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CHAPTER 1

Terminology

1.1. Models

The term “model” will be thrown around a lot in the following. By a statistical
model on a sample space X, we mean a set of probability measures on X. If we
write PM(X) for the space of all probability measures on X, a model is a subset
M ⊂ PM(X). The elements of M are indexed by a parameter θ with values in a
parameter space T, that is,

M = {Pθ|θ ∈ T} , (1.1)

where each Pθ is an element of PM(X). (We require of course that the set M is
measurable in PM(X), and that the assignment θ 7→ Pθ is bijective and measur-
able.)

We call a model parametric if T has finite dimension (which usually means
T ⊂ Rd for some d ∈ N). If T has infinite dimension, M is called a nonparametric
model. To formulate statistical problems, we assume that n observations x1, . . . , xn
with values in X are recorded, which we model as random variables X1, . . . , Xn. In
classical statistics, we assume that these random variables are generated i.i.d. from
a measure in the model, i.e.

X1, . . . , Xn ∼iid Pθ for some θ ∈ T . (1.2)

The objective of statistical inference is then to draw conclusions about the value of
θ (and hence about the distribution Pθ of the data) from the observations.

Example 1.1 (Parametric and Nonparametric density estimation). There is noth-
ing Bayesian to this example: We merely try to illustrate the difference between
parametric and nonparametric methods. Suppose we observe data X1, X2, . . . in R
and would like to get an estimate of the underlying density. Consider the following
two estimators:

Figure 1.1. Density estimation with Gaussians: Maximum likelihood estimation (left) and kernel
density estimation (right).

1



2 1. TERMINOLOGY

(1) Gaussian fit. We fit a Gaussian density to the data by maximum likelihood
estimation.

(2) Kernel density estimator. We again use a Gaussian density function g,
in this case as a kernel: For each observation Xi = xi, we add one Gaussian
density with mean xi to our model. The density estimate is then the density
pn(x) := 1

n

∑n
i=1 g(x|xi, σ). Intuitively, we are “smoothing” the data by con-

volution with a Gaussian. (Kernel estimates usually also decrease the variance
with increasing n, but we skip details.)

Figure 1.1 illustrates the two estimators. Now compare the number of parameters
used by each of the two estimators:

• The Gaussian maximum likelihood estimate has 2 degrees of freedom (mean
and standard deviation), regardless of the sample size n. This model is para-
metric.
• The kernel estimate requires an additional mean parameter for each additional

data point. Thus, the number of degrees of freedom grows linearly with the
sample size n. Asymptotically, the number of scalar parameters required is
infinite, and to summarize them as a vector in a parameter space T, we need
an infinite-dimensional space.

/

1.2. Parameters and patterns

A helpful intuition, especially for Bayesian nonparametrics, is to think of θ as
a pattern that explains the data. Figure 1.2 (left) shows a simple example, a linear
regression problem. The dots are the observed data, which shows a clear linear
trend. The line is the pattern we use to explain the data; in this case, simply a
linear function. Think of θ as this function. The parameter space T is hence the
set of linear functions on R. Given θ, the distribution Pθ explains how the dots
scatter around the line. Since a linear function on R can be specified using two
scalars, an offset and a slope, T can equivalently be expressed as R2. Comparing
to our definitions above, we see that this linear regression model is parametric.

Now suppose the trend in the data is clearly nonlinear. We could then use the
set of all functions on R as our parameter space, rather than just linear ones. Of
course, we would usually want a regression function to be continuous and reasonably
smooth, so we could choose T as, say, the set of all twice continuously differentiable
functions on R. An example function θ with data generated from it could then look

Figure 1.2. Regression problems: Linear (left) and nonlinear (right). In either case, we regard
the regression function (plotted in blue) as the model parameter.
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like the function in Figure 1.2 (right). The space T is now infinite-dimensional,
which means the model is nonparametric.

1.3. Bayesian and nonparametric Bayesian models

In Bayesian statistics, we model the parameter as a random variable: The value
of the parameter is unknown, and a basic principle of Bayesian statistics is that
all forms of uncertainty should be expressed as randomness. We therefore have to
consider a random variable Θ with values in T. We make a modeling assumption on
how Θ is distributed, by choosing a specific distribution Q and assuming Q = L(Θ).
The distribution Q is called the prior distribution (or prior for short) of the
model. A Bayesian model therefore consists of a model M as above, called the
observation model, and a prior Q. Under a Bayesian model, data is generated
in two stages, as

Θ ∼ Q
X1, X2, . . . |Θ ∼iid PΘ .

(1.3)

This means the data is conditionally i.i.d. rather than i.i.d. Our objective is then
to determine the posterior distribution, the conditional distribution of Θ given
the data,

Q[Θ ∈ • |X1 = x1, . . . , Xn = xn] . (1.4)

This is the counterpart to parameter estimation in the classical approach. The
value of the parameter remains uncertain given a finite number of observations,
and Bayesian statistics uses the posterior distribution to express this uncertainty.

A nonparametric Bayesian model is a Bayesian model whose parameter
space has infinite dimension. To define a nonparametric Bayesian model, we have
to define a probability distribution (the prior) on an infinite-dimensional space. A
distribution on an infinite-dimensional space T is a stochastic process with paths in
T. Such distributions are typically harder to define than distributions on Rd, but
we can draw on a large arsenal of tools from stochastic process theory and applied
probability.





CHAPTER 2

Clustering and the Dirichlet Process

The first of the basic models we consider is the Dirichlet process, which is
used in particular in data clustering. In a clustering problem, we are given
observations x1, . . . , xn, and the objective is to subdivide the sample into subsets,
the clusters. The observations within each cluster should be mutually similar, in
some sense we have to specify. For example, here is a sample containing n = 1000
observations in R2:

It is not hard to believe that this data may consist of three groups, and the objective
of a clustering method would be to assign to each observation a cluster label 1, 2 or
3. Such an assignment defines a partition of the index set {1, . . . , 1000} into three
disjoint sets.

2.1. Mixture models

The basic assumption of clustering is that each observation Xi belongs to a
single cluster k. We can express the cluster assignment as a random variable Li,
that is, Li = k means Xi belongs to cluster k. Since the cluster assignments are
not known, this variable is unobserved. We can then obtain the distribution char-
acterizing a single cluster k by conditioning on L,

Pk( • ) := P[X ∈ • |L = k] . (2.1)

Additionally, we can define the probability for a newly generated observation to be
in cluster k,

ck := P{L = k} . (2.2)

Clearly,
∑
k ck = 1, since the ck are probabilities of mutually exclusive events. The

distribution of X is then necessarily of the form

P ( • ) =
∑
k∈N

ckPk( • ) . (2.3)

A model of this form is called a mixture distribution. If the number of clusters
is finite, i.e. if there is only a finite number K of non-zero probabilities ck, the

5
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Figure 2.1. The simplex ∆3. Each point in the set can be interpreted as a probability measure

on three disjoint events. For any finite K, the simplex ∆K can be regarded as a subset of the

Euclidean space RK .

mixture is called a finite mixture. Sequences of the form (ck) are so important in
the following that they warrant their own notation: The set of all such sequences
is called the simplex, and we denote it as

4 :=
{

(ck)n∈N

∣∣∣ ck ≥ 0 and
∑
k

ck = 1
}
. (2.4)

Additionally, we write 4K for the subset of sequences in which at most the first K
entries are non-zero.

We now make a second assumption, namely that all Pk are distributions in a
parametric model {Pφ|φ ∈ Ωφ} whose elements have a conditional density p(x|φ).
If so, we can represent Pk by the density p(x|φk), and P in (2.3) has density

p(x) =
∑
k∈N

ckp(x|φk) . (2.5)

A very useful way to represent this distribution is as follows: Let θ be a discrete
probability measure on Ωφ. Such a measure is always of the form

θ( • ) =
∑
k∈N

ckδφk( • ) , (2.6)

for some (ck) ∈ 4 and a sequence of points φk ∈ Ωφ. The Dirac measures1 δφk are
also called the atoms of θ, and the values φk the atom locations. Now if (ck)
and (φk) are in particular the same sequences as in (2.5), we can write the mixture
density p as

p(x) =
∑
k∈N

ckp(x|φk) =

∫
p(x|φ)θ(dφ) . (2.7)

The measure θ is called the mixing measure. This representation accounts for
the name mixture model; see Section 5.1 for more on mixtures.

Equation (2.7) shows that all model parameters—the sequences (ck) and (φk)—
are summarized in the mixing measure. In the sense of our definition of a model

1 Recall that the Dirac measure or point mass δφ is the probability measure which assigns

mass 1 to the singleton (the one-point set) {φ}. Its most important properties are

δφ =

{
1 φ ∈ A
0 φ 6∈ A and

∫
h(τ)δφ(dτ) = h(φ) (2.8)

for any measurable set A and any measurable function h.
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Figure 2.2. Gaussian mixture models. Left : The two-component model with density f(x) =
1
2
g(x|0, 1) + 1

2
g(x|2, 0.5). The red, filled curve is the mixture density, the individual components

are plotted for comparison. Middle: Mixture with components identical to the left, but weights
changed to c1 = 0.8 and c2 = 0.2. Right : Gaussian mixture with K = 3 components on R2. A

sample of size n = 1000 from this model is shown in the introduction of Chapter 2.

in Section 1.1, we can regard (2.7) as the density of a measure Pθ. If T is a set of
discrete probability measures on Ωφ, then M = {Pθ|θ ∈ T} is a model in the sense
of Equation (1.1), and we call M a mixture model. To be very clear:

All mixture models used in clustering can be parametrized by discrete probability
measures.

Without further qualification, the term mixture model is often meant to imply
that T is the set of all discrete probabilities on the parameter space Ωφ defined by
p(x|φ). A finite mixture model of order K is a mixture model with T restricted
no more than K non-zero coefficients.

2.2. Bayesian mixtures

We have already identified the parameter space T for a mixture model: The set
of discrete probability measures on Ωφ, or a suitable subspace thereof. A Bayesian
mixture model is therefore a mixture model with a random mixing measure

Θ =
∑
k∈N

CkδΦk , (2.9)

where I have capitalized the variables Ck and Φk to emphasize that they are now
random. The prior Q of a Bayesian mixture is the law Q of Θ, which is again worth
emphasizing:

The prior of a Bayesian mixture model is the distribution of a random mixing
measure Θ.

To define a Bayesian mixture model, we have to choose the component densities
p(x|φ) (which also defines Ωφ), and we have to find a way to generate a random
probability measure on Ωφ as in (2.9).

To do so, we note that to generate Θ, we only have to generate two suitable
random sequences (Ck) and (Φk). The easiest way to generate random sequences
is to sample their elements i.i.d. from a given distribution, so we begin by choosing
a probability measure G on Ωφ and sample

Φ1,Φ2, . . . ∼iid G . (2.10)

A random measure with this property—i.e. (Φk) is i.i.d. and independent of (Ck)—
is called homogeneous.
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Figure 2.3. Left: A discrete probability measure θ on Ωφ = R, with K = 3 atoms. The heights

of the bars correspond to the weights ci. Right: A Gaussian mixture model with mixing measure
θ. Each parametric density p(x|φ) is normal with fixed variance σ2 = 0.2 and mean φ.

The weights (Ck) cannot be i.i.d.: We can of course sample i.i.d. from a dis-
tribution on [0, 1], but the resulting variables will not add up to 1. In terms of
simplicity, the next-best thing to i.i.d. sampling is to normalize an i.i.d. sequence.
For a finite mixture model with K components, we can sample K i.i.d. random
variables V1, . . . , VK in [0,∞) and define

Ck :=
Vk
T

where T := V1 + . . .+ VK . (2.11)

This clearly defines a distribution on 4K. The simplest example of such a distribu-
tion is the Dirichlet distribution, which we obtain if the variables Vk have gamma
distribution (cf. Appendix A.3).

2.3. Dirichlet processes and stick-breaking

If the number K of mixture components is infinite, normalizing i.i.d. variables
as above fails: An infinite sum of strictly positive i.i.d. variables has to diverge, so
we would have T =∞ almost surely. Nonetheless, there is again a simple solution:
We can certainly sample C1 from a probability distribution H on [0, 1]. Once we
have observed C1, though, C2 is no longer distributed on [0, 1]—it can only take
values in [0, 1− C1]. Recall that the Ck represent probabilities; we can think of
Ik := [0, 1− (C1 + . . .+ Ck)] as the remaining probability mass after the first k
probabilities Ck have been determined, e.g. for k = 2:

C1 C2

I2

(2.12)

Clearly, the distribution of Ck+1, conditionally on the first k values, must be a
distribution on the interval Ik. Although this means we cannot use H as the
distribution of Ck+1, we see that all we have to do is to scale H to Ik. To generate
samples from this scaled distribution, we can first sample Vk from the original H,
and then scale Vk as

Ck := |Ik| · Vk . (2.13)

Since Ik itself scales from step to step as |Ik| = (1− Vk)|Ik−1|, we can generate the
sequence C1:∞ as

V1, V2, . . . ∼iid H and Ck := Vk

k−1∏
j=1

(1− Vk) . (2.14)
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Figure 2.4. Two random measures with K = 10. In both cases, the atom locations Φk are
sampled from a N (0, 1) distribution. The weights Ck are drawn from Dirichlet distributions on

410 with uniform expected distribution. If the Dirichlet concentration parameter is small (α = 1,

left), the variance of the weights is large. A larger concentration parameter (α = 10, right) yields
more evenly distributed weights.

More generally, we can sample the variables Vk each from their own distribution
Hk on [0, 1], as long as we keep them independent,

V1 ∼ H1, V2 ∼ H2, . . . (independently) and Ck := Vk

k−1∏
j=1

(1− Vk) . (2.15)

The sampling procedure (2.15) is called stick-breaking (think of the interval as a
stick from which pieces (1− Vk) are repeatedly broken off). Provided E[Vk] > 0, it
is not hard to see that (Ck) generated by (2.14) is indeed in 4.

We can now generate a homogeneous random measure with K =∞ by choosing
a specific distribution G in (2.10) and a specific sequence of distributions Hk on
[0, 1] in (2.15), and defining

Θ :=
∑

CkδΦk . (2.16)

The basic parametric distribution on [0, 1] is the beta distribution. The homo-
geneous random probability measure defined by choosing H1 = H2 = . . . as a beta
distribution is the Dirichlet process.

Definition 2.1. If α > 0 and if G is a probability measure on Ωφ, the random
discrete probability measure Θ in (2.16) generated by

V1, V2, . . . ∼iid Beta(1, α) and Ck := Vk

k−1∏
j=1

(1− Vk)

Φ1,Φ2, . . . ∼iid G

(2.17)

is called a Dirichlet process (DP) with base measure G and concentration α,
and we denote its law by DP (α,G). /

If we integrate a parametric density p(x|φ) against a random measure Θ gen-
erated by a Dirichlet process, we obtain a mixture model

p(x) =
∑
k∈N

Ckp(x|Φk) , (2.18)
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Figure 2.5. Random measures sampled from a Dirichlet process with normal base measure.
Left: For concentration α = 1, the atom sizes exhibit high variance. Middle: For larger values of

the concentration (here α = 10), the atom sizes become more even. Compare this to the behavior

of the Dirichlet distribution. Right: Decreasing the variance of the normal base measure changes
the distribution of the atoms; the DP concentration is again α = 10.

called a Dirichlet process mixture. Observations X1, X2, . . . are generated from
a DP mixture according to

Θ ∼ DP (α,G0)

Φ1,Φ2, . . . |Θ ∼iid Θ

Xi ∼ p(x|Φi)
(2.19)

The number of non-zero coefficients Ck in now infinite, and the model therefore
represents a population subdivided into an infinite number of clusters, although,
for a finite sample X1 = x1, . . . , Xn = xn, we can of course observe at most n of
these clusters.

Remark 2.2. You will have noticed that I have motivated several definitions in
this section by choosing them to be as simple and “close to i.i.d.” as possible. For
Bayesian models, this is important for two reasons:

(1) Dependencies in the prior (such as coupling between the variables Ck and Φk)
make it much harder to compute posterior distributions—both computation-
ally (in terms of mathematical complexity and computer time) and statistically
(in terms of the amount of data required).

(2) If we choose to use dependent variables, we cannot simply make them “not
independent”; rather, we have to choose one specific form of dependency. Any
specific form of dependence we choose is a modeling assumption, which we
should only impose for good reason.

/

2.4. The posterior of a Dirichlet process

So far, we have considered how to generate an instance of a random measure
Θ. To use Θ as the parameter variable in a Bayesian model, we have to define
how observations are generated in this model, and we then have to determine the
posterior distribution. Before we discuss posteriors of mixtures, we first consider
a simpler model where observations are generated directly from Θ. That is, we
sample:

Θ ∼ DP (α,G0)

Φ1,Φ2, . . . |Θ ∼iid Θ
(2.20)

Each sample Φi almost surely coincides with an atom of Θ.
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Under the model (2.20), we never actually observe Θ, only the variables Φi.
What can we say about their distribution? From the definition of the DP in (2.17),
we can see that the first observation Φ1 is simply distributed according to G. That
is not the case for Φ2, given Φ1: If we have observed Φ1 = φ, we know Θ must have
an atom at φ, and we now could observe either Φ2 = φ again, or another atom.

Theorem 2.3 (Ferguson [12, Theorem 1]). Suppose Θ has a DP (α,G0) distribution
and that observations Φ1 = φ1, . . . ,Φn = φn are generated as in (2.20). Then the
posterior distribution of Θ is

P[Θ ∈ • |Φ1, . . . ,Φn] = DP
(
αG0 +

n∑
k=i

δφi

)
, (2.21)

and the next observation Φn+1 has conditional distribution

P[Φn+1 ∈ • |Φ1, . . . ,Φn] =
α

α+ n
G0 +

1

α+ n

n∑
k=i

δφi . (2.22)

/

The result shows in particular that the Dirichlet process prior has a conjugate
posterior, that is, the posterior is again a Dirichlet process, and its parameters can
be computed from the data by a simple formula; we will discuss conjugate posteriors
in more detail in Section 7.4.

I should stress again that (2.21) is the posterior distribution of a DP under
the sampling model (2.20) in which we observe the variables Φi, not under the DP
mixture, in which the variables Φi are unobserved. To work with DP mixtures, we
address this problem using latent variable algorithms.

2.5. Gibbs-sampling Bayesian mixtures

Random variables like the Φi, which form an “intermediate” unobserved layer
of the model, are called latent variables. If a model contains latent variables,
we can usually not compute the posterior analytically, since that would involve
conditioning on the latent information. There are inference algorithms for latent
variable models, however, and they are usually based on either of two different
strategies:

(1) Variational algorithms, which upper- or lower-bound the effect of the ad-
ditional uncertainty introduced by the latent variables, and optimize these
bounds instead of optimizing the actual, unknown solution. The EM algo-
rithm for finite mixtures is a (non-obvious) example of a variational method,
although a finite mixture is usually not interpreted as a Bayesian model.

(2) Imputation methods, which sample the latent variables and condition on
the sampled values. This is typically done using MCMC.

Inference in DP mixtures and other Bayesian mixtures is based on sampling algo-
rithms that use imputation. I would like to stress that in most Bayesian models,

we use sampling algorithms because the model contains latent variables.

(Most introductory texts on MCMC will motivate sampling algorithms by pointing
out that it is often only possible to evaluate a probability density up to scaling,
and that such an unnormalized distribution can still be sampled—which is perfectly
true, but really beside the point when it comes to latent variable models.)
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Gibbs sampling. Suppose we want to simulate samples from a multivariate
distribution Q on Ωφ, where we assume Ωφ = RD, so random draws are of the form
Φ = (Φ1, . . . ,ΦD). A Gibbs sampler loops over the dimensions d = 1, . . . , D and
samples Φd conditionally on the remaining dimensions. The conditional probability

Q[Φd ∈ • |Φ1 = φ1, . . . ,Φd−1 = φd−1,Φd+1 = φd+1, . . . ,ΦD = φD] (2.23)

is called the full conditional distribution of Φd. Recall that the Gibbs sampler
for P is the algorithm which, in its (j + 1)st iteration, samples

Φ(j+1)

1 ∼ Q[Φd ∈ • |Φ2 = φ(j)

2 , . . . ,ΦD = φ(j)
D ]

...

