assume E[f(X)|G] = 0 throughout to simplify notation. Doing so in-
curs no loss of generality:

Lemma 28 (Conditional centering). Let X be G-invariant, and p ≥ 1.
For any g ∈ Lp(X), the random function f( • ) := g( • )− E[g(X)|G] is σ(G)-
measurable random element of Lp(X). For all n ∈ N,

Fn(f,X) = Fn(g,X) and αf (n|G) = αg(n|G) almost surely,

where α • (n|G) is the conditional mixing coefficient defined by ( • , X).
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Proof. For p ≥ 1, Lp-norms contract under conditioning [28]. That makes
E[g(X)|G], and hence f , a σ(G)-measurable random element of Lp(X). Since
f(φX) = g(φX)− E[g(X)|G] for any φ ∈ G, we have Fn(f,X) = Fn(g,X).
To prove the second claim, consider events A ∈ σf ({φ1, φ2}) and B ∈ σf (G),
for any G ⊂ G and φ1, φ2 ∈ G \Bt(G). Fix any δ > 0. By definition of σf ,
we can choose sets Si ∈ σg(φ1, φ2), sets Ti ∈ σ(G), and constants ci ∈ [0, 1]
such that ‖∑i ciI(Si, Ti)− I(A)‖1 ≤ δ. As the sets Ti are in σ(G), we have

‖
∑

i
ci
(
P(Si, Ti, B|G)− P (Si, Ti|G)P (B|G)

)
‖1

= ‖
∑

i
ciI(Ti)

(
P(Si, B|G)− P (Si|G)P (B|G)

]
‖1 ≤ α(t|G) ,

where the final inequality uses the definition α and ci ∈ [0, 1]. As δ is arbi-
trary, this implies ‖P (A,B|G)− P (A|G)P (B|G)‖1 ≤ α(t|G).
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APPENDIX B: PROOFS OF THE BASIC LIMIT THEOREMS

We first adapt the upper bound on dW given by Stein’s inequality to our
problem in B.1, and then apply it to prove the limit theorems in B.2.

B.1. Bounds on the Wasserstein distance. By Lemma 28, it suf-
fices to establish Theorems 4 and 5 for elements f of

Lp(X,G) := {f( • ) = g( • )− E[f(X)|G] | g ∈ Lp(X)} .

Given f ∈ Lp(X,G), we choose the variable W in Stein’s inequality as

W :=

√
|An|
η(n)

Fn(f,X) =
1

ηn

∫

An

f(φX)|dφ| where ηn := η(n)
√
|An| .

Here η(n) is for now any positive, σ(G)-measurable random variable, but
will be chosen in the next section as a specific approximation to the asymp-
totic variance. For a fixed element φ ∈ G, conditional mixing allows us to
control dependence for elements φ′ far away from φ. To treat terms close
to φ separately, we choose b > 0, and decompose W into long-range and
short-range contributions,

W φ
b :=

1

ηn

∫

An

I{d(φ, φ′) ≥ b}f(φ′X)|dφ′| and ∆φ
b := W −W φ

b .

For our purposes, Stein’s inequality then takes the following form.

Lemma 29. Assume the conditions of Theorem 4, and define W as
above, for a σ(G)-measurable random element η(n) of (0,∞). Then

E[dW(W,Z|G)] ≤ sup
t∈F

∥∥∥E
[ 1

ηn

∫

An

f(φX)t(W φ
b )|dφ|

∣∣G
]
‖1

+ sup
t∈F

∥∥∥E
[ 1

ηn

∫

An

f(φX)(t(W )− t(W φ
b )−∆φ

b t
′(W ))|dφ||G

]∥∥∥
1

(48)

+

√
2

π

∥∥∥1− 1

ηn
E
[∫

An

f(φX)∆φ
b |dφ|

∣∣G
]∥∥∥

1

+

√
2

π

∥∥∥ 1

ηn

∫

An

f(φX)∆φ
b − E[f(φX)∆φ

b |G]|dφ|
∥∥∥

1

=: (a) + (b) + (c) + (d)

where Z is a standard normal variable and b > 0.
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Proof. The triangle inequality yields

‖E[Wt(W )− t′(W )|G]‖1
=
∥∥E
[ ∫

An

f(φX)
ηn

(
t(W )−t(W φ

b )+t(W φ
b )
)
−t′(W )|dφ|

∣∣G
]∥∥

1

≤
∥∥E
[ ∫

An

f(φX)

ηn
(t(W )−t(W φ

b ))−t′(W )|dφ||G
]∥∥

1

+
∥∥E
[ ∫

An

f(φX)

ηn
t(W φ

b )|dφ|
∣∣G
]∥∥

1
.

Using t ∈ F , the first term can be bounded further as

∥∥E
[∫
An

f(φX)(t(W )− t(Wφ
b ))

ηn
− t′(W )|dφ|

∣∣G
]∥∥

1

≤
∥∥∥E
[∫
An

f(φX)(t(W )−t(Wφ
b ))−∆φ

b t
′(W )

ηn
|dφ|

∣∣G
]∥∥∥

1

+
∥∥∥E
[
t′(W )

(
1−

∫

An

f(φX)

ηn
∆φ
b |dφ|

)∣∣G
]∥∥∥

1

≤
∥∥∥E
[∫
An

f(φX)(t(W )− t(Wφ
b ))−∆φ

b t
′(W )

ηn
|dφ|

∣∣G
]∥∥∥

1

+

√
2

π

∥∥1− E[
∫
An
f(φX)∆φ

b |dφ||G]

ηn

∥∥
1

+

√
2

π

∥∥ 1

ηn

∫

An

f(φX)∆φ
b − E[f(φX)∆φ

b |G]|dφ|
∥∥

1
.

Substituting into the right-hand side of (44) yields the result.

The main work of the proof is to control the terms (a)–(d) in Lemma 29.
To handle large values of f , we split the function in its range, into

f<γ(x) := f(x)I{|f(x)| < γ} and f≥γ(x) := f(x)I{|f(x)| ≥ γ} .

The next result refines the terms (a)–(d) using Lemma 25, and by handling
f<γ and f≥γ separately.

Lemma 30. Require the assumptions of Lemma 29. Fix b > 0 and γ > 0,
and let τ be defined as in (23). Choose p, q > 0 to be such that 1

p + 1
q = 1.
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Then

‖d(W,Z|G)‖1 ≤ 4
∥∥f(X)

η(n)

∥∥2

2+ε
τ(b) + 4|Bb|

∥∥f≥γ(X)

η(n)

∥∥
2+ε

∥∥f(X)

η(n)

∥∥
2+ε

+
8|Bb|√
|An|

∥∥f(X)

η(n)

∥∥2

2q(1+ε/2)

∥∥f<γ(X)

η(n)

∥∥
p(1+ε/2)

∫

G
α(d(e, φ)|G)

ε
2+εd|φ|

+
√

2/π
(
E
[∣∣η(n)2 − η2b

η(n)2

∣∣]+
∥∥f(X)

η(n)

∥∥2

2

|An M BbAn|
|An|

)

+ 4
|Bb|√
|An|

∥∥f<γ(X)

η(n)

∥∥2

4+2ε
(
∫

G
α(d(e, φ)|G)

ε
2+ε |dφ|) 1

2 .

Proof. To bound (a), fix any δ > 0. Then

∥∥E
[ 1

ηn
f(φX)t(W φ

b )
∣∣G
]∥∥

1
≤∑j≥b|Bb|/δc

∥∥∥E
[
f(φX)

t(Wφ
jδ)− t(Wφ

(j+1)δ)

ηn

∣∣∣G
]∥∥∥

1

(49)

An application of Lemma 25 to the summand gives

∥∥∥E
[f(φX)(t(Wφ

jδ)− t(Wφ
(j+1)δ))

ηn

∣∣∣G
]∥∥∥

1

≤ 4
∥∥∥
f(φX)(t(Wφ

jδ)− t(Wφ
(j+1)δ))

ηn

∥∥∥
2+ε
2

α(jδ|G)
ε

2+ε

By Hölder’s inequality,

∥∥∥
f(φX)(t(Wφ

jδ)− t(Wφ
(j+1)δ))

η(n)

∥∥∥
2+ε
2

≤
∥∥∥f(X)

η(n)

∥∥∥
2+ε

∥∥t(W φ
jδ)− t(W

φ
(j+1)δ)

∥∥
2+ε

and since t is Lipschitz, ‖t(W φ
jδ)− t(W

φ
(j+1)δ)‖2+ε ≤ ‖W φ

jδ −W
φ
(j+1)δ‖2+ε. In

summary, the right-hand side of (49) is bounded by

rhs (49) ≤ 4

√
2

π|An|
∑

j≥b|Bb|/δc

∥∥∥f(X)

η(n)

∥∥∥
2+ε

∥∥W φ
jδ −W

φ
(j+1)δ

∥∥
2+ε

α(jδ|G)
ε

2+ε .

Since that holds for any φ ∈ G and δ > 0, we conclude

(a) ≤ 4
∥∥∥f(X)

η(n)

∥∥∥
2

2+ε

∫

G\Bb
α(d(e, φ)|G)

ε
2+ε |dφ| = 4

∥∥∥f(X)

η(n)

∥∥∥
2

2+ε
τ(b) ,

For (b), we decompose f = f<γ + f≥γ . The triangle inequality gives
∥∥∥E
[∫
An

f(φX)
t(W )− t(Wφ

b )−∆φ
b t
′(W )

ηn
|dφ|

∣∣G
]∥∥∥

1

≤
∥∥∥E
[∫
An

f≥γ(φX)
t(W )− t(Wφ

b )−∆φ
b t
′(W )

ηn
|dφ|

∣∣G
]∥∥∥

1

+
∥∥∥E
[∫
An

f<γ(φX)
t(W )− t(Wφ

b )−∆φ
b t
′(W )

ηn
|dφ|

∣∣G
]∥∥∥

1
=: (b1) + (b2) .
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Since t is an element of F , it satisfies

(50) |t(x+ y)− t(x)− yt′(x)| ≤ 2|y| sup
z∈[x,x+y]

|t′(z)| for x, y ∈ R

and sup |t′(z)| ≤
√

2/π ≤ 1. Choosing y = ∆φ
b yields

(b1) ≤ 2
∥∥∥E
[ 1

ηn

∫

An

|f≥γ(φX)||∆φ
b | |dφ|

∣∣G
]∥∥∥

1

≤ 2
∥∥∥f
≥γ(X)

η(n)

∥∥∥
2+ε

∥∥∥f(X)

η(n)

∥∥∥
2+ε

∫
A2
n
I{d(φ, φ′) ≤ b}|dφ||dφ′|

|An|

≤ 2|Bb|
∥∥∥f
≥γ(X)

η(n)

∥∥∥
2+ε

∥∥∥f(X)

η(n)

∥∥∥
2+ε

For (b2), fix p, q > 0 with 1/p+ 1/q = 1. A Taylor expansion gives

|t(W )− t(W φ
b )−∆φ

b t
′(W )| ≤ 1

2
sup
w
|t′′(w)|(∆φ

b )2 ≤ (∆φ
b )2 .

Substituting (∆φ
b )2 = ( 1

ηn

∫
An

I{d(φ, φ′) ≤ b}f(φ′X)|dφ′|)2 into (b2) yields

(b2) ≤
∥∥∥
∫

A3
n

E
[
f<γ(φX)I{d(φ, ψ), d(φ, π) ≤ b}f(ψX)f(πX)

∣∣G
]

η3n
|dφ||dψ||dπ|

∥∥∥
1

≤ 8|Bb|√
|An|

∥∥f(X)
η(n)

∥∥2

2q(1+ ε
2

)

∥∥f
<γ(X)

η(n)

∥∥
p(1+ ε

2
)

∫

G
α

ε
2+ε (d(e, φ)|G)d|φ| .