Φ(j+1)

d ∼ Q[Φd ∈ • |Φ1 = φ(j+1)

1 , . . . ,Φd−1 = φ(j+1)

d−1 ,Φd+1 = φ(j)

d+1, . . . ,ΦD = φ(j)
D ]

...

Φ(j+1)
D ∼ Q[Φd ∈ • |Φ1 = φ(j+1)

1 , . . . ,ΦD−1 = φ(j+1)

D−1 ]

Note that, at each dimension d, the values φ(j+1)

1 , . . . , φ(j+1)

d−1 generated so far in
the current iteration are already used in the conditional, whereas the remaining
dimensions φ(j)

d+1, . . . , φ
(j)
D are filled in from the previous iteration. Since this removal

of a single dimension makes notation cumbersome, it is common to write

φ−d := {φ1, . . . , φd−1, φd+1, . . . , φD} , (2.24)

so the full conditional of Φd is Q[Φd ∈ • |Φ−d = φ−d] et cetera.

A naive Gibbs sampler for DP mixtures. In the Dirichlet process mix-
ture model, we generate n observations X1, . . . , Xn by generating a latent random
measure Θ =

∑
k∈N CkδΦk and sampling from Θ:

Θ ∼ DP (αG0)

Φ1, . . . ,Φn ∼ Θ

Xi ∼ p( • |Φi) .
(2.25)

Recall that reoccurrences of atom locations are possible: Xi and Xj belong to the
same cluster if Φi = Φj . We observe that, under this model:

• The variables Φi are conditionally independent of each other given Θ.
• Φi is conditionally independent of Xj given Φj if j 6= i. In other words, the

conditional variable Φi|Φj is independent of Xj .

To derive a Gibbs sampler, we regard the variables Φi as n coordinate variables.
The joint conditional distribution of (Φ1, . . . ,Φn) given the data is complicated,

but we can indeed derive the full conditionals

L(Φi|Φ−i, X1:n) (2.26)

with relative ease:

• We choose one Φi and condition on the remaining variables Φ−i. Since the Φi
are conditionally independent and hence exchangeable, we can choose variables
in any arbitrary order.

• If we know Φ−i, we can compute the DP posterior L(Θ|Φ−i).
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We know from Theorem 2.3 that

P[Θ ∈ • |Φ−i] = DP
(
αG0 +

∑
j 6=i

δΦj

)
. (2.27)

We also know that, if we sample Θ ∼ DP (αG) and Φ ∼ Θ, then Φ has marginal
distribution L(Φ) = G. Combined, that yields

P[Φi ∈ • |Φ−i] =
α

α+ (n− 1)
G0 +

1

α+ (n− 1)

∑
j 6=i

δΦj . (2.28)

To account for the observed data, we additionally have to condition on X1:n. Since
Φi|Φj is independent of Xj ,

L(Φi|Φ−i, X1:n) = L(Φi|Φ−i, Xi) . (2.29)

To obtain the full conditional of Φi, we therefore only have to condition (2.28) on
Xi. To do so, we can think of P[Φi ∈ • |Φ−i] as a prior for Φi, and compute its
posterior under a single observation Xi = xi, with likelihood p(x|φ) as given by the
mixture model. Since p(x|φ) is typically a parametric model, we can apply Bayes’
theorem, and obtain the full conditional

P[Φi ∈ dφ|Φ−i = φ−i, Xi = xi] =
αp(xi|φ)G0(dφ) +

∑
j 6=i δφj (dφ)

normalization
. (2.30)

By substituting the full conditionals into the definition of the Gibbs sampler, we
obtain:

Algorithm 2.4.
For iteration l = 1, . . . , L:

• For i = 1, . . . , n, sample Φi|Φ−i, Xi according to (2.30).

Although this algorithm is a valid sampler, it has extremely slow mixing behavior.
The reason is, roughly speaking:

• The Xi are grouped into K ≤ n clusters; hence, there are only K distinct
values Φ∗1, . . . ,Φ

∗
K within the set Φ1, . . . ,Φn.

• The algorithm cannot change the values Φ∗k from one step to the next. To
change the parameter of a cluster, it has to (1) create a new cluster and (2)
move points from the old to the new cluster one by one. Whenever such a
new parameter value is generated, it is sampled from a full conditional (2.30),
which means it is based only on a single data point.

In terms of the state space of the sampler, this means that in order to move from
the old to the new cluster configuration—even if it differs only in the value of a
single cluster parameter Φ∗k—the sampler has to move through a region of the state
space with very low probability.

MacEachern’s algorithm. The issues of the naive sampler can be addressed
easily by grouping data points by cluster and generating updates of the cluster
parameters given the entire data in the cluster. The resulting algorithm is the
standard sampler for DP mixtures, and is due to MacEachern [40].

Recall that Xi and Xj are considered to be in the same cluster iff Φi = Φj .
We express the assignments of observations to clusters using additional variables
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B1, . . . , Bn, with

Bi = k ⇔ Xi in cluster k . (2.31)

We must also be able to express that Φi is not contained in any of the current
clusters defined by the remaining variables Φ−i, which we do by setting

Bi = 0 ⇔ xi not in any current cluster k ∈ {1, . . . ,K} . (2.32)

The posterior of a DP mixture given data x1, . . . , xn can then be sampled as follows:

Algorithm 2.5. In each iteration l, execute the following steps:

(1) For i = 1, . . . , n, sample

Bi ∼ Multinomial(ai0, ai1, . . . , aiK) .

(2) For k = 1, . . . ,Kl, sample

Φ∗k ∼

(∏
i|Bi=k p(xi|φ)

)
G0(dφ)∫

Ωφ

(∏
i|Bi=k p(xi|φ)

)
G0(dφ)

.

To convince ourselves that the algorithm is a valid sampler for the posterior,
observe that conditioning on the variables Bi permits us to subdivide the data into
clusters, and then compute the posterior of the cluster parameter Φ∗k given the
entire cluster:

P[Φ∗k ∈ dφ|B1:n, X1:n] =

(∏
i|Bi=k p(xi|φ)

)
G0(dφ)

normalization
. (2.33)

Since Φ∗k is, conditionally on B1:n and X1:n, independent of the other cluster pa-
rameters, this is indeed the full conditional distribution of Φ∗k. Conversely, we can
compute the full conditionals of the variables Bi given all remaining variables: Since

P[Φi ∈ dφ|B−i,Φ∗1:K , Xi = xi] =
αp(xi|φ)G0(dφ) +

∑
j 6=i p(xi|φ)δφ∗Bi

(dφ)

normalization
,

we have for any cluster k:

P[Bi = • |B−i,Φ∗1:K , Xi = xi] = P[Φi = Φ∗•|B−i,Φ∗1:K , Xi = xi]

=

∫
{φ∗•}

P[Φi = dφ|B−i,Φ∗1:K , Xi = xi]

=

∫
{φ∗•}

p(xi|φ)

N
δφ∗•(dφ)

=
p(xi|φ∗k)

N
=: aik .

(2.34)
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The probability that xi is not in any of the current clusters is the complement of
the cluster probabilities:

P[Bi = 0|B−i,Φ∗1:K , Xi = xi] = P[Φi ∈ Ωφr{φ∗1, . . . , φ∗K}|B−i,Φ∗1:K , Xi = xi]

=

∫
Ωφr{φ∗1:K}

P[Φi = dφ|B−i,Φ∗1:K , Xi = xi]

=
α

N

∫
{φ∗•}

p(xi|φ)G0(dφ) =: ai0 .

(2.35)

If these two types of full conditionals are again substituted into the definition of
the Gibbs sampler, we obtain precisely Algorithm 2.5.

Remark 2.6. MacEachern’s algorithm is easy to implement if p(x|φ) is chosen
as an exponential family density and the Dirichlet process base measure G0 as a
natural conjugate prior for p. In this case, Φ∗k in the algorithm is simply drawn from
a conjugate posterior. If p and G0 are not conjugate, computing the distribution of
Φ∗k may require numerical integration (which moreover has to be solved K times in
every iteration of the algorithm). There are more sophisticated samplers available
for the non-conjugate case which negotiate this problem. The de-facto standard is
Neal’s “Algorithm 8”, see [45]. /

2.6. Random partitions

A clustering solution can be encoded as a partition of the index set of the
sample: Suppose we record observations X1, . . . , X10 and compute a clustering
solution that subdivides the data into three clusters,

({X1, X2, X4, X7, X10}, {X3, X5}, {X6, X8, X9}) . (2.36)

We can encode this solution as a partition of the index set [10] = {1, . . . , 10}:
({1, 2, 4, 7, 10}, {3, 5}, {6, 8, 9}) . (2.37)

Since we always regard the elements of a finite sample X1, . . . , Xn as the initial n
elements of an infinite sequence X1, X2, . . ., we must in general consider partitions
of N rather than [n]. To make things more precise, a partition

ψ = (ψ1, ψ2, . . .) (2.38)

of N is a subdivision of N into a (possibly infinite) number of subsets ψi ⊂ N, such
that each i ∈ N is contained in exactly one set ψk. The sets ψk are called the blocks
of the partition. A partition ψn of [n] is defined analogously. The blocks can be
ordered according to their smallest element, as we have done in (2.37). It hence
make sense to refer to ψk as the kth block of ψ.

Suppose we have some method to compute a clustering solution from a given
data set. Even if our clustering algorithm is deterministic, the observationsX1, X2, . . .
are random, and the result is hence a random partition

Ψ = (Ψ1,Ψ2, . . .) , (2.39)

that is, a partition-valued random variable. Recall how we used the variables Li
to encode cluster assignments (by setting Li = k if Xi is in cluster k). In terms of
partitions, this means

Li = k ⇔ i ∈ Ψk , (2.40)
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and a random sequence (L1, L2, . . .) is hence precisely equivalent to a random par-
tition (Ψ1,Ψ2, . . .).

Given a discrete probability measure θ =
∑
ckδφk , we can generate a random

partition Ψ of N by sampling the variables L1, L2, . . . in (2.40) with probabilities

P(Li = k) = ck . (2.41)

Any discrete probability measure θ hence parametrizes a distribution Pθ(Ψ ∈ • ) on
random partitions. If Θ is a random discrete probability measure with distribution
Q, we can define a distribution on partitions by integrating out Θ,

P (Ψ ∈ • ) :=

∫
T

Pθ(Ψ ∈ • )Q(dθ) . (2.42)

We can sample from this distribution in two steps, as Θ ∼ Q and Ψ|Θ ∼ PΘ.

2.7. The Chinese restaurant process

Recall our discussion in Section 1.2, where we interpreted the parameter of a
Bayesian model as a representation of the solution that we are trying to extract
from the data. A clustering solution is a partition of the sample index set, whereas
the parameter in Bayesian mixture is a discrete probability measure—the partition
represents the actual subdivision of the sample, the random discrete measure the
mixture model we are fitting to the sample. We could hence argue that a more
appropriate choice for the model parameter would be a partition, in which case the
prior should be a distribution on partitions.

As we have seen above, a discrete random measure induces a distribution on
partitions. The Chinese restaurant process with concentration α is the distri-
bution P (Ψ ∈ • ) on partitions that we obtain if we choose Q as a Dirichlet process
with parameters (α,G0) in (2.42). The choice base measure G0 has no effect on Ψ
(provided G0 is non-atomic), and the CRP hence has only a single parameter.

According to (2.42), we can sample a CRP partition by sampling a random mea-
sure Θ from a Dirichlet process, throwing away its atom locations, and then sam-
pling the block assignment variables Li from the distribution given by the weights
Ck. That is of course the case for all partitions induced by random measures, but
in the specific case of the CRP, we can greatly simplify this procedure and sample
Ψ using the following procedure:

Sampling scheme 2.7. For n = 1, 2, . . .,

(1) insert n into an existing block Ψk with probability |Ψk|
α+(n−1) .

(2) create a new block containing only n with probability α
α+(n−1) .

The algorithm can be rewritten as a distribution,

Ln+1 ∼
Kn∑
k=1

∑n
i=1 I{Li = k}
α+ n

δk +
α

α+ n
δK+1 . (2.43)
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Asymptotically (i.e. for n→∞), a partition generated by the formula is distributed
according to CRP(α). Compare this to the predictive sampling distribution of the
Dirichlet process.2

More generally, we can substitute a random partition prior for a random mea-
sure prior whenever the random measure is homogeneous. Homogeneity is required
because it makes the weights of Θ, and hence the induced partition Ψ, independent
of the atom locations—if Θ is inhomogeneous, we have to sample the atoms as well
in order to determine Ψ. In the homogeneous case, we can sample Ψ, and then fill
in independent atoms later if needed. For clustering applications, we do of course
need the atom locations as parameters for the parametric components p(x|φ), but if
Θ is homogeneous, we can sampling process as follows. First, generate a partition:

(1) Sample (Ci).
(2) Sample Ψ given (Ci).

Then, given the partition, generate the actual observations:

(3) For each block Ψk, sample a parameter value Φk ∼ G0.
(4) For all i ∈ Ψk, sample Xi|Φk ∼ p( • |Φk).

This representation neatly separates the information generated by the model into
the clustering solution (the partition Ψ) and information pertaining to the genera-
tion of observations (the parameters Φk and the observations Xi themselves).

Random partitions have been thoroughly studied in applied probability; Pit-
man’s monograph [51] is the authorative reference.

2.8. Power laws and the Pitman-Yor process

If we generate n observations X1, . . . , Xn from a discrete random measure,
we can record the number Kn of distinct clusters in this data (by comparing the
latent variables Φ1, . . . ,Φn). If the random measure is a Dirichlet process, then Kn

grows logarithmically in n. For a large range of real-world problems, this kind of
logarithmic growth is not a realistic assumption, since many important statistics
are known to follow so-called power laws.

Definition 2.8. We say that a probability distribution P on positive numbers is
a power law distribution if its density with respect to Lebesgue or counting
measure is of the form

p(x) = c · x−a (2.44)

for constants c, a ∈ R+. /

Examples of statistics with a power law distribution include the frequencies of
words in the English language, the number of followers per user on Twitter, the
sizes of cities, the sizes of bodies of water (from puddles to lakes and oceans) in
nature, the distribution of wealth, etc. Power laws typically arise as the outcome
of aggregation processes.

It is possible to obtain a clustering model which generates power-law distributed
clusters by tweaking the Dirichlet process. The result is one of the most fascinating
objects used in Bayesian nonparametrics, the Pitman-Yor process. Recall that

2 The name “Chinese restaurant process” derives from the idea that the blocks of the partition
are tables in a restaurant and the numbers are customers who join the tables. Some colleagues

find such “culinary analogies” very useful; I do not.
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the predictive distribution of observation Xn+1 given X1, . . . , Xn under a Dirichlet
process mixture is

p(xn+1|x1, . . . , xn) =

Kn∑
k=1

nk
n+ α

p(xn+1|φ∗k) +
α

n+ α

∫
p(xn+1|φ)G0(φ)dφ .

Informally, to obtain a power law, we should have more very small and very large
clusters, and fewer clusters of medium size. A possible way to obtain such a law
would be to modify the DP in a way that makes it harder for a very small cluster to
transition to medium size. A very simple solution to apply a “discount” d ∈ [0, 1]
as follows:

p(xn+1|x1, . . . , xn) =

Kn∑
k=1

nk−d
n+ α

p(xn+1|φ∗k) +
α+Kn · d
n+ α

∫
p(xn+1|φ)G0(φ)dφ

To understand the influence of d, think of sampling observations from the model
consecutively. Whenever a new cluster k is generated, it initially contains nk = 1
points. Under the DP (where d = 0), the probability of observing a second point in
the same cluster is proportional to nk. If d is close to 1, however, it becomes much
less likely for the cluster to grow, so many clusters stay small. Some will grow,
though, and once they contain a few points, d has little effect any more, so new
observations tend to accumulate in these clusters which have outgrown the effect
of the discount. For d > 0, the model hence tends to produce a few large an many
very small clusters.

We can define a random measure prior with this predictive distribution by
modifying the stick-breaking construction of the Dirichlet process:

Definition 2.9. The homogeneous random measure ξ =
∑
k∈N CkδΦk defined by

weights

Vk ∼ Beta(1− d, α+ kd) and Ck := Vk

k−1∏
j=1

(1− Vj) (2.45)

and atom locations

Φ1,Φ2, . . . ∼iid G0 (2.46)

is called a Pitman-Yor process with concentration α, diversity parameter d, and
base measure G0. /

For a non-technical introduction to the Pitman-Yor process, have a look at
Yee Whye Teh’s article on Kneser-Ney smoothing, which applies the Pitman-Yor
process to an illustrative problem in language processing [61].

In the applied probability literature, it is common to denote the concentration
parameter (our α) as θ, and the second parameter (our d) as α. In the Bayesian
literature, using α for the concentration is well-established. The two conventions
can be traced back to the classic papers by Kingman [31] and Ferguson [12], re-
spectively.

Remark 2.10. Several different names float around the literature referring to a
number of very closely related objects: The name Dirichlet process refers to the ran-
dom measure Θ =

∑
k CkδΦk in Definition 2.1. We have already noted above that,

since the DP is homogeneous, its only non-trivial aspect is really the distribution
of the weight sequence (Ck), which is completely controlled by the concentration
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α. The weights can be represented in two ways: Either, we can keep them in the
order they are generated by the stick-breaking construction (2.14). In this case,
L((Ck)k∈N) is usually called the GEM(α) distribution, named rather obscurely
for the authors of [20], [10] and [42]. Alternatively, we can rank the Ck by size
to obtain an ordered sequence (C ′k), whose distribution was dubbed the Poisson-
Dirichlet distribution by Kingman [31], usually abbreviated pd(α). Since the
induced random partition does not depend on G0 either, its law, the Chinese restau-
rant process, also has just one parameter, and is commonly denoted CRP(α), as
we have done above.

We can generalize all of these distributions to the case described by the Pitman-
Yor process above, but now have to include the additional parameter d. Thus,
we obtain the GEM(α, d) distribution of the weights sampled in (2.45), the two-
parameter Poisson-Dirichlet distribution pd(α, d) for the ranked weights, the
two-parameter Chinese restaurant process CRP(α, d) for the induced random
partition of N, and of course the Pitman-Yor process with parameters (α, d,G0) for
the random measure Θ. Historically, the two-parameter case was first introduced
as the two-parameter Poisson-Dirichlet in [50] and [52]. Ishwaran and James [24]
turned it into a random measure and coined the term Pitman-Yor process. /

2.9. The number of components in a mixture

An old and very important problem in mixture modeling is how to select the
number of mixture components, i.e. the order K of the mixture. Whether and how
DP mixtures and similar models provide a solution to this problem is one of the
most commonly misunderstood aspects of Bayesian nonparametrics:

Bayesian nonparametric mixtures are not a tool for automatically selecting the
number of components in a finite mixture. If we assume that the number of

clusters exhibited in the underlying population is finite, Bayesian nonparametric
mixtures are misspecified models.

I will try to argue this point in more detail: If we use a DP mixture on a sample
of size n, then in any clustering solution supported by the posterior, a random, finite
number Kn ≤ n of clusters is present. Hence, we obtain a posterior distribution
on the number of clusters. Although this is not technically model selection—since
there is just one model, under which the different possible values of Kn are mutually
exclusive events—we indeed have obtained a solution for the number of clusters.
However, a DP random measure has an infinite number of atoms almost surely.
Hence, the modeling assumption implicit in a DP mixture is that

as n→∞, we will inevitably (with probability 1) observe an infinite number of
clusters.