To bound (c), write η2
b :=

∫
φ∈Bb η

2(φ)|dφ| again apply the triangle inequality,
which yields

(c) ·
√

π

2
=
∥∥∥
η(n)2 −

∫
A2

n

1
|An|E[I{d(φ, φ′) ≤ b}f(φX)f(φ′X)|G]|dφ||dφ′|

η(n)2

∥∥∥
1

≤ E
[∣∣∣η(n)2 − η2b

η(n)2

∣∣∣
]

+
∥∥∥
η2b −

∫
A2

n
|An|−1E[I{d(φ, φ′) ≤ b}f(φX)f(φ′X)|G]|dφ||dφ′|

η(n)2

∥∥∥
1

≤ E
[∣∣∣η(n)2 − η2b

η(n)2

∣∣∣
]

+
∥∥∥f(X)

η(n)

∥∥∥
2

2

|An M BbAn|
|An| .

For (d), we again use f = f<γ + f≥γ and the triangle inequality. For a pair
(φ1, φ2) of group elements, abbreviate

F<γφ1φ2 :=
1

η(n)2

(
f<γ(φ1X)f<γ(φ2X)− E[f<γ(φ1X)f<γ(φ2X)|G]

)
,

and define F≥γφ1φ2 as F≤∞φ1φ2 − F
≤γ
φ1φ2

. For any quadruple φ1, . . . , φ4 ∈ G,

∥∥Cov[F<γφ1φ2 , F
<γ
φ3φ4
|G]
∥∥

1
≤ 4
∥∥∥f
≤γ(X)

η(n)

∥∥∥
4

4+2ε
α
(
d((φ1,φ2),(φ3,φ4))|G

) ε
2+ε
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holds by Lemma 25, which implies

∥∥∥
∫

An×AnBb
F<γφ1φ2

|dφ1||dφ2|
|An|

∥∥∥
1
≤ 4|Bb|√

|An|

∥∥∥f
<γ(X)

η(n)

∥∥∥
2

4+2ε
(
∫

G
α(d(e, φ)|G)

ε
2+ε |dφ|) 1

2 .

For f≥γ , we obtain

∥∥∥
∫

An×AnBb
F≥γφ1,φ2

|dφ1||dφ2|
|An|

∥∥∥
1
≤ 2|Bb|

∥∥∥f
≥γ(X)

η(n)

∥∥∥
2

∥∥∥f(X)

η(n)

∥∥∥
2

=: (d’) ,

and hence

(d)·
√
π√
2
≤ 4

|Bb|√
|An|

∥∥∥f
<γ(X)

η(n)

∥∥∥
2

4+2ε
(
∫

G
α(d(e, φ)|G)

ε
2+ε |dφ|) 1

2 + (d’) .

Rearranging terms within (a)+(b)+(c)+(d) yields the statement.

B.2. Proof of the limit theorems. We first prove the central limit
theorem under hypothesis (21). The result under hypothesis (20), and the
Berry-Esseen bound, then follow with minimal adjustments.

Proof of Theorem 4 assuming (21). Set Sn :=
√
|An|Fn(X), and let

Z ∼ N(0, 1) be independent of (X, η). We must show Sn
d−→ηZ. By Lemma 25,

‖η2‖1 ≤
∫

G
‖E[f(X)f(φX)|G]‖1|dφ|

≤ ‖f(X)‖2+ε

∑
b∈N |Bb+1 \Bb|α(b|G)

ε
2+ε <∞ ,

which shows η <∞ almost surely. Since ηZ and Sn :=
√
|An|Fn(X) have

first moments, Sn
d−→ ηZ holds if dW(Sn, ηZ)→ 0, as n→∞.

To show that is the case, we may assume f ∈ L1(X), by Lemma 28. We
first choose suitable sequences (γn) and (bn). By definition, |An| → ∞. Set
γn := |An|1/6. That implies γn →∞, and hence ‖f≥γn(X)‖2+ε → 0. Since
|An| diverges, we can choose a divergent sequence (bn) such that

|Bbn | ≤ |An|1/12, |Bbn |‖f≥γn(X)‖2 and
|An M BbnAn|

|An| → 0 .

Collecting terms in Lemma 30, we then have

rn :=
|Bbn |γ2

n√
|An|

+ |Bbn |‖f≥γn(X)‖2 → 0 and r̃n :=
|An M BbnAn|

|An| → 0 .



13

The next step is to construct η(n) in Lemma 30 as an approximation to

η. Set un := max {rn, r̃n, τ(bn)}1/8 and vn := max {rn, r̃n, τ(bn)}−1/2. Thus,
un → 0 and vn →∞, and we have

un < vn eventually and
vn
u3
n

(
rn + r̃n + τ(bn)

)
→ 0 as n→∞(51)

andvnP (η < un)→ 0 .

Set η(n) := ηI{η ∈ [un, vn]}+ unI{η 6∈ [un, vn]}, and note η(n)⊥⊥Z. Then

dW(Sn, ηZ) ≤ dW(Sn, η(n)Z) + dW(η(n)Z, ηZ)

≤ dW(Sn, η(n)Z) + ‖Z‖1‖(η − un)I{η 6∈ [un, vn]}‖1 .

Since we have already shown ‖η2‖1 <∞, the last term satisfies

‖Z‖1‖(η − un)I{η 6∈ [un, vn]}‖1 → 0 as un → 0 and vn →∞ .

It thus suffices to show dW(Sn, η(n)Z)→ 0. Using the Markov inequality we
note that

P
(
η 6∈ [un, vn]

)
≤ P

(
η < un

)
+
‖η2‖1
v2
n

.(52)

Using Lemma 24 with Y = 1
η(n) ,

dW(Sn, η(n)Z) ≤ vnE
[
dW

( Sn
η(n)

, Z
∣∣G
)]
,

since 1/η(n) ≥ 1/vn. Substituting W = Sn
η(n) into Lemma 30 gives

vnE
[
dW

( Sn
η(n)

, Z
∣∣G
)]
≤ vn
u2
n

(
5
∥∥f(X)

∥∥2

2+ε
τ(bn)

+ 4|Bbn |‖f≥γn(X)‖2+ε

∥∥f(X)
∥∥

2+ε
+

8|Bbn |
∥∥f(X)

∥∥2

2+ε
γnτ(0)

un
√
|An|

+
√

2/π
(
u2
nP (η 6∈ [un, vn]) +

∥∥f(X)
∥∥2

2
r̃n
)

+ 4
|Bbn |γ2

n

√
τ(0)√

|An|

)

≤ 8vn
min(u3

n, 1)

(∥∥f(X)
∥∥2

2+ε
τ(bn) + max(

∥∥f(X)
∥∥2

2+ε
τ(0), 1)[rn + r̃n]

)

+ vnP (η < un) +
‖η2‖1
vn

.

This final bound vanishes as n→∞: The first term by (51), the second
since un → 0 and vn →∞. That shows dW(Sn, η(n)Z)→ 0, which implies
dW(Sn, ηZ)→ 0 and completes the proof.
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Proof of Theorem 4 assuming (20). There is a finite k ∈ N such that
α(k|G) = 0. Repeating the argument above for b1 = b2 = . . . := k and ε = 0
again yields dw(Sn, η(n)Z)→ 0 for n→∞.

Since the Berry-Esseen bound assumes a third and fourth moment, it can
be proven by applying Lemma 30 directly:

Proof of Theorem 5. The sequence (bn) is given by hypothesis. Fix
any divergent sequence (γn) in (0,∞). For each γn,

‖f(X)I{|f(X) ≤ γn|}‖3(1+ ε
2

) ≤ ‖f(X)‖3(1+ ε
2

) .

We can hence apply Lemma 30 with p = 3
2 and q = 3, and Theorem 5 follows

for n→∞.
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APPENDIX C: PROOFS OF THE GENERAL LIMIT THEOREMS

We next prove Theorems 9 and 10. Recall that the proof in the basic
case adapts Stein’s inequality in Lemma 29, bounds the constituent terms
individually, and then deduces both limit theorems from this bound. The
structure in the general case is similar: Lemma 32 below substitutes for
Lemma 29, and the main work is again to upper-bound each term on its
right-hand side, which we do in Sections C.3–C.6. The theorems are then
deduced in Sections C.7 and C.8. Although the steps remain similar, the
terms in the bounds change:

• The generalization of invariance to (26) makes the dependency neigh-
borhoods (which above were balls of radius bn around group elements) more
complicated.

• The fact that kn may grow with n complicates terms involving fn. Their
moments are handled using telescopic sums h̄in, defined below.

• Large values of f were previously controlled using f(x)I{|f(x)| < γ} and
its remainder. Similar quantities now have to be phrased in terms of h̄in and
the coefficients ci,p.

• Randomized averages have to be phrased in terms of µn, see the defini-
tions of Pµn and Eµn below.

• Since we have to control the influence of randomization by µn, spreading
coefficients Sn or Snw appear in the bounds.

• Since we make no specific restrictions on how a group action may apply
the entries of a vector φ ∈ Gkn , arguments that compare pairs of such vec-
tors often have to compare all possible combinations of coordinates.

As a result, the bounds become lengthy, and we first introduce some addi-
tional notation to summarize quantities that occur frequently.

C.1. Notation. Recall that sequences (kn) and (bn) are given by hy-
pothesis. In addition, we will use a non-decreasing integer sequence (k′n)
with k′n ≤ kn. In the proofs, the functions fn always appear in a centered
form, which is the (random) function

hn(Xn) := fn(Xn)− E[fn(Xn)|G] .

We frequently have to restrict random measures to subsets. If µ is a random
measure on Gkn and A a measurable subset, write

Pµ( • |A) :=
µ( • ∩A)

µ(A)
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provided µ(A) > 0 almost surely. Since Pµ( • |A) is almost surely a proba-
bility measure even if µ is not, the usual rules of conditioning apply and
explain expressions such as Pµ( • |A, Y ) for a random quantity Y . If f is a
measurable function on Gkn , set

Eµ[f(φ)|A] :=

∫
f(φ)Pµ(dφ|A) =

1

µ(A)

∫

A
f(φ)µ(dφ) .

The distance dW(Wn, Z) in Stein’s inequality is then applied to

Wn :=

√
|An|
η(n) Eµn [hn(φXn)|Akn

n ] .

Recall from the proof overview that Stein’s method considers dependency
neighborhoods around an index i. We generalize these to sets of coordinates
of a vector φ that are similar to ψ ∈ G,

Ib,k(ψ,φ) := {i ≤ k : d(ψ, φi) ≤ b} for k ≤ kn, b > 0 .

Two types of averages of hn appear in the upper bounds on dW. One holds
entries outside a neighborhood Ib,k(ψ,φ), of size I := |Ib,k(ψ,φ)|, fixed,

h̄ψ,b,kn (φXn) := lim
m→∞

1

|Am|I
∫

{θ∈Akn
m |θi=φi for i 6∈ Ib,k(ψ,φ)}

hn(θXn)|dθ|⊗I .

The other appears in particular in the context of moments. It fixes the first
kn − i entries, and can be written as a telescopic sum

h̄in(φXn) := gin(φXn)− gi+1
n (φXn)

with summands

gin(φXn) := lim
m→∞

1

|Am|i
∫

Ai
m

h((φ1, . . . , φkn−i, θ1, . . . , θi)Xn)|dθ1| · · · |dθi| .

Higher moments of hn/η(n) are controlled using a sequence (γn) with γn →∞.
That leads to bounds involving the terms

Γi,p(γn) := sup
φ∈Gkn

∥∥∥ h̄
i
n(φXn)I{|h̄in(φXn)| ≤ γnci,2(hn)}

η(n)

∥∥∥
p

for i ≤ kn .

More generally, for any function fn on Xn and the coefficients ci,p defined
in Section 5, we write

Mp(fn) := sup
φ∈Gkn

∥∥fn(φXn)
η(n)

∥∥
p

and Cp(fn) :=
∑∞

i=1 ci,p(fn) .
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Terms in the bounds that quantify the behavior of µn involve vectors φ ∈ Gkn

whose entries are “not too close” to each other. To this end, we write

∂(φ) := min
i 6=j

d(φi, φj) .

In particular, we must consider µ∗n( • ) := µn( • ∩ {φ|∂(φ) ≥ bn}). This is
again a random measure on Gkn , with

Pµ∗n(φ ∈ • |Akn
n ) = Eµn

[
I{φ ∈ • , ∂(φ) ≥ bn}

∣∣Akn
n

]
.(53)

Moments of µn are controlled using a sequence (βn) with βn →∞. They
lead to rather complicated terms, which we encapsulate using the sets

Vi,βn(n) :=
{
ψ ∈ Gkn

∣∣∣ sup
j≤k′n

|An|
|Bbn |

Pµ∗n(d(φi, ψj) ≤ bn|Akn
n ,ψ) ≤ k′nβn

}
.

In words, a random vector φ is generated by Pµn , conditionally on its entries
not being too similar (hence Pµ∗n), and the set contains those vectors ψ
unlikely to have an entry similar to φi. Finally, for a strongly well-spread
sequence, the spreading coefficient Sn was defined in Section 5. A similar
coefficients in the well-spread case is

Snw := sup
A∈Σn,n∈N

E
[

1

Tn(A, | • |⊗kn)
Pµn⊗µn

(
(φ,φ′) ∈ A

∣∣A2kn
n

)]
.

C.2. Main lemmas. We first bound the error incurred by excluding
vectors whose entries are close to each other, i.e. of substituting µ∗n for µn:

Lemma 31. For a positive random variable η(n) with η(n)⊥⊥GXn and
a standard normal variable Z∗, write

E(µn) :=

√
|An|
η(n) Eµn [hn(φXn)|Akn

n ] .

Then

‖dW(E(µn), Z∗|G)− dW(E(µ∗n), Z∗|G)‖1 ≤
k2
nC1( hn

η(n))|Bbn |Snw√
|An|

.

Proof. By definition of the Wasserstein distance,

‖dW(E(µn), Z∗|G)− dW(E(µ∗n), Z∗|G)‖1 ≤ ‖dW(E(µn), E(µ∗n)|G)‖1

≤ ‖E(µn)− E(µ∗n)‖1 ≤
∥∥∥
√
|An|
η(n) Eµn [I{∂(φ) ≤ bn}hn(φXn)|Akn

n ]
∥∥∥

1
.
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We bound the final term: Since µn and Xn are independent, we can apply
the definition of the spreading coefficient Snw to obtain

∥∥∥
√
|An|
η(n) Eµn [I{∂(φ) ≤ bn}hn(φXn)|Akn

n ]
∥∥∥

1

≤M1

(
hn
η(n)

)
E[
√
|An|Pµn(∂(φ) ≤ bn|Akn

n )]

≤
k2
nM1

(
hn
η(n)

)
|Bbn |√

|An|
sup
i 6=j

E
[ |An|
|Bbn |

Pµ∗n(I{φ−1
i φj ∈ Bbn}|Akn

n )
]

≤
k2
nM1

(
hn
η(n)

)
|Bbn |Snw√

|An|
,

which yields the desired result.

The main bound on the Wasserstein distance is formulated in terms of µ∗n:

Lemma 32. Let η(n) be a positive random variable with η(n)⊥⊥GXn, and
F the function class (43). Let

W ∗ :=

√
|An|
η(n)

∑
iEµ∗n [h̄in(φXn)|Akn

n ] .

For given sequences (bn) and (k′n), abbreviate

Wφ
in :=

√
|An|
η(n) Eµ∗n [h̄

φi,bn,k
′
n

n (φ′Xn)|Akn
n ] and ∆φ

in = W ∗ −Wφ
in .

Then, for an independent variable Z∗ ∼ N(0, 1),
∥∥dW(W ∗, Z∗|G)

∥∥
1

≤ sup
t∈F

∥∥∥E
[√|An|
η(n)

∑
i Eµ∗n

[
h̄in(φXn)t(Wφ

in)|Akn
n

]∣∣G
]∥∥∥

1

+ sup
t∈F

∥∥∥E
[√|An|
η(n)

∑
i Eµ∗n

[
h̄in(φXn)(t(W ∗)− t(Wφ

in)−∆φ
int
′(W ∗))|Akn

n

]∣∣G
]∥∥∥

1

+
√

2
π

∥∥∥1−
√
|An|
η(n)

∑
i E[Eµ∗n [h̄in(φXn)∆φ

in|Akn
n ]|G]

∥∥∥
1

+
√

2
π

∑
i

∥∥∥
√
|An|
η(n) Eµ∗n

[
h̄in(φXn)∆φ

in − E[h̄in(φXn)∆φ
in|G]

∣∣Akn
n

]∥∥∥
1
.

Proof. By Stein’s inequality, dW(W ∗, Z∗) ≤ sup |E[W ∗t(W ∗)− t′(W ∗)]|.
We decompose the right-hand side: Since hn =

∑
i h̄

i
n,

‖E[W ∗t(W ∗)−t′(W ∗)|G]‖1 ≤
∥∥E
[√|An|
η(n)

∑
i Eµ∗n

[
h̄in(φXn)t(Wφ

in)|Akn
n

]∣∣G
]∥∥

1

+
∥∥∥E
[√|An|

η(n)

∑
i Eµ∗n

[
h̄in(φXn)(t(W ∗)− t(Wφ

in))
∣∣Akn

n

]
− t′(W ∗)

∣∣∣G
]∥∥∥

1
.
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The final term can be bounded further using the triangular inequality as

∥∥∥E
[√|An|

η(n)

∑
iEµ∗n

[
h̄in(φXn)

(
t(W ∗)− t(Wφ

in)
)∣∣Akn

n

]
− t′(W ∗)

∣∣∣G
]∥∥∥

1

≤
∥∥∥E
[√|An|
η(n)

∑
iEµ∗n

[
h̄in(φXn)(t(W ∗)− t(Wφ

in)−∆φ
int
′(W ∗))|Akn

n

]∣∣G
]∥∥∥

1

+
∥∥∥E
[∑

i t
′(W ∗)

(
1− Eµ∗n

[√|An|
η(n) h̄in(φXn)∆φ

in|Akn
n

])∣∣G
]∥∥∥

1

(∗)
≤
∥∥∥E
[√|An|
η(n)

∑
iEµ∗n

[
h̄in(φXn)(t(W ∗)− t(Wφ

in)−∆φ
int
′(W ∗))|Akn

n

]∣∣G
]∥∥∥

1

+
√

2
π

∥∥1−
√
|An|
η(n)

∑
iE[Eµ∗n [h̄in(φXn)∆φ

in|Akn
n ]|G

]∥∥
1

+
√

2
π

∑
i

∥∥∥
√
|An|
η(n) Eµ∗n

[
h̄in(φXn)∆φ

in − E[h̄in(φXn)∆φ
in|G]

∣∣Akn
n

]∥∥∥
1
,

where (∗) uses the fact that supx∈R |t′(x)| ≤
√

2/π.

C.3. Bounding the first term in Lemma 32. We proceed to bound
each term on the right-hand side of Lemma 32. For the first term, we observe:

Lemma 33. Assume the conditions of Theorem 10, and define a random
measure µi−jn ( • ) := |An|Pµn⊗µn(φ−1

j φ
′
i ∈ • |A2kn

n ) on G. Then

‖F̂∞,i(hn, Xn, e)‖p ≤ ci,p(hn) and E[µi−jn (IBb)] ≤ Snw|Bb|

hold for i, n, b ∈ N and p ∈ R.

Proof. The first statement follows from the definition of F̂, as

‖F̂∞,i(hn, Xn, e)‖ =
∥∥lim
m

1
|Am|kn

∫

Akn
m

hn(φ1:i−1eφi+1:knXn)−hn(φXn)|dφ|
∥∥
p

≤ lim
m

1

|Am|kn
∫

Akn
m

‖hn(φ1:i−1eφi+1:knXn)− hn(φXn)‖p|dφ| ≤ ci,p(hn) .

Since E[E
µi−jn

[IBb ]] = |An|E[Eµn⊗µn [Iφ−1
j φ′i∈Bb |A

2kn
n ]] ≤ Snw|Bb|, the second

statement also holds.

Lemma 34. Assume hypothesis (29). Then

sup
t∈F

∥∥∥E
[√|An|
η(n)

∑
iEµ∗n [h̄in(φXn)t(Wφ

in)|Akn
n ]
∣∣G
]∥∥∥

1
≤ K1C2

(
hn
η(n)

)∑
k′n<i

ci,2
(
hn
η(n)

)
,
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where K1 = O(|BK |Snw). If hypothesis (30) holds instead,

sup
t∈F

∥∥∥E
[√|An|
η(n)

∑
iEµ∗n [h̄in(φXn)t(Wφ

in)|Akn
n ]
∣∣G
]∥∥∥

1

≤ K2C2+ε

(
hn
η(n)

)[
kn√
|An|

+ C2+ε

(
hn
η(n)

)]
Rn(bn)

+K3|Bbn |C2

(
hn
η(n)

)∑
k′n<i

ci,2
(
hn
η(n)

)
,

where K2 = O(Snw) and K3 = O(Snw).

Proof. We prove the (harder) case of hypothesis (30) first, and then

modify it for (29). Similar to Wφ
in, we abbreviate

Wφ
ibk :=

√
|An|
η(n) Eµ∗n [h̄

φi,b,k
n (φ′Xn)|Akn

n ] ,

so that in particular Wφ
in = Wφ

ibnk′n
. For all t ∈ F ,

∑
i

∥∥∥E
[√|An|
η(n) Eµ∗n

[
h̄in(φXn)t(Wφ

in)
∣∣Akn

n

]∣∣G
]∥∥∥

1
(54)

(∗)
≤ ∑

i E
[√|An|

η(n) Eµ∗n
[
|h̄in(φXn)||Wφ

in −W
φ
ibnkn
|
∣∣Akn

n

]]

+
∑

i

∥∥∥E
[√|An|

η(n) Eµ∗n
[
h̄in(φXn)t(Wφ

ibnkn
)
∣∣Akn

n

]∣∣G
]∥∥∥

1

where (∗) holds since t is 1-Lipschitz. To bound the first term on the right-
hand side, we use the definition the Lipschitz coefficients of hn to obtain

∑
i E
[√|An|

η(n) Eµ∗n
[∣∣h̄in(φXn)

∣∣∣∣Wφ
in −W

φ
ibnkn

∣∣∣∣Akn
n

]]

≤ ∑i E
[
|An|Eµ⊗2

n

[∑
j∈Jn(φi,φ

′) ci,2
(
hn
η(n)

)
cj,2
(
hn
η(n)

)∣∣A2kn
n

]]

≤ |Bbn |
∑

i

∑
k′n<j≤kn ci,2

(
hn
η(n)

)
cj,2
(
hn
η(n)

)
Snw ,

where Jn(φi,φ
′) = Ibn,kn(φi,φ

′) \ Ibn,k′n(φi,φ
′).

To bound the second term, consider the vector φ ∈ Gkn in (54). We define
a sequence (φi,j)j∈N in Gkn whose coordinates differ increasingly from the
ith coordinate of φ as j increases: Set φi,0 = φ. For j ≥ 1, choose

φi,jk :=

{
φi,j−1
k if d(φk,φi) 6∈ [j, j + 1)

any φi,jk with d(φi,jk ,φi) > diam(An) if d(φk,φi) ∈ [j, j + 1)
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for each k ≤ kn. By definition of µ∗n, we have φi,j = φ for j ≤ bn. Then

∑
i

∥∥∥E
[√|An|
η(n) h̄in(φXn)t(Wφ

bn,kn,i
)
∣∣G
]∥∥∥

1

≤ ∑i

∑
j≥bn

∥∥∥E
[√|An|
η(n) h̄in(φi,j+1Xn)[t(Wφ

ijkn
)− t(Wφ

i(j+1)kn
)]
∣∣G
]∥∥∥

1

+
∑

i

∑
j≥bn

∥∥∥E
[√|An|
η(n) [h̄in(φi,j+1Xn)− h̄in(φi,jXn)]t(Wφ

ijkn
)
∣∣G
]∥∥∥

1

(∗)
≤ 4

√
2
π

∑
j, j≥bn

∑
i ci,2+ε

(
hn
η(n)

)
|An|

∥∥Wφ
ijkn
−Wφ

i(j+1)kn

∥∥
2+ε

α
ε

2+ε
n (j|G)

+ 4
∑

i ci,2+ε

(
hn
η(n)

)∑
j≥bn α

ε
2+ε
n (j|G)

√
|An|I{d(φi,φ\i) ∈ [j, j + 1]} .