To choose an adequate strategy for determining the number of components, we
have to distinguish three types of problems:

(1) K is finite and known, which is the assumption expressed by a finite mixture
model of order K.

(2) K is finite but unknown. In this case, the appropriate model would be a
finite mixture model of unknown order. This problem should not be modeled
by a DP or other infinite mixture.

(3) K is infinite, as assumed by the Dirichlet process/CRP or the Pitman-Yor
process.
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In many clustering problems, (3) is really the appropriate assumption: In topic
modeling problems, for example, we assume that a given text corpus contains a
finite number of topics, but that is only because the corpus itself is finite. If the
corpus size increases, we would expect new topics to emerge, and it would usually
be very difficult to argue that the number of topics eventually runs up against some
finite bound and remains fixed.

What if we really have reason to assume that (2) is adequate? In a classical
mixture-model setup—estimate a finite mixture by approximate maximum likeli-
hood using an EM algorithm, say—choosing K in (2) is a model selection problem,
since different K result in different models whose likelihoods are not comparable.
This problem is also called the model order selection problem, and popular
solutions include penalty methods (AIC or BIC), stability, etc. [see e.g. 43].

We can also take a Bayesian mixture approach and assume K to be unknown,
but if we believe K is finite, we should choose a model that generates a random
finite number K. For example, we could define a prior on K as

K := K ′ + 1 where K ′ ∼ Poisson(λ) , (2.47)

(where we add 1 since a Poisson variable may be 0) and then sample from a finite
Bayesian mixture with K components.

There are of course situations in which it can be beneficial to deliberately mis-
specify a model, and we can ask whether, even though an infinite mixture model is
misspecified for case (2), it may perhaps still yield the right answer for K. Miller
and Harrison [44] have recently clarified that this is not the case for DP or Pitman-
Yor process mixtures using a wide range of mixture components (such as Gaussians,
multinomials, etc.): If we generate a sample from a finite mixture, and then com-
pute the posterior under an infinite DP or PYP mixture model, then asymptotically,
the posterior concentrates on solutions with an infinite number of clusters. That
is exactly what the model assumes: An infinitely large sample exhibits an infinite
number of clusters almost surely.

Remark 2.11. To obtain an infinite (nonparametric) mixture, it is by no means
necessary to take a Bayesian approach—the mixing distribution can be estimated
by nonparametric maximum likelihood, similar to a Kaplan-Meier estimator [43,
§1.2] Bayesian finite mixtures are less common; see [54] for an overview. /

2.10. Historical references

The Dirichlet process (and the corresponding approach to priors) was intro-
duced by Ferguson [12], who attributes the idea to David Blackwell. Kingman [31]
introduced the closely related Poisson-Dirichlet distribution; his paper is full of in-
sights and still a very worthwhile read. Blackwell [4] showed that a DP random
measure is discrete; see [32, Chapter 8.3] for an accessible and more general deriva-
tion of his result. Almost simultaneously with Ferguson’s paper, [5] proposed an
interpretation of the Dirichlet process as a generalized Pólya urn. Urn models offer
a third perspective on partition models, in addition to random discrete measures
and random partitions—from and urn, we sample balls (= observations) of differ-
ent colors (= cluster labels). This is the perspective taken by species sampling
models (where each color is called a species). See [8] for more on species sampling,
and [19, 49] for more on urn models.
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Antoniak [1] proposed a model called a mixture of Dirichlet processes (MDP),
which is sometimes mistaken as a Dirichlet Process mixture. The MDP puts a
prior on the parameters of the DP base measure. A draw from a MDP is discrete
almost surely, just as for the DP. Steven MacEachern has pointed out to me that
Antoniak’s paper also contains a Dirichlet process mixture: Antoniak introduces
the idea of using a parametric likelihood with a DP or MDP, which he refers to
as ”random noise” (cf his Theorem 3) and as a sampling distribution (cf Example
4). If this is used with a DP, the resulting distribution is identical to a Dirichlet
process mixture model. However, Lo [36] was the first author to study models of
this form from a mixture perspective.

Initially, interest focused primarily on overcoming the discreteness property of
the DP, with models such as the DP mixture model, tailfree processes [9] and Pólya
trees [13]. NTR processes were introduced by [9], and the idea was taken up by [14]
in the context of survival analysis. context by [60], who apply the Dirichlet process
to right-censored data and obtain a Kaplan-Meier estimator in the limit α→ 0.

The name “Chinese restaurant process”, is due to L. E. Dubins and J. Pitman
[see 51], who introduced it as a distribution on infinite permutations, in which case
each “table” is a cycle of a permutation, rather than a block in a partition, and
the order in which elements are inserted at a table matters. By projecting out the
order within cycles, one obtains a partition of N, and the induced distribution on
partitions is the CRP as commonly used in Bayesian nonparametrics. The two-
parameter Poisson-Dirichlet is due Pitman and Yor [52], partly in joint work with
Perman [50]. Its random measure form, the Pitman-Yor process, was introduced
by Ishwaran and James [24].





CHAPTER 3

Latent features and the Indian buffet process

I am including the Indian buffet process, or IBP, in these notes as one of the
three basic models, along with the Dirichlet and Gaussian process. That drastically
overstates its importance, at least in terms of how widely these three models are
used. The IBP is of conceptual interest, though, and neatly illustrates some funda-
mental ideas.

In clustering, we have looked at partitions of data, where each data point or
object belongs to one (and only one) group. There is a range of problems in which
we are more interested in solutions in which clusters can overlap, i.e. each data
point can belong to multiple groups. Instead of a partition, say,

({1, 2, 4, 7}, {3}, {5}, {6, 9}, {8}) , (3.1)

we would hence consider something like

({1, 2, 3, 4, 7}, {3}, {4, 5}, {3, 6, 9}, {8, 9}) . (3.2)

Such a “relaxed partition” is, technically speaking, a family of sets. The term
family implies that elements can reoccur—there may be two or more groups con-
taining the same objects (an equivalent term is multiset). Just as for a partition,
we will refer to the elements of the family as blocks. A convenient way to encode
both partitions and families of sets is as a binary matrix z, where zik = 1 iff i is in
block k. To illustrate:



1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0



block #

ob
je

ct
#

partition (3.1)



1 0 0 0 0
1 0 0 0 0
1 1 0 1 0
1 0 1 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 1



block #

ob
je

ct
#

family of sets (3.2)

Clearly, a partition is obtained as a special case of a family of sets—namely, if the
sum of every row of z is 1. For families of sets, we allow multiple occurrences, but
for the problems discussed below, each number should occur in at most a finite
number of blocks, i.e. we require the sum of each row in z to be finite, even if z has
an infinite number of columns.

23
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3.1. Latent feature models

The use of overlapping blocks was motivated in machine learning by a type of
models that resemble linear factor analyzers: We observe data X1, X2, . . . in, say,
Rd, and think of each vector Xi as a list of measurements describing an object
i. To explain the data, we assume that there is an underlying (unobserved) set
of properties, called features, which each object may or may not possess. The
measurement Xi depends on which features object i exhibits.

Definition 3.1. Let X1, . . . , Xn be observations represented as d-dimensional vec-
tors. A latent feature model assumes that there is a fixed d ×K-matrix φ and
a binary matrix z ∈ {0, 1}n×K which parametrize the distribution of X as

Xij ∼ Pbij where bij = (zi1φj1, . . . , ziKφjK) . (3.3)

Each dimension k is called a feature. The number K ∈ N ∪ {∞} of features is
called the order of the model. /

If we interpret the matrix z as the model parameter, the model is clearly non-
parametric (regardless of whether or not K is finite). Equation (3.3) says that the
distribution of Xij is completely determined by the effects φij ; the entries of z act
as switches which turn effects on or off. To obtain a tractable model, we impose
two further assumptions:

(1) The effects φjk are scalars which combine linearly, i.e. the law of Xij is param-
eterized by the sum

∑
k zikφjk.

(2) All additional randomness is an additive noise contribution.

The model (3.3) then becomes

Xij =
∑
k

zikφjk + εij = (zφ)ij + εij . (3.4)

Example 3.2 (Collaborative filtering). A particular application is a prediction
problem that arises in marketing: Each vector Xi represents an individual (a
“user”), and each dimension j a product—movies are the prototypical example.
We read Xij as a rating, i.e. a value that expresses how much user i likes movie j.
Observed data in this setting is usually sparse: Each user has on average only seen
and rated a small subset of movies.

The basic approach is to identify other users with similar tastes as user i,
i.e. who have rated a large fraction of movies similarly. We then use the ratings
these users have assigned to movie j as a predictor for Xij . This approach is
called collaborative filtering. The perhaps simplest implementation would be
to identify users with similar preferences and then simply average their ratings for
movie j. Since the data is sparse, this estimate may well be volatile (or not even
well-defined, if no similar user has rated the movie). A more robust approach is to
group movies into types—for illustration, think of dramas, documentaries, etc—and
use these types as summary variables.

Collaborative filtering can be implemented as the latent feature model (3.4) by
interpreting the components as follows:

feature k movie type k
zik user i likes movies of type k (iff zik = 1)
φkj contribution of feature k to rating of movie j
εij remaining randomness in Xij
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The illustration of movie types as dramas, documentaries etc has to be taken with
a grain of salt, since the types are not predefined, but rather latent classes that are
effectively estimated from data. /

3.2. The Indian buffet process

If we regard the binary matrix z as the model parameter, a Bayesian approach
has to define a prior law for a random binary matrix Z. The basic model of this type
is a generalization of the Chinese restaurant process from partitions to overlapping
blocks. The model samples a matrix Z as follows:

Sampling scheme 3.3. For n = 1, 2, . . .,

(1) insert n into each block Ψk separately with probability |Ψk|n .
(2) create Poisson(αn ) new blocks, each containing only n.

If we interpret the ith row of the matrix as a “preference profile” for user i, the
distribution of this profile should obviously not depend on i. In other words, the
law of Z should be invariant under permutations of the rows (or row-exchangeable).
That requirement is clearly not satisfied by the matrix generated by Algorithm 3.3:
The expected number of 1s per row increases with i. This problem is addressed as
follows:

• We generate a matrix using Algorithm 3.3.
• We order the matrix in a unique way that eliminates the order: Any two

matrices which differ only by the order in which the rows occur map to the
same ordered matrix.
• The ordered matrix is regarded as a representative of an equivalence class.

Thus, we do not eliminate the dependence of the distribution on the order of rows by
defining a different distribution on matrices, but rather by defining a distribution
on equivalence classes of matrices. The ordering method we use is called left-
ordering:

unordered left-ordered

It sorts all columns (=features) exhibited by object 1 to the very left of the matrix;
the next block of columns are all features not exhibited by object 1, but by object
2; etc. Each of the resulting blocks is again left ordered. A more concise way to
express this is: Read each column k of Z as a binary number, with z1k the most
significant bit, and order these numbers decreasingly from left to right. We hence
augment the sampling scheme 3.3 by an additional step:
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Sampling scheme 3.4.

• For n = 1, 2, . . .,

(1) insert n into each block Ψk separately with probability |Ψk|n .
(2) create Poisson(αn ) new blocks, each containing only n.

• Left-order the matrix and output the resulting matrix Z.

The distribution on (equivalence classes of) binary matrices defined by Algorithm
3.4 is called the Indian buffet process (IBP), due to Griffiths and Ghahramani
[21]. Compare this to the analogous CRP sampling procedure in Algorithm 2.7.

3.3. Exchangeability in the IBP

In a random matrix sampled from an IBP, both the rows and the columns are
exchangeable, which means that the distribution of Z is invariant under rearrange-
ment of the rows or the columns. More precisely, if we sample a matrix Z of size
n×K, then for any permutations π of {1, . . . , n} and π′ of {1, . . . ,K}, we have

(Zij)
d
= (Zπ(i)π′(j)) . (3.5)

It is easy to see that, due to the left-ordering step, the columns are exchange-
able. However, left-ordering also makes the rows exchangeable, which is a little
less obvious—the left-ordering illustration above seems to suggest that rows fur-
ther down the matrix tend to contain more 1s. That is not actually the case: The
rows sums all have the same distribution Poisson(α).

To understand how that happens, recall the additivity and thinning properties
of the Poisson distribution (see (A.3) and (A.4) in Appendix A). Now consider the
IBP sampling scheme in Algorithm 3.4:

• In the first step (n=1), we generate Poisson(α) blocks by definition.
• For the second row (n=2), we have already generated Poisson(α) blocks in the

previous step. Each of these blocks has size 1, so the second row contains a 1 in
each of these columns with independent probability 1

2 . By (A.4), the number
of 1s generated in this way is Poisson(α2 ). Additionally, Poisson(α2 ) new blocks
are generated by step 2 of the algorithm. The total number of blocks is hence
Poisson(α2 + α

2 ) by (A.3).
• For n = 3, 4, . . ., the argument requires more book-keeping, because blocks can

now have sizes larger than one, but if we work out the details, we again find
that the row sum has distribution Poisson(α).

Thus, each row sum marginally has a Poisson(α) distribution, and that is true
regardless of left-ordering. However, before left-ordering, the rows are not ex-
changeable, because of the order in which 1s occur in each row: The new blocks

always appear on the right, so in the nth row, we see Poisson( (n−1)α
n ) blocks with

gaps in between, and then Poisson(αn ) blocks without gaps. Left-ordering removes
this pattern.

3.4. Random measure representation of latent feature models

The latent feature model (3.4) is parametrized by a pair (z, φ), consisting of
a binary matrix z and a vector φ. A Bayesian formulation of the model hence
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Partition Family of sets

random matrix Z exchangeable rows exchangeable rows
constraint on Z each row sums 1 a.s. each row sum is finite a.s.
random measure weight sum to 1 a.s. weight sum finite a.s.
probabilities Ci mutually exclusive events disjoint events
basic model CRP IBP

Table 3.1. Partitions vs families of sets.

has to define a prior on random pairs (Z,Φ). A very elegant way to generate this
information is using a discrete random measure

Θ =
∑
k∈N

CkδΦk , (3.6)

where the weights take values in [0, 1]. We then generate the matrix Z by sampling

Zik|Θ ∼ Bernoulli(Ck) , (3.7)

and model the observations as

Xij |Θ = (ZΦ)j + εij . (3.8)

Thus, the i.i.d. noise ε aside, all information in the model is summarized in Θ. This
representation is due to [66], who also showed that for a specific random measure
called the beta process, this representation yields the IBP. More precisely, if Θ is
generated by a beta process, the random matrix Z in (3.7) is, after left-ordering,
distributed according to the IBP. This definition of the IBP via the beta process is
the precise analogue of the way the CRP can be defined via the Dirichlet process.
We will discuss the beta process in Chapter 8.

I should emphasize that the weights Ck of the random measure do not have
to sum to 1, since they represent mutually independent probabilities. Thus, Θ is a
random measure, but not a random probability measure. Recall, however, that we
have constrained the matrix Z to finite row sums (each object only exhibits a finite
number of features). Since E[Zik] = Ck, we see immediately (by Borel-Cantelli)
that this requires

Θ(Ωφ) =
∑
k∈N

Ck <∞ a.s. (3.9)

Table 3.1 compares models assuming disjoint and overlapping blocks.





CHAPTER 4

Regression and the Gaussian process

Consider a simple regression problem, where observations consist of covariates
xi ∈ R+ and responses yi ∈ R. The solution of such a problem is a regression
function θ : R→ R+. Given the regression function, we predict the response at
an unobserved location x to be y = θ(x). In terms of Bayesian nonparametrics,
this means that the parameter variable Θ is a random regression function (recall
the discussion in Section 1.2). To define a prior distribution, we have to define a
probability distribution on a suitable space T of functions which we consider viable
solutions. The Gaussian process is such a distribution on functions; in many ways,
it is the simplest distribution we can hope to define on continuous functions.

The space of all functions between two spaces X→ Y is the product space
YX. (Think of each element of YX as an infinitely long list, with one entry for
each element of x ∈ X; the entry specifies the function value at x. The finite-
dimensional analogue would be to think of a vector (x1, . . . , xd) in the Euclidean
space Rd = R{1,...,d} as a function i 7→ xi.) In the case of our regression prob-
lem, this would be the uncountable-dimensional space RR+ . This space is not a
good choice for T—almost all functions in this space jump almost everywhere, and
we would like a regression solution to be reasonably smooth.1 As more suitable
function spaces, we will consider the Hilbert space T := L2(R+,R) of Lebesgue
square-integrable functions and the space T := C(R+,R) of continuous functions
R+ → R.

4.1. Gaussian processes

Let T be a space of functions from a set S ⊂ Rd to R. If Θ is a random element
of T, and we fix a point s ∈ S, then Θ(s) is a random variable in R. More generally,
if we fix n points s1, . . . , sn ∈ S, then (Θ(s1), . . . ,Θ(sn)) is a random vector in Rn.

Definition 4.1. Let µ be a probability measure on the function space T. The
distributions

µs1,...,sn := L(Θ(s1), . . . ,Θ(sn)), (4.1)

defined by µ are called the finite-dimensional marginals or finite-dimensional
distributions of µ. If µs1,...,sn is an n-dimensional Gaussian for each finite set
s1, . . . , sn ∈ S of points, µ is called a Gaussian process (GP) on T. /

This definition is standard in the literature, but it can cause a lot of confusion, and
I would like to issue a dire warning:

1The idea of almost all and almost everywhere, which seems vague without having defined
a probability measure first, can be made precise topologically: The functions which are at least

piece-wise continuous, meaning well-behaved, form a topologically meager subset.

29
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R+

Θ(s)

s1 s2

Θ(s1)

Figure 4.1. A random function Θ : R→ R defines a random scalar Θ(s) for every point s ∈ R.

Dire warning 4.2. The definition of the GP implicitly assumes that (a) the mea-
sure µ on T exists, and (b) that it is uniquely defined by the finite-dimensional
marginals, which is neither obvious nor universally true. /

Roughly speaking, uniqueness is usually guaranteed, but existence is a much
more subtle question; it depends on the space T and on which finite-dimensional
marginals we would like µ to have. For now, we will assume that µ exists and is
uniquely specified by Definition 4.1.

We define functions m : S → R and k : S × S → R as

m(s) := E[Θ(s)] k(s1, s2) := Cov[Θ(s1),Θ(s2)] (4.2)

and call them the mean function and covariance function of µ. If µ is a
Gaussian process, its definition says that each finite-dimensional marginal µs1,...,sn
is the Gaussian distribution with mean vector and covariance matrixm(s1)

...
m(sn)

 and

k(s1, s1) . . . k(s1, sn)
...

...
k(s1, s1) . . . k(s1, sn)

 . (4.3)

Provided a GP µ is uniquely defined by Definition 4.1, it is hence completely defined
by its mean and covariance functions, and we can parametrize Gaussian processes
on a given space T as GP (m,k).

4.2. Gaussian process priors and posteriors

In a regression problem, the solution explaining the data is a function, so we
can in principle use a Gaussian process as a prior in a Bayesian regression model. To
make this feasible, however, we have to be able to compute a posterior distribution.