Here, (∗) is obtained using Lemma 25, and the fact that

sup
x∈R
|t′(x)| ≤

√
2/π and sup

x∈R
|t(x)| ≤ 1

Since that is true for any φ ∈ Gkn , using the definition of Snw we conclude

∑
i

∥∥∥E
[√|An|
η(n) Eµ∗n

(
h̄in(φXn)t(Wφ

bn,kn,i
)
∣∣Akn

n

)∣∣G
]∥∥∥

1

≤ 4
√

2
π

∑
i ci,2+ε(

hn
η(n))

∑
j cj,2+ε(

hn
η(n))

× E
[
Eµ⊗2

n

(
I{j 6∈ Ibn,kn(φi,φ

′)}|An|α
ε

2+ε (d(φi,φ
′
j)|G)|A2kn

n

)]

+ 4
∑

i ci,2+ε(
hn
η(n))

∑
j 6=i E

[
Eµ∗n(

√
|An|α

ε
2+ε
n (d(φi,φj)|G)|Akn

n

)]

≤ 4
∑

i ci,2+ε(
hn
η(n))Snw

(
kn√
|An|

+
√

2
π

∑
i ci,2+ε(

hn
η(n))

)

∑
i≥bn α

ε
2+ε
n (i|G)|Bi+1\Bi| .

That establishes the result under (30). If (29) is assumed instead, the second
term of Eq. (54) vanishes by Lemma 25. We hence have

sup
t∈F

∥∥∥E
[√|An|
η(n)

∑
i Eµ∗n

[
h̄in(φXn)t(Wφ

in)|Akn
n

]∣∣G
]∥∥∥

1

≤ |BK |Snw
∑

i

∑
k′n<j≤kn ci,2

(
hn
η(n)

)
cj,2
(
hn
η(n)

)
,

which shows result also holds under (29).

C.4. The second term in Lemma 32. The strategy is to use a Taylor
expansion, and to bound

∣∣h̄in(φXn)
(
t(W ∗)− t(Wφ

in)−∆φ
int
′(W ∗)

)∣∣ ≤ supx∈R |t′′(x)|
2

∣∣h̄in(φXn)
∣∣(∆φ

in)2
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As h̄in(Xn) might not admit a third moment we first upper-bound it using

the sequence (γn). To bound |h̄in(φXn)I(h̄in(φXn) ≤ γnci,2(hn))|(∆φ
in)2, we

must control the probability that random triples φ,φ′,φ′′ ∈ Gkn satisfy

(55) d(φi,φ
′
j), d(φi,φ

′′
l ) ≤ bn and φ′ ∈ Vi,βn(n)

for some i ≤ kn and j, l ≤ k′n, and either

(56) (i) min
l≤kn

d(φ′j ,φ
′′
l ) ∈ [k, k + 1] or (ii) min

l≤kn
l 6=i

d(φ′j ,φl) ∈ [k, k + 1] .

We quantify these as follows: The upper bound on the term in Lemma 32
must be established for fixed values of n and βn. Given such values, we
choose a constant S∗2(kn) that satisfies

|An|2
∥∥Eµ⊗3

n

[
I{φ,φ′′,φ′′ satisfies (55) and (56i)}

∣∣A3kn
n

]∥∥
1

|Bk+1 \Bk||Bbn |kn
≤ S∗2(kn)

and
|An|2

∥∥Eµ⊗3
n

[
I{φ,φ′′,φ′′ satisfies (55) and (56ii)}

∣∣A3kn
n

]∥∥
1

|Bk+1 \Bk||Bbn |kn
≤ S∗2(kn) .

Similarly, we choose a constant S∗0 such that

|An|
|Bm|

∥∥Eµ⊗2
n

[I{d(φi,φ
′
j) ≤ m and φ′ 6∈ Vi,βn(n)}|A2kn

n ]
∥∥

1
≤ S∗0

for all n,m ∈ N and i, j ≤ kn.

Lemma 35. Assume (29) holds. Then for t ∈ F , and any p, q > 0 satis-
fying 1

p + 1
q = 1,

sup
H∈F

∥∥∥E
(√|An|

η(n) Eµ∗n
(
h̄in(φXn)(t(W ∗)− t(Wφ

in)−∆φ
int
′(W ∗))|Akn

n

)∣∣∣G
)∥∥∥

1

≤ K1
knk′n√
|An|

C2q

(
hn
η(n)

)2
S∗2(k′n)

∑
i Γi,p(γn)

+K2S
∗
0C2( hn

η(n))2 +K3C2( hn
η(n))

∑
i ci,2

( h̄in(φXn)
η(n) I{ h̄in(φXn)

η(n) ≥ γn}
)
,

where K1 = O(|Bk|2) and K2 = O(|BK |) and K3 = O(Snw|BK |). If (30)
holds instead,

sup
H∈F

∥∥∥E
(√|An|

η(n) Eµ∗n
(
h̄in(φXn)(t(W ∗)− t(Wφ

in)−∆φ
int
′(W ∗))|Akn

n

)∣∣∣G
)∥∥∥

1

≤ K1
knk

′
n|Bbn |S∗2(k′n)√
|An|

C(2+ε)q

(
hn
η(n)

)2 ∑

i

Γi,p(1+ ε
2

)(γn)

+K2|Bbn |S∗0C2

(
hn
η(n)

)2
+K3|Bbn |C2

(
hn
η(n)

)∑
i ci,2

( h̄in(φXn)
η(n) I{ h̄in(φXn)

η(n) ≥γn}
)

where K1 = O(Rn(0)) and K2 = O(1) and K3 = O(Snw).
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Proof. Suppose first (29) holds. Since hn(Xn) may not have a third mo-
ment, we upper-bound it using the sequence (γn). By the triangle inequality,

∥∥E
[√|An|
η(n)

∑
i Eµ∗n

[
h̄in(φXn)(t(W ∗)− t(Wφ

in)−∆φ
int
′(W ∗))︸ ︷︷ ︸

:=T

|Akn
n

]∣∣G
]∥∥

1

≤
∥∥E
[√|An|
η(n)

∑
i Eµ∗n

[
T I{| h̄in(φXn)

ci,2(hn) | > γn} |Akn
n

]∣∣G
]∥∥

1

+
∥∥E
[√|An|
η(n)

∑
i Eµ∗n

[
T I{| h̄in(φXn)

ci,2(hn) | ≤ γn} |Akn
n

]∣∣G
]∥∥

1
.

We again bound each term separately. Since t ∈ F , it satisfies (50), hence

∥∥E
[√|An|
η(n)

∑
i Eµ∗n

[
T I{| h̄in(φXn)

ci,2(hn) | > γn} |Akn
n

]∣∣G
]∥∥

1

≤ 2
∑

i E
[√|An|
η(n) Eµ∗n

[
|h̄in(φXn)|I{ |h̄in(φXn)|

ci,2(hn) > γn}|∆φ
in||Akn

n

]]
; .

For all φ ∈ Gkn and i ∈ N we have, by definition of ∆φ
in,

∑
i E
[√|An|
η(n) Eµ∗n

[
|h̄in(φXn)|I{ |h̄in(φXn)|

ci,2(hn) > γn}|∆φ
in||Akn

n

]]

≤ |An|
(
cj,2
( h̄in(φXn)

η(n) I{ |h̄in(φXn)|
ci,2(hn) > γn}

)
E
[
Eµ∗n [I{d(φi,φ

′
j) ≤ bn}|Akn

n ,φ]
])

∑
j≤k′n ci,2

( h̄in
η(n)

)
.

Using the definition of Snw, this implies

∥∥E
[√|An|
η(n)

∑
i Eµ∗n

[
T I{| h̄in(φXn)

ci,2(hn) | > γn} |Akn
n

]∣∣G
]∥∥

1

≤ Snw|Bbn |C2

(
hn
η(n)

)∑
i ci,2

( h̄in(φXn)
η(n) I{ |h̄in(φXn)|

ci,2(hn) > γn}
)
.

To bound the second term, we abbreviate

W̃φ
in := Eµ∗n

[
I{φ′ ∈ Vi(βn)}h̄φi,bn,k

′
n

n (φ′Xn)
∣∣Akn

n ,φ
]

and ∆̃φ
in := Eµ∗n

[
I{φ′ ∈ Vi(βn)}

(
hn(φ′Xn)− h̄φi,bn,k

′
n

n (φ′Xn)
)∣∣Akn

n ,φ
]
.
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Again using the triangle inequality, we have

∥∥E
[√|An|
η(n)

∑
i Eµ∗n

[
T I{| h̄in(φXn)

ci,2(hn) | ≤ γn} |Akn
n

]∣∣G
]∥∥

1

≤
∥∥E
[√|An|
η(n)

∑
iEµ∗n

[
h̄in(φXn)I{| h̄in(φXn)

ci,2(hn) |≤γn}
(
t(W̃φ

in)− t(Wφ
in)
)∣∣Akn

n

]∣∣G
]∥∥

1

+
∥∥E
[√|An|
η(n)

∑
iEµ∗n

[
h̄in(φXn)I{| h̄in(φXn)

ci,2(hn) |≤γn}(∆
φ
in − ∆̃φ

in)t′(W ∗)|Akn
n

]∣∣G
]∥∥

1

+
∥∥E
[√|An|
η(n)

∑
iEµ∗n

[
h̄in(φXn)

I{| h̄in(φXn)
ci,2(hn) |≤γn}(t(W̃

φ
in)−t(W̃ ∗)−∆̃φ

int
′(W ∗))

∣∣Akn
n

]∣∣G
]∥∥

1

=: (a) + (b) + (c) ,

and must bound (a)—(c) further. Since t is 1-Lipschitz,

(a) ≤ E
[√|An|
η(n)

∑
iEµ∗n

[∣∣h̄in(φXn)
∣∣I{| h̄in(φXn)

ci,2(hn) |≤γn}
∣∣W̃φ

in −W
φ
in

∣∣∣∣Akn
n

]]

≤ 2
∑

i ci,2
(
hn
η(n)

)∑
j≤k′n cj,2

(
hn
η(n)

)

E[|An|Eµ⊗2
n

[I{d(φi,φ
′
j)≤bn,φ′ 6∈ Viβn}|A2kn

n ]]

≤ 2C2

(
hn
η(n)

)2
sup
i,j

E[|An|Eµ⊗2
n

[
I{d(φi,φ

′
j)≤bn,φ′ 6∈ Viβn}|A2kn

n ]
]
.

Analogously, we have

(b) ≤ 2|Bbn |
∑

ici,2
(
hn
η(n)

)∑
j≤kn cj,2

(
hn
η(n)

)

sup
i,j

1
|Bbn |

E[|An|Eµ⊗2
n

[I{d(φi,φ
′
j)≤bn, φ′ 6∈ Viβn}|A2kn

n ]] .

To bound (c), we first observe

(c) ≤ 1

2
sup
x∈R
|h′′(x)|E

[√|An|
η(n)

∑
i Eµ∗n

[
|h̄in(φXn)|I{| h̄in(φXn)

ci,2(hn) |≤γn}(∆̃
φ
in)2

∣∣Akn
n

]]
.

We again have to control interactions between elements of Gkn . In addition
to the element φ in (c), fix two further elements φ′ and φ′′, and a list
ψ0, . . . ,ψbn constructed for b = 0, . . . , bn as follows:

• Set ψ0 = φ′′.

• Choose ψbk := ψb−1
k if either

min {d̄(ψb−1
k ,φ), d̄(ψb−1

k ,φ′)} 6∈ [b, b+ 1) or k 6∈ Ibn,k′n(φ,φ′′) .

• Otherwise, choose ψbk such that d̄(ψbk,φ) > bn and d̄(ψbk,φ
′) > bn.
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Note such a sequence always exists. Abbreviate

G(φ′) :=
[
hn(φ′Xn)− h̄φ

′
i,bn,k

′
n

n (φ′Xn)
]
I{φ′ ∈ Vi(βn)}.