We first have to define an observation model: Suppose our data is of the form
(s1, x1), . . . , (sn, xn), where si ∈ S are observation points (covariates) and xi ∈ R
is the observed value at si (the response). We assume that there is a function
θ : S → R, the regression function, from which the xi are generated as noisy obser-
vations:

Xi = Θ(si) + εi where εi ∼ N (0, σ2) . (4.4)

We assume, of course, that the noise contributions ε1, ε2, . . . are i.i.d. The posterior
distribution we are looking for is the distribution

P[Θ ∈ • |X1 = x1, . . . , Xn = xn] , (4.5)
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and hence a measure on the function space T. Since we know (or for now pretend
to know) that a distribution on T is uniquely determined by the finite-dimensional
marginal distributions, it is sufficient to determine the distributions

L(Θ(sn+1), . . . ,Θ(sn+m)|X1 = x1, . . . , Xn = xn) , (4.6)

for any finite set of new observation locations {sn+1, . . . , sn+m}. To keep notation
sane, we abbreviate

A := {n+ 1, . . . , n+m} and B := {1, . . . , n} (4.7)

and write

Θ(sA) := (Θ(sn+1), . . . ,Θ(sn+m)) and XB := (X1, . . . , Xn) . (4.8)

To condition on the variables Xi, we first have to take a closer look at their dis-
tribution: In (4.4), Θ(si) is the sum of two independent Gaussian variables variance
k(si, si) and σ2, and hence again Gaussian with variance k(si, si) + σ2. For i 6= j,
only the contributions Θ(si) and Θ(sj) couple (since the noise is independent).
Hence, XB has covariance matrix

ΣBB :=

k(s1, s1) + σ2 . . . k(s1, sn)
...

. . .
...

k(sn, s1) . . . k(sn, sn) + σ2

 . (4.9)

The joint covariance of the (n+m)-dimensional vector (Θ(sA), XB) is then

Cov[(Θ(sA), XB)] =

(
ΣAA ΣAB

ΣtAB ΣBB

)
. (4.10)

Again, since the noise is independent, the only contributions to the covariance come
from the GP, and hence

ΣAB =
(
k(si, sj)

)
i∈A,j∈B

and ΣAA =
(
k(si, sj)

)
i,j∈A

. (4.11)

Determining the GP posterior hence comes down to conditioning in a multidimen-
sional Gaussian. How that works is explained by the following simple lemma:

Lemma 4.3 (Conditioning in Gaussian distributions). Let (A,B) be a partition of
the set {1, . . . , d} and let X = (XA,XB) be a Gaussian random vector in Rd = RA × RB,
with

E[X] =

(
µA

µB

)
and Cov[X] =

(
ΣAA ΣAB

ΣtAB ΣBB

)
. (4.12)

Then the conditional distribution of XA|(XB = xB) is again Gaussian, with mean

E[XA|XB = xB] = µA − ΣABΣ−1
BB(xB − µB) (4.13)

and covariance

Cov[XA|XB = xB] = ΣAA − ΣtABΣ−1
BBΣAB . (4.14)

/

We can now read off the posterior of the Gaussian process, simply by substi-
tuting into the lemma. Since the finite-dimensional marginal distributions are all
Gaussian, the posterior is a GP.
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Theorem 4.4. The posterior of a GP (0,k) prior under the observation (4.4) is
again a Gaussian process. Its finite-dimensional marginal distributions at any finite
set {sn+1, . . . , sn+m} of locations is the Gaussian with mean vector

E[Θ(sA)|XB = xB] = ΣAB(ΣBB + σ2I)−1xB (4.15)

and covariance matrix

Cov[Θ(sA)|XB = xB] = ΣAA − ΣtAB(ΣBB + σ2I)−1ΣAB . (4.16)

/

What we have left to do is to give a proof of Lemma 4.3, which is a “disclaimer
proof”: No deep insights, it simply clarifies that there is no black magic involved.

Proof of Lemma 4.3. The conditional density g(xA|xB) is given by

g(xA,xB) = g(xA|xB)g(xB) . (4.17)

It is useful to think of X̃A := (XA|XB = xB) as a separate, “conditional” random
variable. This variable is independent of XB (which is exactly what the product in

(4.17) says), and the joint covariance of X̃A and XB is hence block-diagonal,

Cov[X̃A,XB] =

(
Σ̃AA 0
0 ΣBB

)
. (4.18)

We have to determine Σ̃AA. We can do so by decomposing the quadratic form

f(x) := (x− E[X])tCov[X]−1(x− E[X]) . (4.19)

Since g(x) ∝ e− 1
2 f(x), the multiplicative decomposition (4.17) corresponds to an

additive decomposition of f into into components corresponding to X̃A and XB.
We know from linear algebra2 that any symmetric matrix with invertible blocks
A,B,Z can be inverted as(

A Z
Zt B

)−1

=

(
1 0

−B−1Zt 1

)(
(A− ZB−1Zt)−1 0

0 B−1

)(
1 −ZB−1

0 1

)
. (4.20)

Substituting in the components of Cov[X], we have

Cov[X]−1 =
(

1 0

−Σ−1

BB
ΣBA 1

)(
(ΣAA − ΣABΣ−1

BB
ΣBA)−1 0

0 1

)(
1 −ΣABΣ−1

BB
0 1

)
modifies µtA

inverse of
block-diagonal covariance (4.18)

modifies µA

(4.21)

We substitute into the quadratic form (4.19), multiply out the terms, and obtain

E[X̃A] = µA − ΣABΣ−1
BB(µB − xB) and Cov[X̃A] = ΣAA − ΣABΣ−1

BBΣAB (4.22)

as claimed. �

2If you would like to read up further on this, look for the term Schur complement in the
linear algebra literature. A concise reference is Appendix A.5.5 in Boyd/Vandenberghe, “Convex

Optimization”.
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4.3. Is the definition meaningful?

To ensure that the definition of the Gaussian process makes sense, we have to
answer two separate questions:

(1) Does a measure satisfying the definition of GP (m,k) exist on T?
(2) Given T and functions m and k, is GP (m,k) unique?

We first answer question (2), which is easier, and the answer very generally is “yes”.
I will not state this result rigorously, since the precise meaning of a probability
measure on T depends on which topology we choose on the function space, but for
all practical purposes, we can always rest assured:

Theorem sketch 4.5. Let T be defined as above. Any distribution µ on T is
uniquely determined by its finite-dimensional marginals. /

This approach to the construction of a stochastic process, which uses an infinite
number of finite-dimensional distributions to define a single infinite-dimensional
distribution, is called a projective limit construction. It is the most general (and
most powerful) technique available for the construction of stochastic processes; I
will not elaborate further here since the details can get fairly technical.

The question whether µ exists has many different answers, depending on the
choice of T. The answer is short and crisp if T is a Hilbert space:

Theorem 4.6 (Prokhorov). Let T = L2(S,R). Then the Gaussian process GP (m,k)
on T exists if and only if m ∈ T and∫

S

k(s, s)ds <∞ . (4.23)

/

The integral in (4.23) is called the trace of the covariance function.3 The
simplicity of the criterion (4.23) is not so surprising if we note that k is by definition
a positive definite function, and hence a Mercer kernel. Since we know that Mercer
kernels are inherently related to Hilbert spaces, we would expect a simple answer.

If we want T to be a space of continuous functions, existence results become
more cumbersome. Here is an example: Recall that a function θ is called locally
Lipschitz-continuous (of order r) if every s ∈ S has am open neighborhood Uε(s)
on which

|θ(s)− θ(t)| ≤ C|s− t|r for all t ∈ Uε(s) . (4.24)

The Lipschitz constant C is independent of s, but the definition weakens Lipschitz
continuity, which requires the equation to hold for all t in S (rather than just all t
in some neighborhood). The following criterion is sufficient (though not necessary)
for the existence of a GP:

Theorem 4.7 (Kolmogorov, Chentsov). Let T be the set of functions θ : Rd → R
which are locally Lipschitz of order r. Then the Gaussian process µ on T exists if

3A few keywords, in case you would like to read up further details in the literature: The func-
tion k defines a linear operator K (a linear mapping from T to itself) by (Kf)(s) :=

∫
k(s, t)f(t)dt.

In this context, k is called an integral kernel. Operators defined in this form are called Hilbert-

Schmidt integral operators, and are a specific example of Hilbert-Schmidt operators (which
means they are bounded and have finite Hilbert-Schmidt norm). An operator satisfying (4.23) is
called a trace class operator.
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there are any constants α > 0 and C > 0 such that

E[|Θ(s)−Θ(t)|α] ≤ C|s− t|1+rα . (4.25)

/



CHAPTER 5

Models as building blocks

The basic Bayesian nonparametric models we have seen so far can be combined
to obtain more complicated models. Two popular combination strategies are (1)
hierarchical models, which define “layers” of hidden variables, where each layer is
generated by a basic model conditionally on the previous one, and (2) covariate-
dependent models, which are families of basic models indexed by a covariate such
as time or space (e.g. a time series of Dirichlet process mixtures).

These types of models arguably account for the lion’s share of research in
Bayesian nonparametrics, particularly in machine learning applications, where such
model combinations have yielded a number of natural and compelling solutions.

5.1. Mixture models

In the context of clustering, we have specifically considered mixture models
with a finite or countable number of “components”. In general, a mixture model
on X is a probability distribution

µ( • ) =

∫
Ωφ

p( • , φ)m(dφ) , (5.1)

where p is a probability kernel Ωφ → PM(X). The probability measure m on Ωφ is
called the mixing measure. The mixtures introduced in Chapter 2 are the special
case where the mixing measure m is discrete (and possibly generated at random as
m = Θ). If the probability p in (5.1) has a conditional density p(x|φ) with respect
to some σ-finite measure ν on X, then µ has a density f with respect to the same
ν, given by

f(x) =

∫
p(x|φ)m(dφ) , (5.2)

Integrals of the form (5.1) correspond to a two-stage sampling procedure: If we
generate X1, X2, . . . as

(1) sample Φi ∼ m
(2) sample Xi|Φi ∼ p( • |Φi),
then each sample is distributed as Xi ∼ µ.

Example 5.1. An illustrative example of a mixture with continuous mixing mea-
sure is Student’s t-distribution: If we choose p(x|φ) in (5.2) as a Gaussian density
with mean µ and variance σ2, where we fix µ and set φ := σ2, and choose the mixing
measure m as an inverse-gamma distribution on σ2, then f is a Student t-density.
By mixing over all possible widths of the Gaussian, we obtain a distribution with
heavy tails; see Figure 5.1. /
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Figure 5.1. Continuous mixtures: If the probability kernel p( • , σ2) is a zero-mean Gaussian
distribution with variance σ2 (left), and the mixing measure m is chosen as a gamma distribution

(middle), the resulting mixture distribution is Student’s t-distribution (right). Note how mixing

over all scales of the Gaussian generates heavy tails in the mixture.

Remark 5.2 (Bayesian models as mixtures). Compare the mixture sampling scheme
above to a Bayesian model for an exchangeable sequence X1:∞:

(1) Θ ∼ Q
(2) X1, X2, . . . |Θ ∼ PΘ

We see that any such Bayesian model is a mixture, with the prior Q as its mixing
measure, but we have to be careful: In a Bayesian model, we sample one realiza-
tion of the parameter, and then generate the entire sample given this realization,
whereas in a mixture, each Xi is generated by a separate value Φi. Thus, if each
Xi in the Bayesian model takes values in X, the model is a mixture on the sample
space X∞, with mixture components of the form P∞θ . /

5.2. Hierarchical models

Suppose we specify a Bayesian model for a data source, which we represent
as the joint distribution L(X1:∞) of an infinite random sequence. The standard
Bayesian modeling assumption (1.3) decomposes the joint distribution of the se-
quence as

P(X1:∞ ∈ • ) =

∫
T

P∞θ ( • )Q(dθ) . (5.3)

We observe that we can apply the same idea recursively, and split up Q as, say,

Q(Θ ∈ dθ) =

∫
T′
Q[Θ|Θ′]Q′(Θ′ ∈ dθ′) , (5.4)

for some additional random variable Θ′ with law Q′ and values in a space T′.
Why should we? If the random object Θ is very simple (e.g. a random scalar),

there is indeed no good reason to do so, but if Θ is more complicated, then the
recursive decomposition above can be used to simplify Θ by imposing hierachical
structure. By imposing a hiearchical structure, we introduce layers of random
variables that are not observed, i.e. latent variables.1A useful rule of thumb to keep
in mind is:

Hierarchical models are latent variable models which impose conditional
independence structure between separate layers of latent variables.
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In fact, we have already seen such a structure in Bayesian mixture models,
which becomes more apparent if we define the model backwards:

Example 5.3 (DP mixture). Start with the joint distribution P(X1:∞ ∈ • ) of
the data, and assume that it is a mixture as in (5.1), with a smooth component
density p in (5.2). Then each observation Xi is explained by a separate value Φi
sampled from the mixing measure, so the model parameter would be Θ = (Φ1:∞),
and we have no hope to recover it from data, since we would have to estimate each
Φi from a single data point. Since the Φi are exchangeable, we can model them
by a random mixing measure Θ′ with distribution Q′. If we choose Q′ in (5.4)
as a Dirichlet process, Q[Θ|Θ′] as the joint distribution of Θ = (Φi) given the DP
random measure Θ′, and Pθ as a measure with density p( • |θ), we obtain precisely
the Dirichlet process mixture model. (Compared to our notation in Chapter 2, the
random measure has now moved up one step in the hierarchy and is denoted Θ′

rather than Θ.) /

Hierarchical nonparametric models are particularly popular in machine learn-
ing, for a number of reasons:

• In many machine learning models (such as HMMs), the layers of the hierarchy
have a natural interpretation.
• We can use both the basic models of Bayesian nonparametrics, such as DPs and

GPs, and standard models from machine learning, as building blocks. They
can be combined into hierarchies to represent more complex models.
• If we can Gibbs-sample each layer in a hierarchy, we can Gibbs-sample the

hierarchy.

Perhaps the most prominent examples are two closely related models known as the
infinite hidden Markov model and the hierarchical Dirichlet process.

Example 5.4 (Bayesian HMM). Recall that a hidden Markov model is a model
for time-series data X1, X2, . . ., where each observation Xi is indexed by a discrete
time index i. The model generates observations by first generating a sequence
(Φ1,Φ2, . . .) of parameters with values in a space Ωφ, which in this context is called
the state space. An HMM specifically imposes the assumption that the sequence
Φ1:∞ is a Markov chain. We additionally define a parametric model with density
p(x|φ) and parameter space Ωφ, and explain observations Xi as

Xi|Φi ∼ p(x|Φi) . (5.5)

The parametric model defined by p is also called the emission model. Depicted
as a graphical model, an HMM looks like this:

1 Most authors motivate hierarchical models differently: If we define a prior controlled by a

hyperparameter, and a suitable setting for that hyperparameter is not known, we can “be Bayesian

about it” and define a hyperprior on the hyperparameter. If that hyperprior is controlled by yet
another hyperparameter, we can add a further hyperprior, etc.

That may well be how many hierarchical models in the literature have come about, but
conceptually, I have personally never found this explanation very satisfactory: By consecutively

defining hyper-priors, hyper-hyper-priors etc., we cannot escape the fact that the entire hierarchy

ultimately still represents a single measure Q on T, so with each additional layer, we are only
putting off the inevitable. The utility of hierarchies is that they impose a hiearchical structure on

the random object Θ.
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Φ1 Φ2 · · · Φn

X1 X2 · · · Xn

Recall further that a Markov chain on a finite state space Ωφ is completely char-
acterized by two parameters, (1) the distribution ν0 of the first state Φ1, and (2)
the transition matrix t, which specifies the probabilities to move from state i to
state j:

t = (tij) where tij := P[Φn+1 = φj |Φn = φi] for all φi, φj ∈ Ωφ ,

where I am using superscripts to enumerate the elements of the state space as
Ωφ = {φ1, . . . , φK}.

Now observe that, if we fix a specific time index i, the observation Xi is dis-
tributed according to a finite mixture model, with component distribution p(x|φ)

and mixing measure m( • ) =
∑|Ωφ|
k=1 ckδφk( • ). What are the mixture weights ck?

If we consider the distribution of Xi conditionally on the previous state Φn−1 = φi,
then clearly

ck := P[Φn = φk|Φn−1 = φi] = tik . (5.6)

If we instead marginalize out the first (n− 1) states, then ck is the probability for
the Markov chain (ν, t) to end up in state k after n steps. Hence, we can regard
a HMM with finite state space of size K as a sequence of mixture models with K
components. The mixtures are tied together by the Markov chain.

We obtain a Bayesian HMM by defining a prior distribution on the parameters
(ν, t) of the Markov chain. The initial distribution ν is a probability on K events,
so we could use a Dirichlet distribution on the simplex 4K as a prior. Similarly,
each row of the transition matrix t is a probability distribution (again on K events),
so we could e.g. sample ν and each row of t independently from one and the same
Dirichlet distribution. /

Beal, Ghahramani, and Rasmussen [2] noticed that a HMM with (countably)
infinite state space Ωφ = {φ1, φ2, . . .} can be obtained by making the Bayesian
HMM nonparametric:

Example 5.5 (Infinite HMM [2]). Suppose we sample the distribution defining the
ith row of t from a Dirichlet process. More precisely, we sample a random measure
Θi ∼ DP (α,G) and define

Tij := Cij for Θi =
∑
k∈N

CikδΦik . (5.7)

Then each atom Φik describes a separate state and there is a countably infinite
number of atoms, so the random matrix T is infinite, and the state space is indeed
countably infinite.

There is, however, one complication: If we sample each Θi independently from
a Dirichlet process with continuous base measure, the sets of atoms defined by
any two such random measures Θi and Θj are almost surely disjoint. (Defining
the base measure on a countably infinite space does not solve this problem, it just
introduces additional counting problems.) The solution is to instead make the Θi
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conditionally independent by tying them together in a hierarchy: First, we sample
a random measure Θ′ from a Dirichlet process. Then, conditionally on Θ′, each Θi

is sampled from another Dirichlet process, with Θ′ as its base measure:

Θ′ ∼ Q′ = DP (α,G)

Θ1,Θ2, . . . |Θ′ ∼iid Q[ • |Θ′] = DP (α,Θ′) .
(5.8)

Beal et al. [2] called this hierarchy a hierachical Dirichlet process or HDP.
Suppose a given atom Φk of Θ′ has a large weight C ′k. A look at the DP

sampling formula (2.22) shows that such atoms tend to occur early in the sequential
sampling of Θi. Hence, atoms with large weight C ′k also tend to have large weights
Cik in the measures Θi. The HMM defined by the resulting infinite transition
matrix T therefore concentrates much of its probability mass on a small subset
of states (which is precisely what makes this model interesting). Beal et al. [2]
called this model an infinite hidden Markov model. From a machine learning
perspective, the infinite state space means the model can “add new states” as more
data becomes available. See [2] for more details and for inference, and [15] for an
interesting theoretical perspective. /

In [2], the HDP was considered specifically as a device to generate the random
transition matrix T. Teh, Jordan, Beal, and Blei [65] observed that this model is
much more widely applicable, by regarding it as a generic hierarchical representation
of a family of discrete random measures {Θ1,Θ2, . . .} which all share the same
atoms. The name hierarchical Dirichlet process is generally used to refer to their
version of the model.

Example 5.6 (Hierarchical Dirichlet process [65]). Consider the clustering setup
again, where we model an exchangeable sequence X1:∞ e.g. by a DP mixture.
The parameter is a random measure Θ. Now suppose that the observed data is
naturally subdivided into (known) subsets, so in fact we observe multiple sample
sequences X1

1:n1
, X2

1:n2
, . . .. We split up the prior and hierarchically decompose

Θ into {Θ1,Θ2, . . .}, generated conditionally independently from a single Θ′ as
in (5.8). Each Θk is interpreted as the parameter explaining one set Xk

1:nk
of

observations.
A popular example are text document models (topic models), where each Xk

1:nk

represents a single text document, and the individual observations Xk
i individual

words. The basic assumption in such models is that a topictopic model is a distri-
bution over the terms in a given vocabulary, represented as the parameter vector
of a multinomial distribution with one category per term, and that text documents
are mixtures of topics. Since each document may mix topics according to its own
proportions, we need to estimate one mixture for each document k (represented
by Θk), but all of these mixtures share the same topics (the atoms of the mea-
sure Θ′), and overall, some topics are more common in text documents than others
(expressed by the weights C ′i of Θ′). See [65, 64] for more details. /

Remark 5.7 (Gibbs-sampling hierarchies). I have already mentioned above that
one of the appealing aspects of hierarchical models is that they can be constructed
by using basic models as components, and that we can Gibbs-sample the hierarchy
if we can Gibbs-sample each component.