An application of the triangle inequality and of Lemma 25 yields
∥∥E[ |h̄

i
n(φXn)|
η(n)3

I{ |h̄in(φXn)|
ci,2(hn) ≤γn}G(φ′)G(φ′′)|G]

∥∥
1

≤∑l

∥∥∥E[ |h̄
i
n(φXn)|
η(n)3

I{ |h̄in(φXn)|
ci,2(hn) ≤γn}G(φ′)G(ψl)

∣∣G]

− E[ |h̄
i
n(φXn)|
η(n)3

I{ |h̄in(φXn)|
ci,2(hn) ≤γn}G(φ′)G(ψl−1)

∣∣G]
∥∥∥

1

≤ 4Γi,q(1+ ε
2

)(γn)
∑

j,k ck,2p(1+ ε
2

)

(
hn
η(n)

)
cj,2p(1+ ε

2
)

(
hn
η(n)

)

I{φ′′ ∈ Vi(βn)}α
ε

2+ε
n (min {d̄(φ′′k,φ), d̄(φ′′k,φ

′)}|G) ,

where the final term sums over j ∈ Ibn,k′n(φ,φ′) and l ∈ Ibn,k′n(φ,φ′′). By
Taylor expansion, we hence obtain

(c) ≤ 1

2
sup
x∈R
|h′′(x)|E

[√|An|
η(n)

∑
i Eµ∗n

[
|h̄in(φXn)|I{| h̄in(φXn)

ci,2(hn) |≤γn}(∆̃
φ
in)2

∣∣Akn
n

]]

≤ 4
∑

i≤kn,j,k≤k′n Γi,q(1+ ε
2

)(γn)ck,2p(1+ ε
2

)

(
hn
η(n)

)
cj,2p(1+ ε

2
)

(
hn
η(n)

)∑
b α

ε
2+ε
n (b|G)

∥∥Eµ⊗3
n

[
d̄(φ′′k,φ) ∈ [b, b+ 1], φ′′,φ′ ∈ Bbn(φ), I{φ′′ ∈ Vi(βn)}

∣∣A3kn
n

]∥∥
1

+ 4
∑

i≤kn,j,k≤k′n Γi,q(1+ ε
2

)(γn)ck,2p(1+ ε
2

)

(
hn
η(n)

)
cj,2p(1+ ε

2
)

(
hn
η(n)

)∑
b α

ε
2+ε
n (b|G)

∥∥Eµ⊗3
n

[
d̄(φ′′k,φ

′) ∈ [b, b+ 1],φ′′,φ′ ∈ Bbn(φ), I{φ′′ ∈ Vi(βn)}
∣∣A3kn

n

]∥∥
1

≤ 1√
|An|

(
8k′nkn|Bbn |

(∑
i ci,q(1+ ε

2
)(

hn
η(n))

)2(∑
i Γi,p(1+ ε

2
)(γn)

)
S∗2(k′n)Rn(0)

)
.

This establishes the result under hypothesis (30). If (29) holds instead, we
modify the proof above as follows: There is now some K ∈ N such that
bn = K for all n, and that any two elements separated by a distance of at
least K are conditionally independent. In this case,

∣∣E
[√|An|
η(n) Eµ∗n

[
h̄in(φXn)(t(W ∗)− t(Wφ

in)−∆φ
int
′(W ∗))|Akn

n

]]∣∣

≤ 4k′nkn|BK |2√
|An|

(∑
i ci,2q

(
hn
η(n)

))2(∑
i Γi,p(1+ ε

2
)(γn)

)
S∗2(k′n)

+ 2
∑

i ci,2
(
hn
η(n)

)∑
j cj,2

(
hn
η(n)

)

E[|An|Eµ⊗2
n

[I{d̄(φi,φ
′
1:j)≤K,φ 6∈ Viβn}|A2kn

n ]]

+ 2Snw|BK |k′n
∑

i ci,2
( h̄in(φXn)

η(n)
I{| h̄

i
n(φXn)

ci,2(hn)
|>γn}

)
M2

(
hn
η(n)

)
,

and the result holds under (29).
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C.5. The third term in Lemma 32.

Lemma 36. Fix p, q > 0 such that 1
p + 1

q = 1. If (29) holds,

∥∥1−
√
|An|
η(n) E

[
Eµ∗n

[
hn(φXn)∆φ

in

∣∣Akn
n

]∣∣G
]∥∥

1

≤ E
[∣∣η(n)2−η̂2n,K

η(n)2

∣∣]+K1C2

(
hn
η(n)

)∑
j>k′n

cj,2
(
hn
η(n)

)
+ K2k4n
|An| C2

(
hn
η(n)

)2
,

where K1 = O(Snw|BK |) and K2 = O(Snw|BK |2). If (30) holds instead,

∥∥1−
√
|An|
η(n) E

[
Eµ∗n

[
hn(φXn)∆φ

in

∣∣Akn
n

]∣∣G
]∥∥

1

≤ K2|Bbn |C2

(
hn
η(n)

)∑
j>k′n

cj,2
(
hn
η(n)

)
+K1Snw

k4
n|Bbn |2
|An|

C2(
hn
η(n)

)2

+K3C2+ε

(
hn
η(n)

)2 k2n|Bbn |
|An| S

n
wRn(bn) + E

[∣∣η(n)2−η̂2n,bn
η(n)2

∣∣] ,

where K1 = O(1) and K2 = O(Snw) and K3 = O(1).

Proof. Assume first that (30) holds. We use the abbreviation

Gk(φ′) := hn(φ′Xn)− h̄φi,bn,kn (φ′Xn). By the triangle inequality,

∥∥∥
η(n)2 − |An|

∑
i Eµ⊗2

n
[E[h̄in(φXn)Gk

′
n(φ′)|G]|A2kn

n ]

η(n)2

∥∥∥
1

≤
∥∥∥
|An|

∑
i Eµ⊗2

n
[E[h̄in(φXn)(h̄

φi,bn,k
′
n

n (φ′Xn)− h̄φi,bn,knn (φ′Xn))|G]
∣∣A2kn

n ]

η(n)2

∥∥∥
1

+
∥∥∥
η̂2
n,bn
− |An|

∑
i Eµ⊗2

n
[E[h̄in(φXn)Gkn(φ′)|G]|A2kn

n ]

η(n)2

∥∥∥
1

+ E
[∣∣η(n)2−η̂2n,bn

η(n)2

∣∣]

=: (a) + (b) + (c) .

(57)

We can further bound terms (a) and (b). By definition of the Lipschitz
coefficients,

(a) ≤
∑

i

∥∥∥
|An|Eµ⊗2

n
[
∑

j∈Ibn,kn (φi,φ
′)\Ibn,k′n (φi,φ

′) ci,2( hn
η(n))cj,2( hn

η(n))|A2kn
n

]

η(n)2

∥∥∥
1

≤ Snw|Bbn |
∑

i

∑
j>k′n

ci,2
(
hn
η(n)

)
cj,2
(
hn
η(n)

)
.

To bound (b), abbreviateH(φ,φ′) := h̄in(φXn)
(
hn(φ′Xn)− h̄φi,bn,knn (φ′Xn)

)
,

and consider the index set

(58) J (φ,φ′) := {i, j|d(φi,φ
′
j) ≤ bn} .
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Then for all φ,φ′ ∈ Gkn such that J (φ,φ′) = {i, j}, let ψ,ψ′ be two
elements of Gkn such that, for the same index pair (i, j),

(59) ψi = φi and ψ′j = φ′j , J (ψ,ψ′) = {i, j} .

For the remainder of the proof, denote the concatenation of two vectors as

[φ,ψ] := (φ1, . . . , φm, ψ1, . . . , ψn) for φ = (φ1, . . . , φm),ψ = (ψ1, . . . , ψn) .

Using a telescopic sum, we have

∥∥E
[

1
η(n)2

H(φ,φ′)
∣∣G
]
− E

[
1

η(n)2
H(ψ,ψ′)

∣∣G
]∥∥

1

≤∑kn−1
l=0

∥∥E
[

1
η(n)2

(
H([ψ1:l,φl+1:kn ],φ′)−H([ψ1:l+1,φl+2:kn ],φ′)

)∣∣G
]∥∥

1

+
∑kn−1

l=0

∥∥E
[

1
η(n)2

(
H(ψ, [ψ′1:l,φ

′
l+1:kn ])−H(ψ, [ψ′1:l+1,φ

′
l+2:kn ])

)∣∣G
]∥∥

1

(∗)
≤ 8

∑
l 6=i cl,2+ε

(
hn
η(n)

)
cj,2+ε

(
hn
η(n)

)
α

ε
2+ε
n

(
d̄([ψl,φl], [φ′,φl+1:kn ,ψ1:l−1])

∣∣G
)

+ 8
∑

l 6=j cl,2+ε

(
hn
η(n)

)
ci,2+ε

(
hn
η(n)

)
α

ε
2+ε
n

(
d̄([ψ′l,φ

′
l], [φ,φ′l+1:kn ,ψ

′
1:l−1])|G

)
.

where (*) is follows from Lemma 25 and inequality

∥∥∥ 1
η(n)2

(
H([ψ1:l,φl+1:kn ],φ′)−H([ψ1:l+1,φl+2:kn ],φ′)

)∥∥∥
1+ ε

2

≤ 2cl,2+ε

(
hn
η(n)

)
cj,2+ε

(
hn
η(n)

)
.

By definition, F̂∞,i(hn, Xn,φi)F̂∞,j(hn, Xn,φ
′
j) is the average of H(ψ,ψ′)

over the set of pairs (ψ,ψ′) satisfying (59). Therefore, for (i, j) = J (φ,φ′),
∥∥∥E
[

1
η(n)2

H(φ,φ′)
∣∣G
]
− E

[
1

η(n)2
F̂∞,i(hn, Xn,φi)F̂∞,j(hn, Xn,φ

′
j)|G

]∥∥∥
1

≤ 8
∑

l 6=i cl,2+ε

(
hn
η(n)

)
cj,2+ε

(
hn
η(n)

)
α

ε
2+ε
n

(
d̄(φl, [φ

′,φl+1:kn ])
∣∣G
)

+ 8
∑

l 6=j cl,2+ε

(
hn
η(n)

)
ci,2+ε

(
hn
η(n)

)
α

ε
2+ε
n

(
d̄(φ′l, [φ

′
l+1:kn ,φi])|G

)
.

For all i, j ≤ kn, we hence obtain

∥∥∥Eµ⊗2
n

[ I{J (φ,φ′)={i,j}}(H(φ,φ′)−F̂∞,i(hn,Xn,φi)F̂∞,j(hn,Xn,φ′j))
η(n)2

∣∣A2kn
n

]∥∥∥
1

≤ 32
(∑

l cl,2+ε

(
hn
η(n)

))2 k2n|Bbn |
|An|

∑
m≥bn |Bm+1\Bm|Snwα

ε
2+ε
n (m|G) .
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We can then upper-bound (b) as

∥∥|An|Eµ⊗2
n

[ I{J (φ,φ′)={i,j}}(H(φ,φ′)−F̂∞,i(hn,Xn,φi)F̂∞,j(hn,Xn,φ′j))
η(n)2

∣∣A2kn
n

]∥∥
1

+
∥∥|An|Eµ⊗2

n

[ I{J (φ,φ′)({i,j}}(H(φ,φ′)−F̂∞,i(hn,Xn,φi)F̂∞,j(hn,Xn,φ′j))
η(n)2

∣∣A2kn
n

]∥∥
1

=: b1ij + b2ij ≥ (b) .

We have already obtained a bound for b1ij above. For b2ij , the Cauchy-
Schwartz inequality yields

∑
ij b

2
ij ≤ 4|An|M2

(
hn
η(n)

)2∑
ij E
[
Eµ⊗2

n

[
I{J (φ,φ′) ( {i, j}}

∣∣A2kn
n

]]

≤ 4
Snw|Bbn |2k4n
|An| M2

(
hn
η(n)

)2
.