I would like to complement this with a word of caution: Each time we add an
additional layer in our hierarchy, the size of the state space which has to be explored
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by the Gibbs sampler is multiplied by the number of states added in the additional
layer. Thus, as an admittedly imprecise rule of thumb, the effective dimension of the
state space grows roughly exponentially in the depth of the hierarchy. A hierarchical
structure of course somewhat constrains complexity. However, for many of the more
complex models we have seen in the machine learning literature in recent years, it
seems unlikely that any sampler for the model posterior can actually be run long
enough to have mixed. I believe we should ask ourselves seriously how much we
really know about these models. /

5.3. Covariate-dependent models

Observational data may involve covariates, i.e. observed variables that we
do not bother to model as random—for example, because we are not trying to
predict their values—but rather condition upon. In Bayesian nonparametrics, this
problem was first addressed systematically by MacEachern [41], and although his
work focussed on the Dirichlet process, I hope the (brief) discussion below clarifies
that his ideas are much more generally applicable. For more on covariate-dependent
models, see [16].

I will generically denote the covariate information as a (non-random) variable z
with values in a space Z. An intuitive example is time-dependence, where Z is a set
of time points. Say we are modeling some effect X over time. If we try to predict
both the effect X and the time at which it occurs, we would include a time-valued
random variable Z in the model, and attempt to predict (X,Z). If we are instead
interested in predicting X at given times z, we would regard time as a covariate,
and try to predict X(z).

Now suppose we have a model M = {Pθ|θ ∈ T} that we consider adequate for
X(z) at a fixed covariate value z. Since X(z) is effectively a function of z, we have to
substitute M by a z-indexed family of models M(Z). That means the parameter θ
becomes a function θ(z) of z. As a parameter for the complete covariate-dependent
model, we hence have to consider functions

θ( • ) : Z→ T . (5.9)

At the very least, we will want this function to be measurable, so in its most general
form, the covariate dependent model defined by M would be

M(Z) = {Pθ( • )|θ ∈ B(Z,T), P ∈M} , (5.10)

where B(Z,T) is the space of Borel functions Z→ T. We can always think of this
as a T-valued regression problem, and as in any regression problem, we will have
to impose additional smoothness properties on the function θ( • ).

Definition 5.8. Let Z be a standard Borel space and B(Z,T) the set of Borel-
measurable functions Z→ T. Let M = {Pt|t ∈ T} be a model on X. Let Q be a
prior distribution on B(Z,T). We call a Bayesian model with prior Q and sample
space B(Z,T) a covariate-dependent model with covariate space Z if

L(X(z)|Θ( • )) = PΘ(z) for all z ∈ Z . (5.11)

/

This definition is by no means carved in stone—I have just made it up here in
the hope of making ideas precise. In most applications, the definition would have
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to be extended to include some form of censoring, since we rarely observe samples
Xi(z) for every points z.

MacEachern [41] introduced the specific case in which Θ(z) is a Dirichlet process
for every z ∈ Z.

Definition 5.9. Let T = PM(V ) and let Φ : Ω→ B(Z,PM(V )) be a covariate-
dependent parameter. If the law of Φz is a Dirichlet process for all z ∈ Z, i.e. if
there are measurable mappings α : Z→ R>0 and G0 : Z→ PM(V ) such that

L(Φz) = DP (α(z), G0(z)) for all z ∈ Z , (5.12)

then L(Φ) is called a dependent Dirichlet process. /

In general, it is far from trivial to specify a prior distribution on random measur-
able functions Z→ T. (Recall how difficult it is to turn a Gaussian distribution into
the simplest distribution on continuous functions, the GP.) For a specific problem,
we can start with a prior on T and try to find a representation that can be reformu-
lated as a function of the covariate. MacEachern [41] noticed that this is possible
for the Dirichlet process using the stick-breaking construction: A DP random mea-
sure is of the form Θ =

∑
k CkδΦk . We can hence turn it into a covariate-dependent

parameter Θ( • ) by making its components covariate-dependent,

Θ(z) =
∑
k∈N

Ck(z)δΦ(z) . (5.13)

For the component parameters Φk, that “simply” means we have to define ran-
dom functions Z→ Ωφ; if Ωφ is Euclidean, we can do so using a Gaussian pro-
cess. The Ck require a bit more thought: The stick-breaking construction (2.17)
shows that we can generate the Ck from i.i.d. variables Vk that are marginally
beta-distributed, so we need to generate random functions Vk : Z→ [0, 1] such that
marginally, L(Vk(z)) = Beta(1, α(z)), where α may now also be a function of Z.

The arguably most widely used solution is to transform a Gaussian process
using cumulative distribution functions: Suppose Y is a real-valued random variable
and F its CDF. Then the random variable F (Y ) is uniformly distributed on [0, 1].
If F−1 is the right-continuous inverse

F−1(w) := {y ∈ R|F (y) > w} (5.14)

of F and U ∼ Uniform[0, 1], then F−1(U)
d
= Y . Hence, if Ṽ is a random function

Z→ R sampled from a Gaussian process, we can define Fz as the CDF of the
(Gaussian) marginal distribution of Ṽ (z) and Gz as the CDF of Beta(1, α(z)).
Then

V (z) := G−1
z ◦ Fz(Ṽ (z)) (5.15)

is a random function Z→ [0, 1] with marginals L(V (z)) = Beta(1, α(z)). We can
then obtain a dependent Dirichlet process as

Θ( • , z) :=

∞∑
n=1

(
Vn(z)

n−1∏
j=1

(1− Vj(z))
)
δΦn(z)( • ) . (5.16)

Intriguingly, Θ is a random measurable function Z→ PM(T), and hence a random
probability kernel (or random conditional probability).
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If modeling dependence of the weights Ck on z is not considered important, we
can greatly simplify this model by setting

Θ( • , z) :=

∞∑
n=1

(
Vn

n−1∏
j=1

(1− Vj)
)
δΦn(z)( • ) , (5.17)

called the single-p model in [41]. Note that (5.17) is simply a Dirichlet process on
a function space, where each atom location Φk( • ) is a function, with a Gaussian
process as its base measure.



CHAPTER 6

Exchangeability

Recall how we informally described statistical inference in Section 1.2 as the
process of extracting an underlying pattern (represented by the model parameter)
from observational data. A Bayesian approach models the unknown pattern as
a random variable. Again (very) informally, the idea is that we decompose the
randomness in the data source into two parts, as

data = underlying pattern + sample randomness (6.1)

(where I would ask you to read the “+” symbolically, not as an arithmetic oper-
ator). In a specific Bayesian model, these two parts correspond to the prior and
the observation model. We can only hope to extract an underlying pattern from
observations, if (1) a common pattern exists and (2) it is not completely obfuscated
by the sample randomness. Exchangeability properties provide criteria for when
this is possible. The best-known result of this type is of course de Finetti’s theorem,
but it is actually just the basic (and historically first) example of a larger class of
theorems, which explain the consequences of exchangeability for a wide range of
random structures. In this chapter, I will briefly discuss three important results:
The theorems of de Finetti, of Kingman, and of Aldous and Hoover. For more
details, see [48].

6.1. Bayesian models and conditional independence

In applications of Bayesian modeling, we typically see Bayes’ theorem used in
a way that looks more or less like this:

Q[dθ|X1:n = x1:n] =a.s.

∏n
i=1 pθ(xi)∫

T

∏n
i=1 pθ′(xi)Q(dθ′)

Q(dθ) , (6.2)

where Q is a prior distribution and p a likelihood density. A closer look shows that
this setup implies a substantial modeling assumption beyond the choice of Q and
p: We have assumed that, for a fixed instance θ of Θ, the joint likelihood of the
sample X1:n factorizes, i.e. that

pn,θ(x1, . . . , xn) =

n∏
i=1

pθ(xi) . (6.3)

Since Θ is a random variable, this means we assume that observations X1, X2, . . .
are conditionally independent (and identically distributed) given Θ. More formally,
we call random variables X1, . . . , Xn conditionally independent given a random
variable Θ if

P[X1:n ∈ dx1 × . . .× dxn|Θ] =a.s.

n∏
i=1

P[Xi ∈ dxi|Θ] . (6.4)

43
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Conditional independence of X and X ′ given Θ is often also denoted X⊥⊥ΘX
′. If

the conditional distribution P[Xi ∈ dxi|Θ] on the right-hand side above is identical
for all Xi, we say that the Xi are conditionally i.i.d. given Θ. In this case, we
can obviously write

P[X1:n ∈ dx1 × . . .× dxn|Θ] =a.s.

n∏
i=1

PΘ(dxi) (6.5)

for some family of distributions Pθ on X.
It is really important to understand that conditional independence is not simply

an arbitrary modeling assumption—arguably, it is the heart and soul of Bayesian
modeling. In terms of our “data=pattern + sample randomness” idea above, condi-
tional independence means that, given the pattern Θ, all remaining randomness in
the sample completely decouples (is stochastically independent between samples).
In other words:

If observations are conditionally independent given Θ, all joint information in
data sampled from the source is contained in Θ.

From a Bayesian statistics perspective, this means Θ (and only Θ) is the information
we want to extract from data. The fundamental question we ask in this chapter is:

Under which conditions can we assume conditional independence of observations
given some random quantity?

Example 6.1. To illustrate the difference between known and unknown Θ, suppose
we sample data from a Gaussian with known, fixed covariance, and Θ is simply the
Gaussian’s mean:

Θ

A

B

What does the observed data tell us about the probability of whether the next
observation will occur in the shaded area A or B, respectively? That depends on
whether or not we know where Θ is:

(1) If we do not know the location of Θ, the data indicates the next sample is
more likely to be located in A than in B. That means the observed sample
X1:n carries information about the next sample point Xn+1, and X1:n and
Xn+1 are hence stochastically dependent—they couple through the unknown
location Θ.

(2) If we do know Θ, we can precisely compute the probability of A and B, and
the observed sample provides no further information. All information X1:n can
possibly provide about Xn+1 is contained in Θ, so knowing Θ decouples X1:n

and Xn+1.

Similarly, in the regression example in Figure 1.2, the observations are conditionally
independent given the regression function. /

6.2. Prediction and exchangeability

We can approach the problem from a different angle by taking a predictive
perspective, as we have done in Example 6.1: Under what conditions can we predict
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observation Xn+1 from a recorded sample X1:n? For simplicity, we first consider
two samples of equal size n:

X1, . . . , Xn, Xn+1, . . . , X2n

already
observed

future
observations

(6.6)

Suppose we use some statistical tool to extract information from X1:n. If we hope
to use this information to make predictions about Xn+1:2n, then whatever it is
that we have extracted must still be valid for Xn+1:2n. The most general form of
“information” extractable from X1:n is of course the joint distribution L(X1:n). We
see that there are two possible cases in which we may be able to predict Xn+1:2n:

• X1:n and Xn+1:2n contain—up to finite-sample effects—the same information.
In terms of distributions, this would mean

L(X1:n) = L(Xn+1:2n) . (6.7)

• L(X1:n) and L(Xn+1:2n) differ, but the difference can be estimated from X1:n—
for example, if X1:∞ represents a time series with a drift, the two laws would
differ, but we may be able to estimate the drift and correct for it.

Since we are looking for a general and reasonably simple result, we only consider
the first case; the second one would be a mess of assumptions and special cases.

We note that the first case implies we could swap the two blocks of samples in
(6.6), and predict X1:n from Xn+1:2n just as well as the other way around: Since any
two random variables satisfy L(Y |Z)L(Z) = L(Z|Y )L(Y ), and since conditional
probabilities are a.s. unique, (6.7) implies

L(Xn+1:2n|X1:n) =a.s. L(X1:n|Xn+1:2n) . (6.8)

Again combined with (6.7), this additionally means that the joint distribution of
X1:2n does not change if we swap the blocks:

L(Xn+1:2n, X1:n) = L(X1:n, Xn+1:2n) (6.9)

For general prediction problems, the block structure assumed in (6.6) is rather
arbitrary. Instead, we would rather ask under which conditions we can predict
any one observation in a sample from the remaining ones. In terms of swapping
variables around, that means: If we consider prediction of Xn+1 given X1:n, we can
swap Xn+1 with any element of X1:n:

X1, . . . , Xm, . . . , Xn, Xn+1

predict observed

X1, . . . , Xn+1, . . . , Xn, Xm

observed predict

As observations come in one by one, each element of the sequence is at some point
the most recent one. The assumption hence implies we can swap any variable with
any other one to its left. By making such swaps repeatedly, we can generate any
possible rearrangement of the sample (since the set of transpositions—of permuta-
tions which only swap two elements—forms a generator of the symmetric group).
The counterpart of (6.9) is then

L(X1, . . . , Xn+1) = L(Xπ(1), . . . , Xπ(n+1)) (6.10)

for any permutation π of {1, . . . , n+ 1}.
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This should of course hold for any n—unless we have reason to assume that
out-of-sample prediction is only possible up to a certain sample size (e.g. if a drift
kicks in after some fixed number of samples, or in similarly exotic settings). We
hence consider an infinite sequence X1:∞, and demand that (6.10) holds for any
permutation that affects at most the first n+1 elements, for any n. In other words,
the joint distribution has to be invariant under permutations of N that exchange an
arbitrary but finite number of elements. The set of all such permutations is called
the infinite symmetric group and denoted S∞.

Definition 6.2. The random sequence X1:∞ = (X1, X2, . . .) is called exchange-
able if its joint distribution does not depend on the order in which the values Xi

are observed. More formally, if

(X1, X2, . . .)
d
= (Xπ(1), Xπ(2), . . .) for all π ∈ S∞ , (6.11)

or, expressed in terms of the joint distribution, π(L(X)) = L(X) for every π. /

From a statistical modeling perspective, we can paraphrase the definition as:

exchangeability = the order of observations does not carry relevant information

Remark 6.3. It can be shown that we can alternatively define exchangeability in
terms of all bijections π of N (i.e. we additionally include those permutations which
change an infinite number of elements); the two definitions are equivalent. /

We set out originally to find a criterion for whether a sequence is conditionally
i.i.d. Which sequences are exchangeable? An i.i.d. sequence clearly is, simply
because its distribution is a product and products commute. It is easy to see that
the same is true for a sequence which is conditionally i.i.d. given some Θ, since its
conditional distribution given Θ is a product as in (6.5), and there is just a single
Θ for all Xi. Thus,

{ conditionally i.i.d. sequences } ⊂ { exchangeable sequences } .
To obtain a criterion, we hence have to ask which exchangeable sequences are not
conditionally i.i.d. (and which additional conditions we may have to impose to
exclude such troublemakers). The rather amazing answer, given by de Finetti’s
theorem, is that there are no troublemakers: A sequence X1:∞ is exchangeable
if and only if it is conditionally i.i.d. given some Θ. Exchangeability is hence
precisely the criterion we are looking for. Zabell [68] gives a very insightful account
of prediction and exchangeability.

6.3. de Finetti’s theorem

If an infinite sequence X1:∞ is conditionally i.i.d. given Θ, then by definition,

P[X1:∞ ∈ dx1 × dx2 × . . . |Θ] =
∏
i∈N

P[Xi ∈ dxi|Θ] . (6.12)

If we define Pθ( • ) := P[Xi ∈ • |Θ = θ], we obtain a family of measures

M := {Pθ|θ ∈ T} . (6.13)

Since Θ is random, PΘ is a random variable with values in PM(X), and hence a
random probability measure. We abbreviate the factorial distribution as

P∞θ (dx1 × dx2 × . . .) =
∏
i∈N

Pθ(dxi) . (6.14)



6.3. DE FINETTI’S THEOREM 47

Now, if we choose any family M , and any random variable Θ with values in T,
then PΘ is the joint distribution of a conditionally i.i.d. sequence. Since we already
know that all conditionally i.i.d. sequences are exchangeable, so in general, we have
to permit any measure in PM(X), and hence M = PM(X). Therefore, we simply
choose T = PM(X), so any parameter value θ is a probability measure, and Pθ = θ.
We can now interpret Θ as a random probability measure.

Theorem 6.4 (de Finetti). An infinite random sequence X1:∞ is exchangeable if
and only if there is a random probability measure Θ on X such that

P[X1:∞ ∈ • |Θ] =a.s. Θ∞( • ) (6.15)

/

If you have seen de Finetti’s theorem before, you are probably more used to the
form (6.16) below, which is a direct consequence of (6.15): The quantities on both
sides of (6.15) are random variables, and the randomness in both is given by the
randomness in Θ. If we integrate both sides of the equation against L(Θ)—that is,
if we compute expectations with respect to Θ—we obtain:

Corollary 6.5. A random sequence X is exchangeable if and only if

P(X ∈ • ) =

∫
PM(X)

θ∞( • )ν(dθ) (6.16)

for some distribution ν on PM(X). /

We have to be a bit careful here: (6.16) states that two random variables are
equal in expectation, whereas (6.15) says that the same two variables are equal
almost surely, which is a much stronger statement. The argument above, that
we integrate both sides of (6.15), therefore only establishes that exchangeability
implies (6.16), but not the converse. However, the right-hand side of (6.16) is a
mixture, and we know that mixtures can be sampled in two stages, which here means
sampling Θ ∼ ν and then sampling X1:n|Θ from Θ∞, so X1:∞ is conditionally i.i.d.
We already know that conditionally i.i.d. sequences are exchangeable.

The theorem has another important implication: Since X1:∞ is conditionally
i.i.d., we can apply the law of large numbers [e.g. 28, Theorem 4.23] conditionally on
Θ. For any measurable set A, it tells us that, almost surely given Θ, the probability
of A under the empirical measure defined by X1:n converges to the probability Θ(A).
We therefore have, as the second direct consequence of Theorem 6.4:

Corollary 6.6. If the random sequence X is exchangeable, then

lim
n→∞

1

n

n∑
i=1

δXi(ω)( • )
weakly−−−−−→ Θ(ω) ν-a.s., (6.17)

where Θ is the random measure in (6.15). /

To make the step from the argument above (almost sure convergence for every
A) to the actual corollary (weak convergence a.s.), we have tacitly used the Polish
topology of X.

Finally, I would like to point out that we can alternatively state de Finetti’s
theorem directly in terms of random variables, rather than in terms of their distri-
butions: Suppose θ ∈ PM(X) is a probability measure on X. We denote the i.i.d.
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random sequence sampled from this measure as

X◦θ := (X1, X2, . . .) where X1, X2, . . . ∼iid θ , (6.18)

that is, L(X◦θ ) = θ∞. We then get an exchangeable sequence by randomizing θ, i.e.
if Θ is a random probability measure on X, then X◦Θ is an exchangeable sequence.
de Finetti’s theorem can then be restated as

X1:∞ exchangeable ⇔ X1:∞ =a.s. X
◦
Θ for some Θ ∈ RV(PM(X)) . (6.19)

This perspective will be very useful for the more advanced representation theorems
discussed below, which are much more elegantly stated in terms of random variables
than in terms of distributions.

6.4. Exchangeable partitions

Not all problems are naturally represented by random sequences—for some
problems, a random graph or random matrix, for example, may be a better fit
for the data. For such problems, we can still draw on exchangeability properties
for Bayesian modeling, we just have to substitute the representation theorem for
exchangeable sequences (de Finetti) by a suitable representation for another ex-
changeable structure. In Chapter 2, we have considered random partitions of N
as solutions of clustering problems, and exchangeable partitions will be the first
example of a more intricate exchangeable structure we consider.

We already noted in Chapter 2 that, given any method that maps a sample to
a clustering solution, any random sample X1, . . . , Xn induces a random partition
of [n]. If the Xi are exchangeable, the induced random partition also has an ex-
changeability property: Suppose we permute the sequence (Xi) and obtain (Xπ(i)).
If the clustering solution for, say, X1, . . . , X5 is

({1, 2, 4}, {3, 5}) , (6.20)

the solution for Xπ(1), . . . , Xπ(5) would be

({π(1), π(2), π(4)}, {π(3), π(5)}) . (6.21)

Since (Xi) and (Xπ(i)) are equally distributed, the two partitions above have the
same probability of occurrence, and are hence equivalent for statistical purposes.

Remark 6.7. In particular, the permutation may change the order of the blocks
(e.g. if π would swap 1 and 3 in the example above). The enumeration of the blocks
by their index k is hence completely arbitrary. This fact is known in the clustering
literature as the label switching problem, and can be rather inconvenient, since it
implies that any statistical method using the clustering solution as input has to be
invariant to permutation of the cluster labels. As our discussion above shows, it is
a direct consequence of exchangeability of the observations. /

To formalize what we mean by exchangeability of random partitions, recall
from Section 2.6 how we encoded a random partition Ψ = (Ψ1,Ψ2, . . .) of N by a
random sequence (Li), with Li = k if i ∈ Ψk.

Definition 6.8. An exchangeable random partition Ψ is a random partition
of N whose law is invariant under the action of any permutation π on N. That is,

(L1, L2, . . .)
d
= (Lπ(1), Lπ(2), . . .) (6.22)

for all π ∈ S∞. /
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The counterpart to de Finetti’s theorem for partitions is Kingman’s represen-
tation theorem. We will state this theorem in a form similar to (6.19). To do so, we
have to define a specific type of random partitions Ψ◦θ which play a role analogous
to that of i.i.d. sequences in de Finetti’s theorem. These random partitions were
introduced by Kingman, who called them “paint-box partitions”.

The natural parameter space for these partitions turns out to be the set of a
specific type of sequences which are called mass partitions in some parts of the
literature [see e.g. 3]. By a mass partition θ, we mean a partition of the unit
interval of the form

θ = (θ1, θ2, . . . , θ̄) with θ̄ := 1−
∑
i∈N

θi (6.23)

which satisfies

θ1 ≥ θ2 ≥ . . . ≥ 0 and
∑
i

θi ≤ 1 . (6.24)

A mass partition might look like this:

θ1 θ2
θ̄ (6.25)

This is just the kind of partition we generated using the stick-breaking construction
in (2.15), with the difference that the interval lengths generated by stick-breaking
need not be monotonically decreasing (although they decrease in expectation). The
Poisson-Dirichlet distribution (cf. Remark 2.10) is a distribution on mass partitions.

Given a mass partition θ, we can sample a partition of N by throwing uni-
form random variables U1, U2, . . . on the unit interval (think of the indices of these
variables as the elements of N). Since the mass partition subdivides [0, 1] into
subintervals, we just have to record which Ui end up in the same subinterval, and
regard their indices as elements of the same block:

Definition 6.9. Let θ be a mass partition, and define a random partition Ψ◦θ of N
as follows: Let U1:∞ be a sequence of i.i.d. uniform random variables in [0, 1] and
let

Li := k ⇔ Ui ∈
[k−1∑
j=1

θj ,

k∑
j=1

θj

)
. (6.26)

Then Ψ◦θ is called the paint-box partition with parameter θ. /

Note that Ui may be larger than
∑
j∈N θj , i.e. in the example in (6.25), it would

end up in the rightmost interval of length θ̄. If so, the definition implies that i forms
a block of its own in Ψ◦θ , since the probability of inserting a second number into the
same block is zero. These singleton blocks are called dust. Clearly, the partition
Ψ◦θ is exchangeable.

If the paint-box partitions play a role analogous to i.i.d. sequences, then the set
of all mass partitions plays a role analogous to that of the parameter space PM(X)
in the de Finetti representation. We denote this set as

4 := {θ ∈ [0, 1]N | θ mass partition } . (6.27)

So far, this is just a set of points; to turn it into a space, we need to define a
topology, and we have already noted several times that we like our spaces to be
Polish. We can metrize 4 by defining the metric d(θ, θ′) := maxk∈N |θk − θ′k|. The
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metric space (4 , d) is compact [3, Proposition 2.1], and hence Polish (since all
compact metric spaces are Polish).

Theorem 6.10 (Representation theorem, Kingman). A random partition Ψ is
exchangeable if and only if

Ψ =a.s. Ψ◦Θ (6.28)

for some random mass partition Θ ∈ RV(4 ). /

As in the sequence case, this result immediately implies an integral decompo-
sition:

Corollary 6.11 (Integral decomposition). A random partition Ψ is exchangeable
if and only if

P(Ψ ∈ • ) =

∫
4
p( • , θ)ν(dθ) , (6.29)

where p denotes the paintbox distribution p( • , θ) := L(Ψ◦θ )( • ). /

Perhaps more important is the fact that the mass partition θ—the model pa-
rameter, from a statistical perspective—can asymptotically be recovered from ob-
servations:

Corollary 6.12 (Law of large numbers). If Ψ is an exchangeable random partition,
then ∑n

i=1 I{Li = k}
n

n→∞−−−−→ θk (6.30)

/

For this reason, the elements θk of θ are also called the asymptotic frequen-
cies of Ψ.

6.5. Exchangeable arrays

The next type of structure we consider are (infinite) collections of variables
indexed by d indices,

x := (xi1,...,id)i1,...,id∈N where xi1,...,id ∈ X0 . (6.31)

Such a structure x is called a d-array. Clearly, sequences are 1-arrays, but d-
arrays are much more versatile: A matrix, for example, is a 2-array where X0 is
an algebraic field (so that adding and multiplying entries of x, and hence matrix
multiplication, is well-defined). A simple graph—a graph without multiple edge—is
represented by a 2-array with X0 = {0, 1}, the adjacency matrix of the graph. If
the matrix is symmetric, the graph is undirected. To keep things simple, I will
only discuss 2-arrays in this section. Although results for general d-arrays are a
straightforward generalization, they are notationally cumbersome. See [48, Section
6] for more on d-arrays.

Suppose X is a random 2-array. To define exchangeability for arrays, we have
to decide which components of X we are going to permute. In sequences, we simply
permuted individual elements. If data is represented as a 2-array X, however, this
typically implies that the row-column structure carries some form of meaning—
otherwise we could just write the entries into a sequence—and an adequate notion of
exchangeability should therefore preserve rows and columns. That is, if two entries
are in the same row, they should still be in the same row after the permutation has
been applied, even if the order of elements within the row may have changed (and
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similarly for columns). Hence, rather than permuting entries of X, we permute
only its rows and columns. There are two ways of doing so: We could either apply
the same permutation π to the rows and to the columns, or we could use one
permutation π1 on the rows and another π2 on the columns.

Definition 6.13. A random 2-array X = (Xij)i,j∈N is jointly exchangeable if

(Xij)
d
= (Xπ(i)π(j)) for every π ∈ S∞ . (6.32)

X is separately exchangeable if

(Xij)
d
= (Xπ1(i)π2(j)) for every pair π1, π2 ∈ S∞ . (6.33)

/

For a binary matrix (with 1s encoded as black dots), this looks like this:

π

π

joint exchangeability

π1

π2

separate exchangeability

A simple way to generate a random matrix would be to define a function f
with values in X0, say with two arguments. Now sample two sequences of random
variables (U1, U2, . . .) and (U ′1, U

′
2, . . .). If we set Xij := f(Ui, U

′
j) we get a random

2-array. If the sequences (Ui) and (U ′j) have independent elements and are indepen-
dent of each other, Xij is clearly separately exchangeable. If we set Xij = f(Ui, Uj)
instead, it is jointly exchangeable. It is not hard to see that this cannot be all jointly
or separately exchangeable arrays, though: If we start with either of the arrays
above and randomize each entry independently—that is, if we include a third ar-
gument f( • , • , Uij), where the random variables Uij are independent—we do not
break exchangeability. Changing the distribution of the random variables Ui etc.
does not give us any additional expressive power, since we can always equivalently
change the function f . Hence, we can simply choose all variables as i.i.d. uniform
(or some other convenient, simple distribution).

Definition 6.14. Let F(X0) be the space of measurable functions θ : [0, 1]3 → X0.
Let (Ui) and (Vi) be two i.i.d. sequences and (Uij) an i.i.d. 2-array, all consisting of
Uniform[0, 1] random variables. For any θ ∈ F, define two random arrays J◦θ and
S◦θ as

J◦θ := (Jij) with Jij := θ(Ui, Uj , Uij) (6.34)

and
S◦θ := (Sij) with Sij := θ(Ui, Vj , Uij) . (6.35)

/

Rather amazingly, it turns out that these arrays J◦θ and S◦θ play a role analogous
to that of i.i.d. sequences and paintbox partitions—that is, any exchangeable array
can be obtained by making the function θ random.
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Figure 6.1. Functions w (“graphons”) representing different types of random graph models. Left

to right: Undirected graph with linear edge density (the standard example in [37]), nonpara-

metric block model for separately exchangeable data [29], Mondrian process model for separately
exchangeable data [55], graphon with Gaussian process distribution for undirected graph [35].

Figure from [48].

Theorem 6.15 (Aldous, Hoover). A random 2-array X = (Xij) with entries in a
Polish space X0 is jointly exchangeable if and only if

X
d
= J◦Θ for some Θ ∈ RV(F(X0)) . (6.36)

It is separately exchangeable if and only if

X
d
= S◦Θ for some Θ ∈ RV(F(X0)) . (6.37)

/

Remark 6.16 (Exchangeable random graphs and graph limits). Suppose X is in
particular the adjacency matrix of a random simple graph (where simple means
there is at most one edge between two vertices if the graph is undirected, or at
most one edge in each direction in the directed case). Then X is a random binary
matrix, which is symmetric iff the graph is undirected.

Because X is binary, we can simplify the random function Θ from three to two
arguments: For a fixed function θ ∈ Θ({0, 1}) and a uniform random variable U ,
θ(x, y, U) is a random element of {0, 1}. If we define

w(x, y) := P[θ(x, y, U) = 1] , (6.38)

then w is an element of the set W of measurable functions [0, 1]2 → [0, 1]. For a
fixed function w ∈W, we can sample the adjacency matrix X of an exchangeable
random graph G◦w as:

U1, U2, . . . ∼iid Uniform[0, 1]

Xij ∼ Bernoulli(w(Ui, Uj))
(6.39)

Theorem 6.15 then implies that any exchangeable random graph G can be obtained
by mixing over w: If and only if G is exchangeable,

G
d
= G◦W for some W ∈ RV(W) . (6.40)

The functions w are also called graphons or graph limits in random graph theory,
see [37]. I will not got into further details, but rather refer to [48]. /

6.6. Applications in Bayesian statistics

You will have noticed that all exchangeability theorems discussed above—de
Finetti, Kingman, Aldous-Hoover, the special case of Aldous-Hoover for graphs—
had a common structure: We consider a random structure X (sequence, graph,
partitions,. . . ). We assume that this structure has an exchangeability property.
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exchangeable structure ergodic structures representation T

sequences in X i.i.d. sequences de Finetti PM(X)
partitions of N paintbox partitions J◦θ Kingman 4
graphs graphs G◦θ in (6.39) Aldous-Hoover W
arrays (jointly) arrays J◦θ in (6.34) Aldous-Hoover F
arrays (separately) arrays S◦θ in (6.35) Aldous-Hoover F

Table 6.1.

If so, the relevant representation theorem specifies some space T and a family of
random variables X◦θ , parametrized by elements θ ∈ T. The representation result
then states that X is exchangeable if and only if it is of the form

X
d
= XΘ for some random element Θ ∈ RV(T) . (6.41)

The special structures Xθ are also called the ergodic structures.
Here is one of my favorite examples of how to apply representation results in

Bayesian modeling:

Example 6.17 (Priors for graph-valued data [35]). Suppose we consider data rep-
resented by a single, large graph (a network, say). As more data is observed, the
graph grows. Can we define a Bayesian model for such data? We can interpret the
observed graph Gn (with n vertices) as a small snapshot from an infinite graph G
(just as we would interpret n sequential observations as the first n elements in an
infinite sequence). If we assume G to be exchangeable, by Theorem 6.15, there is a

random function W with G
d
= G◦W . In other words, we explain our observed graph

as the first n vertices sampled from W according to (6.39).
Thus, in order to define a prior distribution for data modeled as an exchange-

able graph, we have to define a prior distribution on the function space W. We
could define a parametric model (by choosing a finite-dimensional subspace of W),
or a nonparametric one; in terms of the nonparametric models we have already
discussed, we could generate W using a Gaussian process, as in [35]. We can also
consider models for graph data defined in the literature; if these models implicitly
assume exchangeability, we can categorize them according to what type of function
W characterizes the particular model. Figure 6.1 shows examples. /

Let me try to sketch the bigger picture: For a given type of exchangeable
structure X, the ergodic random structures X◦θ define a family of distributions

Pθ := L(X◦θ ) . (6.42)

These distributions are generic—each representation theorem tells us how to sample
from Pθ for a given θ (e.g. by the paint-box sampling scheme in Kingman’s theorem
if X is an exchangeable partition). Thus, any statistical model of exchangeable X
is of the form

M = {Pθ|T0 ⊂ T} , (6.43)

where the parameter space of the model is some subset T0 of the space T char-
acterized by the relevant representation theorem. Defining a Bayesian model then
means defining a prior Q on T0. Table 6.1 summarizes the examples we have seen
in this chapter.
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In particular, we can consider the Dirichlet process again: To define a prior
distribution for an exchangeable partition, we can invoke Kingman’s theorem, and
hence have to define prior distribution on the space T =4 of mass partitions.
Clearly, a stick-breaking distribution as in (2.14) does just that, if we subsequently
order the weights generated by stick-breaking by decreasing size, as assumed in the
definition of 4 . (From a sampling perspective, ranking by size makes no actual
difference, since it clearly leaves the paint-box distribution invariant; it is simply a
device to enforce uniqueness of the parametrization.) If we specifically choose the
stick-breaking construction of the DP as our prior Q, the resulting exchangeable
random partition is the CRP.



CHAPTER 7

Posterior distributions

This chapter discusses theoretical properties of posterior distributions. To mo-
tivate the questions we will try to address, let me run through a drastically over-
simplified example of Bayesian inference:

Example 7.1 (Unknown Gaussian mean). We assume that the data is generated
from a Gaussian on R with fixed variance σ2; the mean θ is unknown. Hence,
the observation model is p(x|θ, σ) = g(x|θ, σ) (where g is the Gaussian density
on the line). We assume that the mean Θ is random, but since we do not know
its distribution, we have to make a modeling assumption for Q. Suppose we have
reason to believe that Θ is roughly distributed according to a Gaussian with density
g(θ|µ0 = 2, σ0 = 5):

Prior distribution

most probable model
under the prior

actual distribution
of the data

Sampling distribution

Since circa 68% of the mass of a Gaussian is located within one standard deviation
of the mean, this prior distribution expresses the assumption that µ0 = 2 is the
most probable value of Θ and that Θ ∈ [−3, 7] with probability ≈ 0.68.

Our objective is now to compute the posterior distribution. In a simple model
like this the posterior can be computed using Bayes’ theorem—which we have not
discussed in detail yet, we will do so in Section 7.2 below. Using the theorem,
we find that the posterior under n observations with values x1, . . . , xn is again a
Gaussian with density g(θ|µn, σn) and parameters

µn :=
σ2µ0 + σ2

0

∑n
i=1 xi

σ2 + nσ2
0

and σn :=
σ2σ2

0

σ2 + nσ2
0

. (7.1)

To plot these posteriors and compare them to the prior density, I have sampled
n = 10 data points from the observation model with parameter θ = 6, i.e. from
p( • , 6). The posteriors after the first few observations look like this:

55
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Prior

Posterior

n = 1 n = 2 n = 10

The observations are plotted as blue dots on the line. Although we know of course
that we should never try to perform statistical estimation from 10 observations, we
see that the posterior concentrates very rapidly at the actual parameter value. /

We see that Example 7.1 raises a list of implicit questions, which all happen to
have an easy answer in the case above, but require more effort in general:

(I) How should we choose the prior? (We will see that this question cannot
be answered in isolation from choosing the observation model; this is hence the
modeling problem of Bayesian statistics, analogous to the modeling problem in
the classical case.)

(II) Does the posterior always exist? (As long as we work on a parameter
space with reasonable topological properties: Yes.)

(III) If the posterior exists, how do we determine it? (There are several tools,
including Bayes’ theorem, conjugacy, and sampling, and each is only applicable
in certain settings. There is no universally applicable answer.)

(IV) Asymptotically, will we find the right answer? How much data do
we need to get a reasonable approximation? (The first step here is to
carefully define what we mean by “right answer”. Once we have done so, this
leads to mathematical statistics for Bayesian models, which is every bit as rich
and faceted as for the classical case.)

The existence problem (II) is discussed in Section 7.1 below, Bayes’ theorem in
Section 7.2 and conjugacy in Section 7.4. Section 7.7 provides a very brief overview
and further references on the asymptotics problem.

7.1. Existence of posteriors

The question which can be answered in most general terms is that for existence
of a posterior: Suppose we have defined a parameter random variable Θ with law Q
and values in T, and an observation model M = {Pθ|θ ∈ T consisting of measures
on some space X. We generate an observation as

Θ ∼ Q

X|Θ ∼ PΘ .
(7.2)

The observation variable X may be pretty much anything; it may describe a single
point, a sequence of length n, a random structure, or an infinitely large sample.

The posterior is the probability kernel

q( • , x) := P[Θ ∈ • |X = x] , (7.3)

and our question is simply under which condition the object q exists and has the
properties of a probability kernel (a regular conditional probability, see Appendix
C.1). The existence result then follows directly from the standard result on the
existence of regular conditional probabilities (Theorem C.2). This depends only
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on the topological properties of the parameter space; the choice of the model, the
prior, and even of the sample space X are irrelevant.

Proposition 7.2. If T is a standard Borel space, X a measurable space, and a
Bayesian model is specified as in (7.2), the posterior (7.3) exists. /

See Appendix B.2 for more on standard Borel spaces.

7.2. Bayes’ theorem

The posterior guaranteed by the existence result above is an abstract mathe-
matical object; the proof of existence is not constructive in any practically feasible
sense. To actually use a Bayesian model, we have to find a way to compute the
posterior from the prior, the observation model and the observed sample. The first
such way we discuss is Bayes’ theorem, which is rather generally applicable for
parametric Bayesian models, though often not for nonparametric ones.

Suppose we observe a sequence X1:n of observations. If we assume that the
sequence is exchangeable, de Finetti’s theorem tells us that the Xi are conditionally
i.i.d. given some random probability measure Θ on X. Suppose we know that Θ
takes its values in some subset T ⊂ PM(X). To use a more familiar modeling
notation, we can define Q := L(Θ) and

Pθ( • ) := θ( • ) for all θ ∈ T . (7.4)

The data is then explained as

Θ ∼ Q
X1, . . . , Xn|Θ ∼iid PΘ .

(7.5)

If we know Q and Pθ, how do we determine the posterior P[Θ ∈ • |X1:n]?
Bayes’ theorem is the density-based approach to this problem. Recall the ba-

sic textbook result on existence of conditional densities (included in the appendix
as Lemma C.4): Suppose suitable densities p(x1:n, θ) of the joint distribution and
p(x1:n) of the marginal distribution exist. By Lemma C.4, the conditional distri-
bution P[Θ ∈ • |X1:n] is determined by the density

p(θ|x1:n) =
p(x1:n, θ)

p(x1:n)
. (7.6)

The trick is to specify the density p(x1:n, θ) in its second argument θ with respect
to the prior measure Q. Then p(θ|x1:n) is also a density with respect to the prior,
and we have

P[Θ ∈ dθ|X1:n] = p(θ|x1:n)Q(dθ) . (7.7)

Thus, we have obtained a density that allows us to start with the one measure
on T that we know—the prior Q—and transform it into the posterior, using a
transformation parametrized by the data.