Substituting the bounds for (a) and (b) so obtained back into (57) then
completes the proof under hypothesis (30). If (29) holds instead, correlations
between elements separated by a distance exceeding some constant K have
no effect. In this case,

∥∥t′(W ∗)
(
1−
√
|An|
η(n) E

[
Eµ∗n

[
hn(φXn)∆φ

in

∣∣Akn
n

]∣∣G
]∥∥

1

≤
√

2
π

(
E
[∣∣η(n)2−η̂2n,K

η(n)2

∣∣]+ Snw|BK |
∑

i

∑
k′n<j≤kn ci,2

(
hn
η(n)

)
cj,2
(
hn
η(n)

)

+ 4S
n
w|BK |2k4n
|An| M2

(
hn
η(n)

)2)
,

which completes the proof.

C.6. The fourth term in Lemma 32. The final term in Lemma 32
represents variation of η(n), and we upper-bound it in terms of its variance.
As in the proof of the basic case, η(n) can be thought of as an empirical
variance, and its variance is a fourth-order quantity. Since the fourth moment
of hn(Xn) may not exist, we control it using the sequence (γn).
To bound the standard deviation, we have to consider interactions between
quadruples φ1, . . . ,φ4 of random elements of Gkn . Once again, n, bn, βn and
kn are fixed. For a quadruple of indices i, j, l,m, we consider the events

d(φ1,i,φ2,j) ≤ bn d(φ3,l,φ4,m) ≤ bn(60)

and φ1 ∈ Vi,βn φ2 ∈ Vj,βn φ3 ∈ Vl,βn φ4 ∈ Vm,βn .(61)

Since n is fixed, we can then choose a constant S∗4 such that

|An|3
|A||Bbn |2

∥∥Eµ⊗4
n

[
I{φ1,.. .,φ4 satisfy (60), (61) and φ−1

2,jφ3,m∈A}
∣∣A4kn

n

]∥∥ ≤ S∗4

holds for every Borel set A ⊂ Gkn with |prj(A)| ≥ 1 for all j ≤ kn.
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Lemma 37. Fix p, q > 0 with 1
p + 1

q = 1. Assume (29) holds. Then

∑
i

∥∥
√
|An|
η(n) Eµ∗n

[
h̄in(φXn)∆φ

in − E[h̄in(φXn)∆φ
in|G]

∣∣Akn
n

]∥∥
1

≤ K1
k′n

2√
|An|

Γ2
4(1+ ε

2
)

(
γn)
√
S∗4 + K2k4n

|An| C
2
2

(
hn
η(n)

)
+K3

[
C2

(
hn
η(n)

)2|Bk|S∗0

+ C2

(
hn
η(n)

)∑
i

(
E[
|F̂∞,i(hn, Xn, e)|2

η(n)2
I{|F̂∞,i(hn, Xn, e)| > γnci,2(hn)}]

) 1
2

]
,

where K1 = O(|BK |
3
2 ) and K2 = O(Snw|BK |2) and K3 = O(Snw|BK |). If

(30) holds instead, then

∑
i

∥∥
√
|An|
η(n) Eµ∗n

[
h̄in(φXn)∆φ

in − E[h̄in(φXn)∆φ
in|G]

∣∣Akn
n

]∥∥
1

≤ K1

(
|Bbn |S∗0C2

2+ε

(
hn
η(n)

)
+
|Bbn |2k4n
|An| C2+ε(

hn
η(n))2

)

+K2Snw
k2n|Bbn |Rn(bn)C2

2+ε

(
hn
η(n)

)

|An|

+K3|Bbn |C2+ε

(
hn
η(n)

)∑
i

(
E
[ |F̂∞,i(hn,Xn,e)|2I{|F̂∞,i(hn,Xn,e)|>γnci,2(hn)}

η(n)2

]) 1
2

+K4

|Bbn |k′n2Γ2
4(1+ ε

2
)

(
γn)

√
|An|

√
S∗4 ,

for K1 = O(Snw) and K2 = O(1) and K3 = O(Snw) and K4 = O(R
1
2
n (0)).

Proof. First suppose (30) holds. As in Lemma 36, we abbreviate

H(φ,φ′, i) = h̄in(φXn)
(
hn(φ′Xn)− h̄φi,bn,k

′
n

n (φ′Xn)
)
,

where we now keep track of the index i. We conditionally center H,

H(φ,φ′, i) := H(φ,φ′, i)− E[H(φ,φ′, i)|G] .

Interactions between F̂∞,i for different values of i involve terms of the form

Fij(φ, φ
′, τ) = F̂∞,i(hn, Xn, φ)I{F̂∞,i(hn, Xn, φ) ≤ τci,2(hn(Xn))}

× F̂∞,j(hn, Xn, φ
′)I{F̂∞,j(hn, Xn, φ

′) ≤ τcj,2(hn(Xn))}

for φ, φ′ ∈ G and some threshold τ ∈ (0,∞]. We again center conditionally,

F ij(φ, φ
′, τ) = Fij(φ, φ

′, τ)− E[Fij(φ, φ
′, τ)|G]
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Abbreviate Jij = I{j ∈ Ibn,k′n(φi,φ
′), (φ,φ′)∈Vi,βn×Vj,βn}. Using the trian-

gle inequality, we obtain:

∑
i

∥∥
√
|An|
η(n) Eµ∗n

[
h̄in(φXn)∆φ

in − E[h̄in(φXn)∆φ
in|G]

∣∣Akn
n

]∥∥
1

≤∑i,j

∥∥ |An|
η(n)2

Eµ⊗2
n

[
JijH(φ,φ′, i)

∣∣A2kn
n

]∥∥
1

+
∑

i,j

∥∥ |An|
η(n)2

Eµ⊗2
n

[
(1− Jij)H(φ,φ′, i)

∣∣A2kn
n

]∥∥
1

=:
∑

i,j aij +
∑

i,j bij .

Consider aij first. By the triangle inequality

aij ≤
∣∣∣E
[
|An|
η(n)2

Eµ⊗2
n

[
I{j ∈ Ibn,k′n(φi,φ

′)}
∣∣E[|H(φ,φ′, i)| |G]− E[|F ij(φi,φ′j ,∞)| |G]

∣∣
∣∣∣A2kn

n

]]∣∣∣

+
∥∥∥ |An|
η(n)2

Eµ⊗2
n

[
JijF ij(φi,φ

′
j ,∞)

]∥∥∥
1

=: cij + dij .

To bound cij , we proceed similarly as in the proof of Lemma 36: Recall the
index set J (φ,φ′) in (58). If φ,φ′ ∈ Gkn satisfy J (φ,φ′) = {i, j}, we have

∥∥∥ 1
η(n)2

(
E
[
|H(φ,φ′, i)|

∣∣G
]
− E

[
|F ij(φi,φ′j ,∞)|

∣∣G
])∥∥∥

1

≤ 8
∑

l 6=i cl,2+ε

(
hn
η(n)

)
cj,2+ε

(
hn
η(n)

)
α

ε
2+ε
n

(
d(φl, [φ

′,φl+1:kn ])
∣∣G
)

+ 8
∑

l 6=j cl,2+ε

(
hn
η(n)

)
ci,2+ε

(
hn
η(n)

)
α

ε
2+ε
n

(
d(φ′l, [φ

′
l+1:kn ,φi])|G

)
.

Applying Lemma 25 and the definition of the random measure µ∗n gives

∑
i,j E

[
|An|
η(n)2

Eµ⊗2
n

[
I{J (φ,φ′)={i, j}}
∣∣E[|H(φ,φ′, i)|

∣∣G]−E[|F ij(φi,φ′j ,∞)|
∣∣G]
∣∣
∣∣∣A2kn

n

]]

≤ 32Snw
k2n|Bbn |
|An|

(∑
l cl,2+ε

(
hn
η(n)

))2∑
i≥bn |Bi+1\Bi|α

ε
2+ε
n (i|G) .

Again similarly to the proof of Lemma 36, we obtain

∑
i,j E

[
|An|
η(n)2

Eµ⊗2
n

[
I{J (φ,φ′) 6⊂{i, j}}

×
∣∣E[|H(φ,φ′, i)|

∣∣G]−E[|F ij(φi,φ′j ,∞)|
∣∣G]
∣∣|A2kn

n

]]

≤ 4|Bbn |2M2

(
hn
η(n)

)2|An|E
[
Eµ⊗2

n

[
I{J (φ,φ′) 6⊂{i, j}}|A2kn

n

]]

≤ 4Snw|Bbn |2k4n
|An| M2

(
hn
η(n)

)2
.
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Hence
∑

i,j cij ≤ 32Snw
k2n|Bbn |
|An|

(∑
l cl,2+ε

(
hn
η(n)

))2∑
i≥bn |Bi+1\Bi|α

ε
2+ε
n (i|G)

+
4Snw|Bbn |2k4n
|An| M2

(
hn
η(n)

)2
.

To bound dij , abbreviate J ′ij := I{φ ∈ Vi,βn ,φ′ ∈ Vj,βn , d(φi,φ
′
j) ≤ bn}. Then

dij ≤
∥∥|An|Eµ⊗2

n

[
J ′ij

F ij(φi,φ
′
j ,∞)−F ij(φi,φ′j ,γn)

η(n)2

∣∣A2kn
n

]∥∥
1

+
∥∥|An|Eµ⊗2

n

[
J ′ij

F ij(φi,φ
′
j ,γn)

η(n)2

∣∣A2kn
n

]∥∥
2

The first term can be bounded using Cauchy-Schwartz, as

∥∥∑
i,j
|An|Eµ⊗2

n

[
J ′ij

F ij(φi,φ
′
j ,∞)−F ij(φi,φ′j ,γn)

η(n)2

∣∣A2kn
n

]∥∥
1

≤ 4
∑

min {i,j}≤k′n

(
E[
|F̂∞,i(hn, Xn, e)|2I{|F̂∞,i(hn, Xn, e)| > γnci,2(hn)}

η(n)2
]
) 1

2

cj,2
(
hn
η(n)

)
]E[Eµ⊗2

n
I{φ−1

i φ
′
j ∈ Bbn}|A2kn

n ]]

≤ 8Snw|Bbn |
(∑

j cj,2
(
hn
η(n)

))

∑
i

(
E[| 1

η(n)2
F̂∞,i(hn, Xn, e)|2I{|F̂∞,i(hn, Xn, e)| > γnci,2(hn)}]

) 1
2 .

The second term involves four-way interactions, so some abbreviations are
helpful: Set ζi := ‖F̂∞,i(hn, Xn, e)I{|F̂∞,i(hn, Xn, e)| ≤ γnci,2(hn)}‖4+2ε and

F̂γn∞,i := min {F̂∞,i, γn}. For φ, φ′, ψ, ψ′ ∈ G and indices i, j, l,m, we have

∥∥Cov[F̂γn∞,i(hn, Xn, φ)F̂γn∞,l(hn, Xn, φ
′), F̂γn∞,j(hn, Xn, ψ)F̂γn∞,m(hn, Xn, ψ

′)]
∥∥

1

≤ 4 ζi ζj ζl ζm α
ε

2+ε
n

(
d̄((φ, φ′), (ψ,ψ′))

∣∣G
)

Therefore, by definition of S∗4 , we have

∑

i≤kn,j≤k′n

∥∥|An|Eµ⊗2
n

[
I{φ′ ∈ Vj,βn , d(φi,φ

′
j) ≤ bn}

F ij(φi,φ
′
j ,γn)

η(n)2

∣∣A2kn
n

]∥∥
2

≤ 8
|Bbn |k′n2√
|An|

(
S∗4
∑

i |Bi+1\Bi|α
ε

2+ε
n (i|G)

) 1
2 ∑

i≤kn,j≤k′n ζi ζj .

In summary, we can upper-bound dij as

∑
i≤kn,j≤k′ndij ≤ 8

|Bbn |k′n2√
|An|

(
S∗4
∑

i |Bi+1\Bi|α
ε

2+ε
n (i|G)

) 1
2 ∑

i≤kn,j≤k′n ζi ζj

+ 8Snw |Bbn |
(∑

j cj,2
(
hn
η(n)

))

∑
i

(
E[|F̂∞,i(hn, Xn, e)|2I{|F̂∞,i(hn, Xn, e)| > γnci,2(hn)}]

) 1
2 .