Bayes’ theorem, formally stated as Theorem 7.3 below, provides:

(1) A sufficient condition for the relevant densities to exist.
(2) A specific expression for the density p(θ|x1:n) in terms of the density of the

model Pθ.
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More precisely, it shows that a sufficient condition for the existence of the density
(7.7) is the existence of a a conditional density p(x|θ) of the observation model:
There must be some σ-finite measure µ on X such that

Pθ(X ∈ dx) = p(x|θ)µ(dx) for all θ ∈ T . (7.8)

(This is really rather remarkable, since it provides a condition for the absolute
continuity of the posterior with respect to the prior, both measures on T, purely
in terms of the observation model on X.) If so, the theorem also shows that

p(θ|x1:n) =

∏n
i=1 p(xi|θ)

p(x1, . . . , xn)
, (7.9)

and our transformation rule for turning the prior into the posterior is hence

Q[dθ|X1 = x1, . . . , Xn = xn] =

∏n
i=1 p(xi|θ)

p(x1, . . . , xn)
Q(dθ) . (7.10)

Identity (7.10) is known as the Bayes equation. Formally stated, Bayes theorem
looks like this:

Theorem 7.3 (Bayes’ Theorem). Let M = p( • ,T) be an observation model and
Q ∈ PM(T) a prior. Require that there is a σ-finite measure µ on X such that
p( • , θ)� µ for every θ ∈ T. Then the posterior under conditionally i.i.d. observa-
tions X1, . . . , Xn as in (7.5) is given by (7.10), and P{p(X1, . . . , Xn) ∈ {0,∞}} = 0.

/

The proof is straightforward: We know from Lemma C.4 that the conditional
density is of the form p(x|θ)/p(x). Two things might go wrong:

• We have to verify that the prior dominates the posterior.
• We have to make sure that the quotient p(x|θ)/p(x) exists. Since p(x|θ) is

given, we only have to verify that p(x) 6∈ {0, 1} with probability 1.

Proof. It is sufficient to proof the result for n = 1. The probability that
p(x|θ)/p(x) does not exist is

P{p(X) ∈ {0,∞}} =

∫
p−1{0}

p(x)µ(dx) +

∫
p−1{∞}

p(x)µ(dx) . (7.11)

The first term is simply
∫

0dµ = 0. Since p(x|θ) is a conditional density, p(x) is a
µ-density of L(X). As the µ-density of a finite measure, it can take infinite values
at most on a µ-null set, which means the second term also vanishes.

P(X ∈ dx,Θ ∈ dθ) = p(dx, θ)Q(dθ) = p(x|θ)µ(dx)Q(dθ) (7.12)

This means that p(x|θ)1(θ) = p(x|θ) is a joint density of L(X,Θ) with respect to
µ ⊗ Q, which implies L(X,Θ) � µ ⊗ Q. By Lemma C.4, this is sufficient for the
existence of a conditional density, which according to (C.10) is given by (7.10). �

7.3. Dominated models

If you have read papers on Bayesian nonparametrics before, you may have no-
ticed that the Bayes equation is not used very frequently in the nonparametric con-
text. The problem is that many Bayesian nonparametric models do not satisfy the
conditions of Bayes’ theorem: If P[dθ|X1:n] is the posterior of a Dirichlet process, for
example, then there is no σ-finite measure ν which satisfies P[dθ|X1:n = x1:n]� ν
for all x1:n. In particular, the prior does not, and so there is no density p(θ|x1:n).
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Since this type of problem is fairly fundamental to Bayesian nonparametrics, I will
discuss it in some more detail in this section, even though it is rather technical by
nature.

A set M of probability measures is called dominated if there is a σ-finite
measure µ on X such that P � µ for every P ∈M . We then also say that M
is dominated by µ. Since the posterior is a conditional, it defines a family of
distributions

Qn := {P[Θ ∈ • |X1:n = x1:n] |x1:n ∈ Xn} (7.13)

on T. The condition for the Bayes equation to exist is hence that Qn is dominated
by the prior Q for all sample sizes n, and we can paraphrase Bayes’ theorem as:

If the observation model M is dominated, then Qn is dominated by the prior for
all n.

To understand the concept of a dominated model better, it is useful to define

N(µ) :=
{
A ∈ B(X) |µ(A) = 0

}
and N(M) :=

⋂
µ∈M

N(µ) . (7.14)

N(µ) is the set of all null sets of µ. Informally, think of N(µ) as a pattern in the
set of Borel sets; in general, this pattern differs for different measures. Absolute
continuity can now be stated as

ν � µ ⇔ N(ν) ⊃ N(µ) . (7.15)

Hence, M is dominated iff there is a σ-finite µ such that N(M) ⊃ N(µ). A dom-
inating measure µ for M has to assign positive mass to every measurable set not
contained in N(M). Since N(M) becomes smaller the more different null set pat-
terns M contains, the number of distinct null set patterns in a dominated model
must be limited—simply because a σ-finite measure does not have that much mass
to spread around. At most, the number of distinct patterns can be countable:

Lemma 7.4 (Halmos and Savage [22]). Every dominated set M ⊂M(X) of mea-
sures has a countable subset M ′ such that every µ ∈M satisfies N(µ) = N(µ′) for
some µ′ ∈M ′. /

The lemma does not imply any restrictions on the size of a dominated set, as the
next example illustrates.

Example 7.5. Let Gx be the unit-variance Gaussian measure on R with mean x,
and δx the Dirac measure at x. The two models

MG := {Gx |x ∈ R} and MD := {δx |x ∈ R} (7.16)

contain exactly the same number of measures. Lemma 7.4 shows, however, that MD

is not dominated. The set is an extreme example, since N(MD) = ∅. A dominating
measure thus would have to assign positive mass to every non-empty set and hence
could not possibly be σ-finite. In contrast, all measures in MG have the same null
sets, and N(MG) are precisely the null sets of Lebesgue measure. /

As we have already mentioned above, the Dirichlet process posterior is not
dominated by the prior, nor in fact by any σ-finite measure. More generally, that is
the case for all priors based on random discrete probability measures. I will explain
the argument in two stages, first for the prior, then for any σ-finite measure.
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Proposition 7.6. Let Θ =
∑
k CkδΦk be any random discrete probability measure

on Ωφ and require that the joint distribution L(Φ1:∞) is non-atomic. Then the
posterior of Θ is not dominated by the prior, that is,

Qn 6� Q for all n ∈ N . (7.17)

/

Proof. Suppose the first observation takes value Φ1 = φ. Then we know that
Θ takes its value in the (measurable) subset

Mφ := {θ ∈ PM(X)|θ has atom at φ} . (7.18)

Since L(Φ1:n) is non-atomic, the prior assigns probability zero to Mφ. We hence
have

L(Θ)(Mφ) = 0 and L(Θ|Φ1 = φ)(Mφ) = 1 (7.19)

and hence L(Θ|Φ1 = φ) 6� L(Θ). For n > 1, we can simply replace φ by φ1:n in the
argument. �

We can generalize this result from the prior to any σ-finite measure on T with
only marginally more effort:

Proposition 7.7. Let Θ =
∑
k CkδΦk be any random discrete probability measure

on Ωφ and require that (1) the joint distribution L(Φ1:∞) is non-atomic and (2) Θ
has an infinite number of non-zero weights Ck. Then the family

Q∞ :=
⋃
n∈N
Qn (7.20)

of posteriors of Θ for all sample sizes is not dominated by any σ-finite measure,
i.e.

Q∞ 6� ν for all ν ∈ PM(T) . (7.21)

/

Proof. Let S be a countable subset of Ωφ. Similar as above, let

MS := {θ =
∑
k

Ckδφk |{φ1, φ2, . . .} = S} . (7.22)

For any two distinct countable sets S1 6= S2 of points in Ωφ, the sets MS1
and

MS2 of measures are disjoint (unlike the sets Mφ above, which is why we have
changed the definition). For any two sets S1 6= S2, there exists a finite sequence
φ1:n which can be extended to a sequence in S1, but not to one in S2. Hence,
L(Θ|Φ1:n = φ1:n)(MS2

) = 0. Since Ωφ is uncountable, there is an uncountable num-
ber of distinct sets S, and by Lemma 7.4, Q∞ cannot be dominated. �

7.4. Conjugacy

The most important alternative to Bayes theorem for computing posterior
distributions is conjugacy. Suppose M is an observation model, and we now
consider a family Q ⊂ PM(T) of prior distributions, rather than an individual
prior. We assume that the family Q is indexed by a parameter space Y, that
is, M = {Qy|y ∈ Y}. Many important Bayesian models have the following two
properties:

(i) The posterior under any prior in Q is again an element of Q; hence, for any
specific set of observations, there is an y′ ∈ Y such that the posterior is Qy′ .
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(ii) The posterior parameter y′ can be computed from the data by a simple,
tractable formula.

This is basically what we mean by conjugacy, although—for historical reasons—the
terminology is a bit clunky, and conjugacy is usually defined as property (i), even
though property (ii) is the one that really matters for inference. For Bayesian non-
parametrics, conjugacy is almost all-important: We have already seen in Theorem
2.3 that the DP is conjugate, but most Bayesian nonparametric models at some
level rely on a conjugate posterior.

To make things more precise, we require as always that Q is measurable as a
subset of PM(T), and that the parametrization y 7→ Qy is bijective and measurable.
The prior parameter y is often called a hyperparameter, and although it can be
randomized, we may simply consider it a non-random control parameter.

Definition 7.8. An observation model M ⊂ PM(X) and the family of priors Q are
called conjugate if, for any sample size n and any observation sequence x1:n ∈ Xn,
the posterior under any prior Q ∈ Q is again an element of Q. /

The definition captures precisely property (i) above. Since y 7→ Qy is measur-
able, we can represent the family Q as a probability kernel

q : Y → PM(T) where q( • , y) = Qy . (7.23)

We can now think of the model parameter—our usual Θ—as a parameterized ran-
dom variable Θy, with law L(Θy) = q( • , y) (see Theorem C.3 in the appendix,
which also shows that Θy depends measurably on y). If the model is conjugate
in the sense of Definition 7.8, then for every prior Qy in Q and every observation
sequence x1:n, there is a y′ ∈ Y such that

P[Θy ∈ dθ|X1:n = x1:n] = q(dθ, y′) . (7.24)

If we define a mapping as Tn(y, x1:n) := y′, for the value y′ in (7.24), the posterior
is given by

P[Θy ∈ dθ|X1:n = x1:n] = q(dθ, Tn(y, x1:n)) . (7.25)

Since the posterior depends measurably on y and x1:n, and

Tn(y, x1:n) = q−1(P[Θy ∈ • |X1:n = x1:n]) ,

the mapping Tn is always measurable. I will refer to the sequence (Tn) of mappings
as a posterior index for the model; there is no standard terminology.

All these definitions leave plenty of room for triviality: For any observation
model M , the family Q := PM(T) is trivially conjugate, and the identity map on
Y ×Xn is always a posterior index. The definitions are only meaningful if property
(ii) above is satisfied, which means that Tn should be of known, easily tractable
form for all n.

In parametric models, the only class of models with interesting conjugacy prop-
erties, i.e. for which (i) holds nontrivially and (ii) also holds, are exponential family
models and their natural conjugate priors (up to some borderline exceptions). I
will define exponential families in detail in the next section; for now, it suffices to
say that if M is an exponential family model with sufficient statistics S, and Q the
natural conjugate family of priors for M with parameters (λ, y), then the posterior
index is well-known to be

Tn(y, x1:n) = (λ+ n, y +
∑
i≤n

S(xi)) for any n . (7.26)
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For lack of a better name, I will refer to models with posterior index of the general
form (7.26) as linearly conjugate. Linear conjugacy is not restricted to para-
metric models: If the prior is DP (α,G), we choose y in (7.26) as y := α ·G and
λ := y(Ωφ) = α. By Theorem 2.3, the posterior is computed by updating the prior
parameters as

(α,G, φ1, . . . , φn) 7→ 1

n+ α

(
αG+

n∑
i=1

δφi

)
, (7.27)

and the model is hence linearly conjugate with posterior index

Tn(α, αG, φ1, . . . , φn) :=
(
α+ n, αG+

n∑
i=1

δφi

)
. (7.28)

Similarly, it can be shown (although it requires a bit of thought) that the posterior
of the GP in Theorem 4.4 is linearly conjugate.

The somewhat confusing nomenclature used for conjugacy in the literature—
where conjugacy is defined as property (i), but the desired property is (ii)—is
due to the fact that, in the parametric case, (i) and (ii) coincide: If M and Q are
parametric families and satisfy (i), then they are (more or less) exponential families,
in which case they are linearly conjugate and hence satisfy (ii). This is no longer
true in nonparametric models:

Example 7.9. In Chapter 2, we had seen how a homogeneous random probability
measure Θ can be generated by generating weights Ck from the general stick-
breaking construction (2.15), and then attaching atom locations Φk sampled i.i.d.
from a measure G on Ωφ. If in particular Ωφ = R+ or Ωφ = [a, b] (so that it is totally
ordered with a smallest element), Θ is called a neutral-to-the-right (NTTR)
process1. It can be shown that the posterior of a NTTR process Θ under observa-
tions Φ1,Φ2, . . . |Θ ∼iid Θ is again a NTTR process [9, Theorem 4.2]. The model is
hence conjugate in the sense of Definition 7.8, that is, it is closed under sampling.
There is, however, in general no known explicit form for the posterior index, except
in specific special cases (in particular the Dirichlet process). /

There are many things we still do not know about conjugacy in the nonpara-
metric case, but basically all important models used in the literature—Dirichlet
and Pitman-Yor process models, Gaussian process regression models, beta process
used with IBPs, etc.—are linearly conjugate. It can be shown that linearly conju-
gate nonparametric models are closely related to exponential family models [47]:
Roughly speaking, a nonparametric (and hence infinite-dimensional) prior can be
represented by an infinite family of finite-dimensional priors—these are the finite-
dimensional marginals that we discussed in Chapter 4 for the Gaussian process (in
which case they are multivariate Gaussians). For the Dirichlet process, the finite-
dimensional marginals are, unsurprisingly, Dirichlet distributions (see Section 8.9).

A nonparametric model is linearly conjugate if and only if the finite-dimensional
marginals are linearly conjugate, so linearly conjugate Bayesian nonparametric
models can be constructed by assembling suitable families of exponential family
distributions into an infinite-dimensional model. I will omit the details here, which
are rather technical, and refer to [47].

Remark 7.10 (“Non-conjugate” DP mixtures). You will find references in the
literature on DP mixtures and clustering referring to the “non-conjugate” case.
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Recall from Section 2.5 that, in order to derive the update equations in a simple
Gibbs sampler for DP mixtures, it was convenient to choose the parametric mixture
components p(x|φ) as exponential family models and the base measure G of the DP
as a conjugate prior. There are hence two levels of conjugacy in this model: Between
the DP random measure and its posterior, and between p and G. References to non-
conjugate DP mixtures always refer to the case where p and G are not conjugate;
samplers for this case exist, but they still rely on conjugacy of the DP posterior. /

7.5. Gibbs measures and exponential families

Arguably the most important class of models in parametric Bayesian statistics
are exponential families. These models are special in a variety of ways: They are
the only parametric models that admit finite-dimensional sufficient statistics, they
are maximum entropy models, and they admit conjugate priors.

Exponential family models are specific classes of Gibbs measures, which are
defined using the concept of entropy. We start with a σ-finite measure µ on X, and
write P(µ) for the set of all probability measures which have a density with respect
to µ,

P(µ) := {P ∈ PM(X) |P � µ} . (7.29)

The elements of P(µ) are often called the probability measures generated by
µ. Choose a measure P ∈ P(µ) with density f under µ. The entropy of P is

H(P ) := EP[− log f(X)] = −
∫
X

f(x) log f(x)µ(dx) . (7.30)

Regarded as a functional H : P(µ)→ R+, the entropy is concave.
Gibbs measures are measures which maximize the entropy under an expectation

constraint. More precisely, let S : X→ S be a measurable function with values in
a Banach space S. We fix a value s ∈ S, and ask: Which distribution among all
P that satisfy EP[S] = s has the highest entropy? This is an equality-constraint
optimization problem,

max
P∈P(µ)

H(P )

s.t. EP[S] = s .
(7.31)

Since H is concave, the problem has a unique solution in P(µ) for every value of
u, provided the constraint is satisfiable. We can reformulate the optimization as a
Lagrange problem:

max
P∈P(µ)

H(P )− 〈θ,EP[S]〉 . (7.32)

If S = Rd, we can simply read this as H(P )− (θ1EP[S1] + . . .+ θdEP[Sd]), i.e. we
have d equality constraints and d Lagrange multipliers θi. There is nothing partic-
ularly special about the finite-dimensional case, though, and θ may be an element

1The stick-breaking construction (2.15) was by in the early 1970s by Doksum [9], who also
showed that the DP is a special case of a NTTR prior. The fact that the DP is obtained by
choosing H in (2.14) as a beta distribution, however, was only pointed out several years later

by Sethuraman and Tiwari [58], and not published in detail until much later [57]. Doksum [9,
Theorem 3.1] also gives a precise characterization of random measures for which stick-breaking
constructions of the form (2.15) exist: Θ is NTTR if and only if there is a subordinator (an positive

Lévy process) Yt such that Θ([0, t])
d
= 1− exp(−Yt) for all t ∈ Ωφ.
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of an infinite-dimensional Hilbert space with inner product 〈 • , • 〉. The Banach
space S need not even have a scalar product, however, and in general, θ is an el-
ement of the norm dual S∗ of S, and 〈 • , • 〉 in (7.32) is the evaluation functional
〈x, x∗〉 = x∗(x).2

Denote by T ⊂ S∗ the set of θ for which (7.32) has a solution. For every θ ∈ T,
the solution is a unique measure µθ ∈ P(µ). These measures µθ are called Gibbs
measures, and we write

G(S, µ) := {µθ | θ ∈ T} . (7.33)

Solving the problem explicitly is not completely straightforward, since the entropy
is, concavity aside, not a particularly nice functional.3 If S = Rd (and hence S∗ = Rd
as well), it can be shown under mild technical conditions that Gibbs measures are
given by the densities

µθ(dx) = Z−1
θ e〈S(x),θ〉µ(dx) with Zθ := µ(e〈S( • ),θ〉) , (7.34)

where I am using the “French” notation µ(f) =
∫
f(x)µ(dx). The normalization

term Zθ is called the partition function in physics.
Recall that a statistic S is called sufficientsufficient statistic for a set M of

probability measures if all measures in M have identical conditional distribution
given S.

Proposition 7.11. If G(S, µ) has the density representation (7.34), then S is a
sufficient statistic for G(S, µ). /

In this case, the model G(S, µ) is also called an exponential family with re-
spect to µ with sufficient statistic S. (In the general Banach space case, terminology
is less well established.) The sufficiency result above is of course beaten to death
in every introductory textbook, but usually proven in an unnecessarily technical
fashion (e.g. invoking Neyman-Pearson), and I spell out a proof here only to clarify
that the argument is really elementary.

Proof. Suppose we condition µθ on S(X) = s (i.e. someone observes X = x
but only reports the value s to us). The only remaining uncertainty in X is then
which specific point x ∈ S−1{s} has been observed. A look at (7.34) shows that
the distribution of X within S−1{s} depends on the choice of µ, but not at all on
the value of θ. Since µ is the same for all µθ, this means that µθ[ • |S(X) = s] does
not depend on θ, so S is sufficient for G(S, µ). �

2Recall that a Banach space is a vector space X with a norm ‖ . ‖, which is complete
(it contains all limits of sequences when convergence is defined by ‖ . ‖). Associated with every

Banach space is its norm dual X∗. Formally, X∗ is the space of linear mappings X→ R, and
equipped with the generic norm ‖x∗‖ := sup‖x‖=1 x

∗(x), it is again a Banach space.

The intuition is roughly this: The simplest Banach spaces are Hilbert spaces, such as Eu-

clidean space. We know that, on Rd, every linear functional Rd → R can be represented as a
scalar product 〈x, x∗〉 for some fixed element x∗ of Rd itself. This defines a duality between linear

functionals on X and points in X, and we can thus identify X∗ and X. For non-Hilbert X, there

is no notion of a scalar product, but we can verify that the duality between elements of X and
X∗ still holds. Even though we can no longer regard X and X∗ as one and the same space, they
are always twins with regard to their analytic properties (dimensionality, separability, etc). It is

therefore useful (and customary) to write the mapping x∗ as x∗(x) =: 〈x, x∗〉, and to think of the
operation 〈 • , • 〉 as something like a scalar product between elements of two different spaces. (If

X is in particular a Hilbert space, it is its own dual, and 〈 • , • 〉 is precisely the scalar product).

In this sense, the pair consisting of a Banach space and its dual is almost a Hilbert space, albeit
with a slightly split personality.
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7.6. Conjugacy in exponential families

Suppose we choose any exponential family model M = G(S, µ) on X. If we
sample n observations x1:n i.i.d. from µθ, the joint density is the product of the
densities (7.34). It is useful to define

S(x1:n) := S(x1) + . . .+ S(xn) and fn(s, θ) := Z−nθ e〈s,θ〉 . (7.35)

We can then write the joint density of x1:n concisely as
n∏
i=1

Z−1
θ e〈S(xi),θ〉 = fn(S(x1:n), θ) . (7.36)

If we choose any prior Q on T, Bayes’ theorem 7.3 is applicable, since G(S, µ) is
by definition dominated by µ. Substituting into the Bayes equation (7.10), we see
that the posterior is

Q[dθ|X1:n = x1:n] =
fn(S(x1:n), θ)

Q(fn(S(x1:n), • ))
Q(dθ) . (7.37)

The definition of f • ( • ) is not just a shorthand, though, but rather emphasizes a
key property of Gibbs measures:

fn(s, θ) · fn′(s′, θ) = fn+n′(s+ s′, θ) . (7.38)

That means in particular that we can define a conjugate prior by using a density
with shape fn′(s

′, θ) (i.e. which is equal to f up to scaling, since we still have to
normalize f to make it a density with respect to θ).

In more detail: If

Q(dθ) ∝ fn′(s′, θ)ν(dθ) , (7.39)

the posterior is, up to normalization,

P[dθ|X1:n = x1:n] ∝ fn(S(x1:n, θ))fn′(s
′, θ)ν(dθ) = fn′+n(s′ + S(x1:n), θ)ν(dθ) .

Note that this still works if we replace the integer n′ by any positive scalar λ. If
we substitute in the definition of f and summarize, we obtain:

Proposition 7.12. Let T be the parameter space of an exponential family model
G(S, µ), and ν any σ-finite measure on T. The measures

Qλ,γ(dθ) :=
e〈γ,θ〉−λ logZθ

ν(e〈γ, • 〉−λ logZ • )
ν(dθ) for λ > 0, γ ∈ S (7.40)

form a conjugate family of priors for G(S, µ) with posterior index

Tn((λ, γ), x1:n) = (λ+ n, γ + S(x1:n)) . (7.41)

/

3 The straightforward way to solve the Lagrange problem would be to maximize (7.32) with

respect to P . Again, there is a nothing special about the finite-dimensional case, since we can

define directional derivatives in a general Banach space just as in Rd, so analytic minimization is
in principle possible. (The direct generalization of the vector space derivative from Rd to a Banach

space is called the Fréchet derivative, see [38, Chapter 7 & 8] if you want to learn more.) That
does not work for the entropy, though: Even on a simple domain (say, distributions on [0, 1]), the

entropy is concave and upper semi-continuous [e.g. 59, Chapter I.9], but nowhere continuous in

the weak topology. In particular, it is not differentiable. There is to the best of my knowledge
also no general known form for the Fenchel-Legendre conjugate, and variational calculus has to

be invoked as a crutch to solve the optimization problem where possible.
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The measures Qλ,γ are called the natural conjugate priors for the model G(S, µ),
and we write

G◦(S, µ, ν) := {Qλ,γ |λ > 0, γ ∈ S} . (7.42)

Clearly, G◦(S, µ, ν) is itself an exponential family. More specifically,

G◦(S, µ, ν) = G(S◦, ν) where S◦(θ) := (θ, logZθ) . (7.43)

Useful tables of the most important models and their conjugate priors—Gaussian
and Gauss-Wishart, Multinomial and Dirichlet, Poisson and gamma, etc.—can be
found in many textbooks, or simply on Wikipedia.

Remark 7.13. Another way to describe the derivation above is as follows: We
start with the sampling distribution Lθ(X) and assume there is a sufficient sta-
tistics S. Since a sufficient statistic completely determines the posterior, we can
forget all information in X not contained in S(X) and pass to the image measure
Lθ(S(X1:n)). Suppose pn(s|θ) is a density of this image measure under some mea-
sure µ(dx). A natural conjugate prior is then obtained by choosing some measure
ν(dθ) and re-normalizing pn(s|θ) such that it becomes a density in θ, viz.

q(θ|n, s) :=
pn(s|θ)∫

pn(s|θ)ν(dθ)
. (7.44)

This program only works out nicely in the exponential family case, since exponen-
tial family models are basically the only models which admit a finite-dimensional
sufficient statistic (“basically” because there are some borderline cases which are
almost, but not quite, exponential families). Since the resulting prior family is of
the form q(θ|n, s), it is parametric only if Lθ is an exponential family. /

The argument in Remark 7.13 is in fact how natural conjugate priors where
originally defined [53]. This perspective is helpful to understand the relationship
between conjugate pairs: For example, the conjugate prior for the variance of a
univariate Gaussian is a gamma distribution. The relevant sufficient statistic for
the variance is S(x) := x2, and a simple application of the integral transformation
theorem shows that the density of S(X) has the shape of a gamma if X is Gaussian.
By regarding this function as a density for θ (i.e. by normalizing with respect to θ),
we obtain the actual gamma density. Remarkably, the standard sufficient statistic
of the Poisson also yields a gamma distribution, see Section A.2.

7.7. Posterior asymptotics, in a cartoon overview

The theory of posterior asymptotics and posterior concentration is one of the
few parts of Bayesian nonparametrics on which there is a fairly coherent literature,
and I will not attempt to cover this topic in any detail, but rather refer to better
and more competent descriptions than I could possibly produce. The forthcoming
book [18], once published, will no doubt be the authorative reference for years to
come. In the meantime, [17] and the lecture notes [33] may be good places to start.

In a nutshell, the two main questions addressed by the theory of posterior
asymptotics are:

(1) Consistency: In the limit of infinite sample size, does the posterior concen-
trate at the correct value of Θ?

(2) Convergence rates: How rapidly does the posterior concentrate, i.e. how
much data do we need in order to obtain a reliable answer?
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The meaning of consistency depends crucially on how we define what the “correct
value” of Θ is.

Recall that in frequentist statistics, we assume there exists a true distribution
P0 on the sample space that accounts for the data. If our model includes this
distribution, i.e. if P0 ∈M , we say that the model is correctly specified. If not, M
is misspecified. Here is my stick figure depiction of a model M = {Pθ|θ ∈ T} as
a subset of the space of probability measures PM(X):

PM(X)

Model

P0 = Pθ0

P0 outside model:
misspecified

Still in the frequentist context, an estimator for the model parameter θ is a function

θ̂n(x1:n) of the sample (or, more precisely, a family of functions indexed by n, since
the number of arguments changes with sample size). If the model is correctly
specified, there is some true parameter value θ0 satisfying Pθ0 = P0. We say that

θ̂n is a consistent estimator for the model M if, for every θ ∈ T,

lim
n
θ̂n(X1:n)→ θ0 almost surely (7.45)

if X1, X2, . . . ∼iid Pθ.

Consistency of Bayesian models. In the Bayesian setup, we model Θ as a
random variable, which complicates the definition of consistency in two ways:

• The obvious complication is that, instead of an estimator with values in T,
we are now dealing with a posterior distribution on T, and we hence have to
define convergence in terms of where on T the posterior concentrates as the
sample size grows.
• A somewhat more subtle point is that, in order to ask whether the posterior

concentrates at the correct value of Θ, we have to define what we mean by
“correct value”. It turns out that the precise choice of this definition has huge
impact on the resulting consistency properties.

Suppose we assume the observations X1, X2, . . ., from which the posterior is
computed, are actually sampled from a given Bayesian model. A natural consis-
tency requirement then seems to be that the posterior should concentrate at that
value of the parameter which generated the data:

Definition 7.14. A Bayesian model with parameter space T, observation model
M = {Pθ|θ ∈ T} and prior distribution Q is consistent in the Bayesian sense
if, for observations generated as

Θ ∼ Q

X1, X2, . . . |Θ ∼iid PΘ ,
(7.46)
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the posterior satisfies

Q[ • |X1:n]
weakly−−−−→
n→∞

δΘ(ω) Q-almost surely . (7.47)

/

It is tempting to call this “weak consistency”, but unfortunately, some authors
call it “strong consistency”. The terminology “consistent in the Bayesian sense” is
a crutch I invented here—there does not seem to be a universally accepted nomen-
clature yet.

There is an almost universal consistency result, known as Doob’s theorem: If
a Bayesian model on a standard Borel space is identifiable, i.e. if the parametriza-
tion mapping θ → Pθ is bimeasurable, then the model is consistent in the sense of
Definition 7.14. (See e.g. [67, Theorem 10.10] for a precise statement.)

The problem with this notion of consistency is that its statement holds only up
to a null set under the prior distribution. At second glance, this assumption seems
almost brutal: Suppose we choose our prior as a point mass, i.e. we pick a single
distribution P0 on X and set Q := δP0

. The model is then M = {P0}. The posterior
is again always δP0

; it does not even take into account what data we observe. Yet,
the model is identifiable and hence consistent in the sense of Definition 7.14. Thus,
we can obtain a universal consistency result for any model—if the given form of the
model is not identifiable, we only have to reparametrize it in a sensible manner—but
the price to pay is to explain away the rest of the universe as a null set.

Another way of defining consistency is by disentangling the data source and the
prior: We assume the data is generated by a data source described by a unknown
distribution P0. The data analyst specifies a prior Q, and we ask whether the
corresponding posterior will asymptotically converge to the correct distribution P0

almost surely under the distribution of the data.

Definition 7.15. A Bayesian model with parameter space T, observation model
M = {Pθ|θ ∈ T} and prior distribution Q is consistent in the frequentist sense
if, for every θ0 ∈ T and observations generated as

X1, X2, . . . ∼iid Pθ0 , (7.48)

the posterior satisfies

Q[ • |X1:n]
weakly−−−−→
n→∞

δθ0 Pθ0-almost surely . (7.49)

/

With this notion of consistency, Bayesian models can be inconsistent and con-
verge to completely wrong solutions. Since there is no longer a one-size-fits all
result, the asymptotic theory of Bayesian models becomes much richer, and actu-
ally establishing that a model is consistent for a given problem is a much stronger
statement than consistency in the sense of Doob’s theorem. See [33] for example
results.

Convergence rates. Consistency is a purely asymptotic property, and instead
of asking only whether we would find the right solution in the infinite limit of an
asymptotically large sample, we can additionally ask how much data is required
to get reasonably close to that solution—in other words, how rapidly the posterior
distribution concentrates with increasing sample size.
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Quantifying concentration is a somewhat technical problem, but the basic idea
is very simple: To measure how tightly the posterior Q[ • |X1, . . . , Xn] concentrates
around θ0, we place a ball Bεn(θ0) of radius εn around θ0. Basically, we want the
posterior mass to concentrate inside this ball, but of course even a posterior that
concentrates more and more tightly around θ0 may still spread some small fraction
on its mass over the entire space. We therefore permit a small error τ > 0, and
require only that

Q[Bεn(θ0)|X1, . . . , Xn] > 1− τ Pθ0-almost surely . (7.50)

If we do not want the choice of τ to be a liability, we have to require that this holds
for any τ ∈ (0, 1), although we can of course choose εn according to τ . For a given
τ , we can then write εn(τ) for the smallest radius satisfying (7.50). If the posterior
indeed concentrates as sample size grows, we obtain a sequence of shrinking radii

εn(τ) > εn+1(τ) > . . . (7.51)

describing a sequence of shrinking, concentric balls around θ0:

θ0

εn+1

εn

We have thus reduced the problem from quantifying the convergence of a sequence
of probability measures (the posteriors for different values of n) to the simpler
problem of quantifying convergence of a sequence of numbers (the radii εn).

A typical convergence rate result expresses the rate of convergence of the se-
quence (εn) by means of an upper bound, formulated as a function of the sample
size:

∀τ > 0 : εn(τ) < c(τ)f(n) . (7.52)

The function f is called a rate. It would of course be possible to derive results in
this form for one specific Bayesian model (i.e. a specific prior distribution Q). It
is usually more interesting, however, to instead obtain results for an entire class of
models—both because it makes the result more generally applicable, and because
it explicitly shows how the convergence rate depends on the complexity of the
model. As we know from other statistical models, we have to expect that fitting
complicated models requires more data than in simple ones. The function f hence
has to take into account the model complexity, and convergence rate results are of
the form

∀τ > 0 : εn(τ) < c(τ)f(n,model complexity) . (7.53)

Quantifying model complexity is another non-trivial question: In parametric
models, we can simply count the number of degrees of freedom of the model (the
number of effective dimensions of the parameter space), but for infinite-dimensional
parameter spaces, more sophisticated tools are required. Empirical process theory
and statistical learning theory provide an arsenal of such complexity measures (such
as covering numbers, metric entropies, VC dimensions, etc.), and many of these
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tools are also applied to measure model complexity in Bayesian nonparametrics.
Once again, I refer to [33] for more details.



CHAPTER 8

Random measures

In this chapter, we will discuss random measures in more detail—both ran-
dom probability measures and general random measures. Random measures play
a fundamental role in Bayesian statistics: Whenever a data source is modeled as
an exchangeable sequence, de Finetti’s theorem tells us that there is some random
measure Θ such that the observations are explained as

Θ ∼ Q
X1, . . . , Xn|Θ ∼iid Θ .

(8.1)

Although we can assume a parametric model, Θ is in general an infinite-dimensional
quantity, and historically, Bayesian nonparametric priors where originally conceived
to model Θ directly—the Dirichlet process was proposed in [12] as a prior distribu-
tion for Θ.

That is not quite how Bayesian nonparametric models are used today. Instead,
one usually uses the more familiar approach of splitting Θ into a “likelihood” com-
ponent (a sampling distribution) Pt and a random variable T with law QT, viz.

Θ = PT , (8.2)

so that the generative model is

T ∼ QT

X1, . . . , Xn|T ∼iid PT .
(8.3)

There are arguably two main reasons why this approach is preferred:

(1) Tractable random measure priors (like the Dirichlet process) turn out to gen-
erate discrete measures, which are not useful as models of Θ (Theorem 2.3 says
that if the DP is used directly in this way, the posterior simply interpolates
the empirical distribution of the data with a fixed distribution G).

(2) Splitting Θ into a likelihood Pt and a random pattern T—and possibly splitting
T further into a hierarchical model—has proven much more useful than mod-
eling Θ “monolithically”. One reason is tractability; another is that a suitably
chosen T often provides a more useful summary of the data source than Θ.

We will briefly discuss some ways in which random measures are actually de-
ployed in Section 8.1. The lion’s share of this chapter is then devoted to random
discrete measures; the theory of such measures revolves around the Poisson pro-
cess. Constructing priors on smooth random measures is technically much more
challenging: Smoothness requires long-range dependencies, which make the math-
ematical structure of such models much more intricate, and introduce coupling in
the posterior that is usually defies our mathematical toolkit. Non-discrete random
measures are briefly discussed in Section 8.9.

71
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8.1. Sampling models for random measure priors

When random discrete measures are used in Bayesian models, then usually in
a model of the form (8.3). Important examples are:

(i) In clustering models, T itself is a random probability measure; the weights
parametrize a random partition, the atom locations serve as parameters for
the (parametric) distributions of individual clusters.

(ii) In latent feature models, a (non-normalized) random measure can be used
to generate the latent binary matrix describing assignments to overlapping
clusters (as described in Section 3.4).

(iii) Dirichlet process mixtures (and other nonparametric mixtures) can be used in
density estimation problems. In this case, the models (8.3) and (8.1) coincide:
T is the random mixture density p(x) in (2.18), which is interpreted as the
density of Θ in (8.1).

(iv) In survival analysis, T is a hazard rate. A random measure on R+ can be
integrated to obtain random cumulative distribution functions, which in turn
can be used to model hazard rates. I will not discuss this approach in detail,
see e.g. [23, 34].

For most of the models we consider, including case (i)–(iii) above, we need to
consider two ways of sampling from a random measure:

• The multinomial sampling model: ξ̂ is a random probability measure and

we sample Φ1,Φ2, . . . |ξ̂ ∼iid ξ̂.
• The Bernoulli sampling model: ξ =

∑
k∈N CkδΦk is a (usually non-normalized)

random measure with Ck ∈ [0, 1] and we sample a random matrix Z, for each
column k, as Z1k, Z2k, . . . |Θ ∼ Bernoulli(Ck).

Again, I am making up terminology here—the multinomial model, by far the most
important case, is usually not discussed explicitly. The Bernoulli model was named
and explicitly described by Thibeaux and Jordan [66], who called it a Bernoulli
process.

Multinomial sampling. The sampling model used with basically with all
random probability measure priors—the Dirichlet process, normalized completely
random measures, Pitman-Yor process, etc.—in one way or another is of the form

ξ̂ ∼ Qξ

Φ1,Φ2, . . . |ξ̂ ∼iid ξ̂ .
(8.4)

Different applications of this sampling scheme may look very different, depending on
which level of the hierarchy the random measure occurs at—if the Φi are observed
directly, we have a model of the form (8.1); in a DP mixture clustering model, the
Φi are unobserved cluster parameters, etc.

Notation 8.1. If ν is a measure on some space Ωφ, and I := (A1, . . . , An) a par-
tition of Ωφ into measurable sets, I will use the notation

ν(I) := (ν(A1), . . . , ν(An)) (8.5)

throughout the remainder of this chapter. /

I call the sampling scheme (8.4) “multinomial” since, if I := (A1, . . . , An) is a
finite partition of Ωφ, then

P[Φ ∈ Aj |ξ̂] = ξ̂(Aj) , (8.6)
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and the random index J ∈ [n] defined by Φ ∈ AJ is multinomially distributed with

parameter ξ̂(I). It can in fact be shown, with a bit more effort, that sampling Φ ∼ ν
for any probability distribution ν on Ωφ, can be regarded as a limit of the sampling
procedure J ∼ Multinomial(ν(I))—roughly speaking, for n→∞ and |Ai| ↘ 0 (see
[47] for details).

8.2. Random discrete measures and point processes

We now focus on random discrete measures, i.e. ξ is of the form

ξ( • ) =
∑
k∈N

CkδΦk( • ) , (8.7)

where the weights Ck ∈ R+ may or may not sum to 1. We will use three different
representations of such random measures: In terms of two sequences (Ck) and
(Φk), as we have done so far; in terms of a random cumulative distribution function
representing the weights (Ck); and in terms of a point process.

Recall that a point process on a space X is a random, countable collection
of points on X. In general, points can occur multiple times in a sample, and a
general point process is hence a random countable multiset of points in X. If the
multiset is a set, i.e. if any two points in a sample are distinct almost surely, the
point process is called simple. In other words, a simple point process is a random
variable

Π : Ω→ 2X where Π(ω) countable a.s. (8.8)

We are only interested in the simple case in the following.
If Π is a point process, we can define a random measure by simply counting

the number of points that