32

An upper bound on the final term
∑

i,j(bi,j) is, by Cauchy-Schwartz,

2
(∑

i ci,2
(
hn
η(n)

))2
sup
i,j

E[Eµ⊗2
n

[|An|I{φ′ 6∈ Vi(βn), d(φi,φ
′
j) ≤ bn}|A2kn

n ]] ,

which concludes the proof under hypothesis (30). If (29) holds instead, there
is again a constant distance K beyond which correlations vanish, and

(a) ≤ 8Snw|BK |2k4n
|An| M2

2

(
hn
η(n)

)
+ |Bbn |S∗0Snw

(∑
i ci,2

(
hn
η(n)

))2

(b) ≤ 2 |BK |
3
2 k′n

2√
|An|

√
S∗4
∑

i≤kn,j≤k′n ζiζj ,

which completes the proof of the lemma.

C.7. Proof of the central limit theorem. We complete the proof of
Theorem 9 by showing dW(

√
|An| F̂n(hn, Xn), ηZ

)
→ 0. We first note that

(62) ‖η̂2
m,n − η2

m‖1
n→∞−−−→ 0 for all m ∈ N .

That is the case since, for every ε > 0, we have

E[|η̂2
m,n − η2

m|] ≤ ε+ E[η2
mI{|η̂2

m,n − η2
m| > ε}) + E

[
η̂2
m,nI{|η̂2

m,n − η2
m| > ε}

]

≤ ε+ E[η2
mI{|η̂2

m,n − η2
m| > ε}]

+ |Bm|Snw
(∑

i ci,2(hnI{|η̂2
m,n − η2

m| > ε})
)2
,

and (62) follows by uniform integrability of (hn(φXn)2)φ,n.
We next must specify suitable sequences of coefficients γn, βn, kn, k′n, and

bn for which the relevant terms in the bounds in Lemma 31 and 32 converge
to 0 as n→∞. We first choose (γn) and (βn) to satisfy

r1
n := βnγ

2
nk

2
n/
√
|An| −→ 0 .

Such sequences exist, since k2
n/
√
|An| → 0. Because of (62), (bn) can be

chosen to additionally satisfy

‖η̂2
bn,n − η2

bn‖1
n→∞−−−→ 0 .

In addition we ask that (k′n) and (bn) satisfy

r2
n := |Bbn |k′nS∗0 −→ 0

r3
n := |Bbn |k′n

∑
i ci,2

(
h̄in(φXn)I{ |h̄in(φXn)|

ci,2(hn) > γn}
)
−→ 0

r4
n := |Bbn |

(∑
k′n<i

ci,2+ε(hn)
)
−→ 0

r5
n := |Bbn | k

2
nγ

2
n√
|An|

+Rn(bn) + k′nr
1
n −→ 0
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as n→∞, which is possible since S∗0 → 0 as βn →∞. Consequently, we can
choose sequences (δn) and (εn), with δn →∞ and εn →∞ such that

δn/ε
3
n → 0 and δnr

j
n/ε

3
n

n→∞−−−→ 0 for j = 1, . . . , 5 .

Because of (62), these sequences can be chosen to additionally satisfy

δn
ε3
n

‖η̂2
bn,n − η2

bn‖1
n→∞−−−→ 0 .

Let η be the asymptotic variance, as in the hypothesis of the theorem. Given
(εn) and (δn), we construct the sequence (η(n))n as

η(n) := ηI{η ∈ [un, vn]}+ εnI{η 6∈ [un, vn]} .

Then using Lemma 24 we obtain

dW(Sn, η(n)Z) ≤ δnE
[
dW

(
Sn
η(n) , Z

∣∣G
)]

for Sn :=
√
|An| F̂n(hn, Xn) .

To apply Lemma 31 and Lemma 32, we note that

sup
n

∑
i ci,2

(
h̄in(φXn)I{| h̄in(φXn)

ci,2(hn) | > γn}
)
→ 0 as γn →∞ .

Recall that the constants S∗0 , S∗2 , etc by definition depend on the specific
choice of the sequence (k′n) and (βn). With the sequences satisfying:

S∗2 ≤ k′nβnSnw S∗4 ≤ k′n
2
β2
nSnw S∗0 → 0 .

Moreover, we have
∑

i≤kn,j≤k′n ζi ζj ≤
γ2n
ε2n

[∑
i ci,2+ε(hn)

]2
and

∑
i

∥∥h̄in(φXn)I{|h̄in(φXn)| ≤ γnci,2
(
hn
η(n)

)
}
∥∥
L∞
≤ γn

∑
i c2,i(hn) .

Substituting into Lemma 31 and 32, we then obtain an upper bound on
E
[
dW

(
Sn
η(n) , Z

∣∣G
)]

and hence, as shown above, on dW(Sn, Z) as claimed.

C.8. Proof of the Berry-Esseen theorem. To prove Theorem 10,
let µ∗n be the random measure defined in Eq. (53). We consider the variable

W :=

√
|An|
η Eµn [hn(φXn)|Akn

n ] =

√
|An|
η

∑
i Eµn [h̄in(φXn)|Akn

n ] ,

and similarly define W ∗ by substituting µ∗n for µn, as in Lemma 32. If (bn)
is the increasing sequence chosen in the theorem, Lemma 31 shows

∣∣dW(W,Z)− dW(W ∗, Z)
∣∣ ≤

k2
nC1( hn

η(n))|Bbn |Snw√
|An|

.
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(If hypothesis Eq. (29) is assumed, we can in particular choose bn = K for
all n and some K.) We can apply Lemma 32, where we choose η(n) := η
and k′n := kn for all n. In Lemma 34–37, we can set p = 3

2 and q = 1
3 . The

constants S∗2 , S
∗
4 and the weak spreading coefficient Snw can then be bounded

in terms of the (strong) spreading coefficients as

S∗2 ≤ Sn S∗4 ≤ Sn Snw ≤ Sn ,

and substitute these into the bounds in Lemma 34–37. The sequences (βn),
which controls the moments of (µn), and (γn), which controls moments of
hn
η(n) , are relevant in the proof of the central limit theorem; for present pur-
poses, we can set βn = γn =∞ for all n, and note that

‖h̄in(φXn)I{|h̄in(φXn)|≤γnci,2
(
hn
η(n)

)
}‖3(1+ ε

2
) = ‖h̄in(φXn)‖3(1+ ε

2
)

≤ ci,3(1+ ε
2

)

(
hn
η

)

and ζi ≤ c4+2ε,i

(
hn
η

)
. Substituting all terms into Lemma 32 completes the

proof.
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APPENDIX D: OTHER PROOFS

This appendix collects the proofs of all results aside from the main limit
theorems—on mixing coefficients, concentration, and applications—in the
order they appear in the text.

D.1. Properties of mixing coefficients.

Proof of Lemma 3. Fix n ∈ N and (A,B) ∈ C(n). Using the triangle
inequality,

E
[
|P (A|G)P (B|G)− P (A ∩B|G)|

]

≤ 2 sup
C∈σ(G)

E
[
I(C)

(
P (A|G)P (B|G)− P (A ∩B|G)

)]
≤ 2 sup

C∈σ(G)

(
a+ b

)

where we have abbreviated

a :=E
[
I(C)P (A|G)P (B|G)− P (A)P (B ∩ C)

]

and b :=E
[
P (A)P (B ∩ C)− I(C)P (A ∩B|G)

]
.

It follows from the tower property that

b ≤
∣∣P (A ∩B ∩ C)− P (A)P (B ∩ C)

∣∣ ≤ α(n) ,

and therefore b ≤ α(n). Similarly,

a ≤
∣∣E
[
P (A)P (B ∩ C)− I(A)P (B ∩ C|G)

]∣∣
≤
∣∣P (A)P (B ∩ C)− E

[
I(A)P (B ∩ C|G)

]∣∣ ≤ lim
k→∞

α(k) = 0 .

In summary, E[|P (A|G)P (B|G)− P (A ∩B|G)|] ≤ 4α(n). Since that is the
case for all n ∈ N and (A,B) ∈ C(n), we conclude α(n|G) ≤ 4α(n)

To relate marginal and conditional mixing coefficients, we use Lemma 25:

Proof of Proposition 8. Fix i, j ≤ k. We can choose a subset G ⊂ G
and φ,φ′,ψ,ψ′ ∈ Gk satisfying δi,j(φ,φ

′, G) ≥ t and δi,j(ψ,ψ
′, G) ≥ t and

ψl =

{
πφi if l = i

φl otherwise
ψ′l =

{
πφ′j if l = j

φ′l otherwise
for some π ∈ G .

For Borel sets A ⊂ R2 and B ⊂ RG, Lemma 25 shows
∥∥E
[
I[(Xφ, Xφ′)∈A]I[XG∈B]|G

]
− E

[
I[(Xψ, Xψ′)∈A]I[XG∈B]|G

]∥∥
1

≤ α(t|G).

Substituting into the definition of Pi,j(·) gives

|P (A,B|G)− E[Pi,j(A)I{Xn ∈ B}|Gn]| ≤ α(t|G)

for all i, j ≤ k, and hence αn(t|G) ≤ α(t|G) as claimed.
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D.2. Concentration. To prove concentration, we use the “exchange-
able pairs” variant of Stein’s method, in this form due to Chatterjee [15].

Proof of Theorem 12. The proof strategy is to approximate the inte-
gral Eµn [hn(φXn)|Akn

n ] by sums, and establish concentration of each sum.
These sums are constructed as follows: For each m ∈ N, let Cm be an εm-net
with εm = 1/m. Let λm be a partition of G into a countable number of mea-
surable sets; we write λm(φ) for the set containing a given φ ∈ G. Clearly,
this partition can be chosen such that

each φ ∈ Cm is in a separate set of λm and λm(φ) ⊂ B1/m(φ) .

Since λm partitions G, the product λknm := λm × . . .× λm partitions Gkn ,
and we discretize the integral as

Σnm :=
∑
φ∈Cknm Eµn

[
λknm (φ)|Akn

n

]
hn(φXn) .

For each fixed n ∈ N, the approximation error satisfies
∥∥Σnm−Eµn [hn(φXn)

∣∣Akn
n ]
∥∥

1
≤ sup

φ,φ′∈Gkn
d(φ′i,φi)≤εm, i≤kn

‖hn(φXn)−hn(φ′Xn)‖1 m−→ 0.

Thus, ‖Σnm − Eµn [hn(φXn)
∣∣Akn

n ]‖ → 0 asm→∞. Since hn is L1-uniformly
continuous,

P(|Eµn [hn(φXn)|Akn
n ]| > t |µn) ≤ lim sup

m
P(|Σnm| ≥ t

∣∣µn) for t > 0 .

Now apply the method of exchangeable pairs: Consider the sets of vectors
λ−im (φ) := {(ψ1, . . . , ψkn) ∈ Akn

n |ψi ∈ λm(φ)}. By hypothesis, Σnm is self-boun-
ded, with self-bounding coefficients

∑
φ∈Cknm ciEµn [λ−im (φi)|Akn

n ], for i ≤ kn.

Using [15, Theorem 4.3], we obtain

P(|Σmn| ≥ t|µn) ≤ 2E
[

exp
(
−

(
1− Λ[(Xφ)φ∈Cm ]

)
t2

∑
φ∈Cm(

∑
i ciEµn [λ−im (φi)|Akn

n ])2

)]

≤ 2E
[

exp
(
−|An|

(1− Λ[(Xφ)φ∈Cm ])t2

τ2
n|B1/m|

(∑
i ci
)2

)]
,

where the second inequality uses the definition of τn. That holds for any m,
and any decreasing sequence (Cm) of nets. For m→∞, we hence obtain

P(|Eµn(hn(φXn)|Akn
n )| ≥ t |µn) ≤ 2E

[
exp
(
−|An| (1−ρn)t2

[
∑
i ci]

2τ2n

)]

as claimed, where we have substituted in the definition of ρn.
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D.3. Approximation by subsets of transformations. Recall that
we may assume E[f(X)|G] = 0 without loss of generality, by Lemma 28.

Proof of Proposition 14. Set f ′ := f − E[f(X)|G]. By Theorem 9,

∫

An

f ′(φX)√
|An|
|dφ| d−→ ηZ .

For the measures (µn) chosen as µn(A) := |A⋂H|, the theorem shows

∫

An∩H
f ′(φX)√
|An∩H|

|dφ| d−→ ηHZ and
∫

An

f ′(φX)√
|An|
|dφ| d−→ ηZ .

Since the random variables η and ηH satisfy

|K|η2
H − η2 = |K|

∫

H
E[f(X)f(φX)|G]|dφ| − η2

=

∫

H

∫

K
E[f(X)[f(φX)− f(φθX)]|G]|dθ||dφ|

almost surely, the result follows.

D.4. Applications. We first establish Theorem 16, on exchangeable
structures. The idea of the proof is to represent (f(φX))φ∈Sn approximately,
by a certain random field Xn on Zkn that is invariant under diagonal action
of shifts. That allows us to apply Theorems 9 and 10. That can be read as
an example of the generalized U-statistics in Corollary 11.

Proof of Theorem 16. For i ∈ N, we denote

di := lim sup
j
‖f(X)− f(τijX)‖2 and di(η) := lim sup

j

∥∥f(X)−f(τijX)
η

∥∥
2
.

Consider the segment [i] = {1, . . . , i}, and write S[i]
m = {φ ∈ Sm|φ[i] = [i]} for

the set of permutations that leave it invariant.

Step 1: Approximation. We define

f̄ i(x) := lim
m→∞

1

|S[i]m |
∑

ψ∈S[i]m
f(ψx) ,

and use f̄ i(φX) as a surrogate of f(φX) that depends only on the image
φ[i]. Averaging out the kth coordinate gives

f̄ i,k(x) := lim
m→∞

1
m

∑
l≤m f̄

i(τl,kx) .
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We will show that for any increasing, divergent sequence (kn),

√
n
|Sn|
∑

φ∈Sn
(
f(φX)− f̄kn(φX)

) L1−−→ 0 as n→∞ .

Indeed, since (f−f̄kn) =
∑

k≥kn(f̄k+1−f̄k), we have

∥∥ √n
|Sn|
∑

φ∈Sn
(
f(φX)− f̄kn(φX)

)∥∥2

1
≤
∥∥ √n
|Sn|
∑

φ∈Sn
(
f(φX)− f̄kn(φX)

)∥∥2

2

≤ n
|Sn|2

∑
φ,ψ∈Sn E

[(
f(φX)− f̄kn(φX)

)(
f(ψX)− f̄kn(ψX)

)]

≤ n
|Sn|2

∑
k≥kn

∑
φ,ψ∈Sn E

[(
f̄k+1(φX)− f̄k(φX)

)(
f(ψX)− f̄kn(ψX)

)]

Consider the summands on the right-hand side. Observe that

E
[
(f̄k(φX)− f̄k−1(φX))f̄∞,m(ψX)

]
= 0

and E
[
(f̄k(φX)− f̄k−1(φX))f̄kn,m(ψX)

]
= 0

whenever ψ(m) = φ(k) for k ≤ m. Each summand is hence bounded as

∣∣E
[
(f̄k+1(φX)− f̄k(φX))(f(ψX)− f̄kn(ψX))

]∣∣
=
∣∣E
[
(f̄k+1(φX)−f̄k(φX))(f(ψX)−f̄∞,m(ψX)−f̄kn(ψX)+f̄kn,m(ψX))

]∣∣
≤
∥∥f̄k+1(φX)−f̄k(φX)

∥∥
2

∥∥f(ψX)−f̄∞,m(ψX)−f̄kn(ψX)+f̄kn,m(ψX)
∥∥

2

≤ 2dkdm .

Substituting into the bound yields

∥∥ √n
|Sn|
∑

φ∈Sn(f(φX)− f̄kn(φX))
∥∥2

1

≤ n
|Sn|2

∑
k≥kn

∑
m∈N

∑
φ,ψ∈Sn I{φ(k) = ψ(m)}dkdm

≤ 2
(∑

k≥kn dk
)(∑

m∈N dm
)
−→ 0.

It hence suffices to show that
√
n
|Sn|
∑

φ∈Sn f̄
kn(φX) is asymptotically normal

whenever kn = o(n1/4).

Step 2: Representation by random fields. For each n ∈ N, we construct a
scalar random field Xn on Zkn as follows: For j = (j1, . . . , jk) ∈ Zk, define
the permutation φj := τ1,j1 ◦ · · · ◦ τk,jk . Note that φj[k] = j. Then

Xn :=
(
Yj
)
j∈Zkn where Yj :=

{
f̄kn(φjX) if jl 6= jk for all l 6= k

0 otherwise

is a random element of Xn := RZkn . The group Zkn acts on Xn by shifts,
(i, (xj)j∈Zkn ) 7→ (xj+i)j∈Zkn . Since X is exchangeable, Xn is by construction
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invariant under the diagonal action of Zkn , and its marginal mixing coeffi-
cients satisfy αn(t|G) = 0 for all t > 0. Theorem 9 then shows convergence
as in (33) holds, for η⊥⊥Z.

Step 3: Berry-Esseen bound. The reasoning is similar: For k ∈ N, we have

dW

( √n
η|Sn|

∑
φ∈Snf(φX),

√
n

η|Sn|
∑

φ∈Sn f̄
k(φX)

)
≤ 2
(∑

l≥k dl(η)
)(∑

m∈N dm(η)).

We denote η2(n) :=
∑

i,j≤k Cov[Fi(X, e)Fj(X,φ)|G], and observe that

∥∥η2(n)− η2
η2

∥∥ ≤
∥∥∥
∑∞
l=k

∑
m∈N Cov[Fl(X, e)Fm(X,φ)|G]

η2

∥∥∥
≤ 2

(∑
m∈N dm(η)

)∑
l≥k dl(η).

Substituting into Theorem 10 gives

dW

( √n
η|Sn|

∑
φ∈Sn f(φX), Z

)
≤ C

( k2√
n

+
∑

l≥k dl(η)
)
,

for some C <∞.

Proof of Proposition 20. Write L := {φ ∈ G|φ(W ) ∩W 6= ∅}. Ob-
serve that, if we choose φ to be an element of H \ (An ∩ H) that is such
that φ(W ) ∩AnW 6= ∅, then we have φ ∈ AnL ∩H. This implies that

∥∥√|An ∩H|
(
νn(h)− 1

|An ∩H|

∫

An∩H
f(φ(Π))d|φ|

)∥∥2

2

≤ |(An M AnL) ∩H|
|An ∩H| ‖f(Π)‖22+ε

∑

i∈N
|Bi+1 \Bi|αi(i|G)

ε
2+ε → 0 ,

and Theorem 4 shows 1√
|An∩H|

∫
An∩H f(φ(Π))− E(f(Π)|G)d|φ| d−→ ηZ.

Proof of Proposition 21. By hypothesis, supi>0 i
−r|Bi| <∞, poly-

nomial stability holds with index q > (2+2ε)r
ε , and Π is a Poisson process.

We have to show that
∫

G
α(n)(d(e, φ)|G)

ε
2+ε |dφ| <∞ .

For each b ∈ N, define fn,b(Q) = fn(Q∩Bb(0)), for Q ∈ F . For a subset
F ⊂ G, consider Y (F ) := (fn(φ(Π)))φ∈F and Yb(F ) := (fn,b(φ(Π)))φ∈F , and
write L for the law of a random variable. In addition, we shorthand FH :=
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{φ ∈ H|φ(W )∩FW 6= ∅}. We have that for any choice of F , and any b > 0,
there are C1, C2 > 0 such that

∥∥L(Y (F ))−L(Yb(F ))
∥∥

TV
≤ P (Y (F ) 6= Yb(F ))

≤ E
( ∑

(x,y)∈FW∩Π

I(R(x, y,Πn) > b)
)

(a)

≤ C1|FH| sup
(x,m)∈W

P (R(x,m,Πn) > b)

≤ C2|FH|b−q

(63)

where (a) is a consequence of Campbell theorem. Let d̄ be the Hausdorff
metric induced by d, and denote d̄-balls by B̄. Take F := {φ, φ′} with
elements φ, φ′ ∈ G and let G be another subset of G with d̄(F,G) ≥ b. Then
there is C3 <∞ such that

∥∥L(Y (G))− L(Yd̄(F,G)− b
2
(G))

∥∥
TV
≤ P (Y (G) 6= Yd̄(F,G)− b

2
(G))

≤ ∑j≥b P
(
Y (B̄j+1(F ) \ B̄j(F )) 6= Y 2j−b

2
(B̄j+1(F ) \ B̄j(F )

)

≤ C3
∑

j≥0(j +
b

2
)−q(j + b)r−1

(64)

where the second inequality applies the union bound, and the third follows
by substituting the growth rate and the definition of stability into Eq. (63).
Whenever F and G satisfy |F | ≤ 2 and d̄(F,G) ≥ b, and A,B are measurable
sets, there is hence a constant C ′′ such that
∣∣P (Y (F ) ∈ A, Y (G) ∈ B)− P (Y (F ) ∈ A)P (Y (G) ∈ B)

∣∣
≤ ‖L(Yb/2(F ))− L(Y (F ))‖TV + ‖L(Yd̄(F,G)−b/2(G))− L(Y (G))‖TV

≤ C ′′
(
b
2

)r−q

The first inequality holds by independence of Yb/2(F ) and Yd̄(F,G)−b/2(G), the

second follows from Eq. (63) and (64). That implies α(n)(b|G) ≤ C ′′(b/2)r−q,
and hence the desired result since q > 21+ε

ε r.

Proof of Theorem 22. Since the group is countable, we can define an
order ≺ on G by enumerating the elements of An as φn1 , φ

n
2 . . . and declaring

φni−1 ≺ φni for all i ∈ N. For the process (Sφ), define the σ-algebras

Tn(φ) := σ{Sφ′ |φ′ ∈ An, φ
′ ≺ φ} and T (φ) := σ{Sφ′ |φ′ ≺ φ} .

With these in hand, we define functions

fn(S, φ) := logP (Sφ|Tn(φ))− E[logP (Sφ|Tn(φ))]

gm(S, φ) := logP (Sφ|T (φ) ∩Bm)− E[logP (Sφ|T (φ) ∩Bm)
]
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An application of the chain rule then yields

1√
|An|

(
logP (SAn)− E[logP (SAn)]

)
= 1√

|An|
∑

φ∈An
fn(S, φ) .

Now consider a φ such that Tn(φ) ∩Bm = T (φ) ∩Bm. Then

‖fn(S, φ)− gm(S, φ)‖2 ≤ ρm .

The number of φ ∈ An for which that is not the case is

|{φ ∈ An | Tn(φ) ∩Bm 6= T (φ) ∩Bm}| ≤ |An M BmAn|

Denote Mp := supφ∈G,A⊂G ‖ logP (Xφ|XA)‖p. For any φ, φ′ ∈ G that satisfy
d(φ, φ′) ≥ i and any k ∈ N, we have

Cov
[
fn(S, φ)− gm(S, φ), fn(S, φ′)− gm(S, φ′)

]

≤ 4 min(ρm, ρk)
2 + 8 min(ρm, ρk)M2 + 4M2

2+εα
ε

2+ε (i− k, |Bm|) .

Therefore for any sequence (bn) satisfying
|AnMBbnAn|

|An| → 0 and bn →∞ we
have

1√
|An|

∑
φ∈An

fn(S, φ)− gbn(S, φ)
L2−→ 0 .

Let αm be the mixing coefficient of gm. Then αm(i) ≤ α(i− 2m, |Bm|). The-
orem 9 hence implies

1√
|An|

∑
φ∈An

gm(φX)
d−→ ηmZ for η2

m :=
∑

φ Cov[gm(X), gm(φX)] .

Since ηm
m→∞−−−−→ η, the result follows.


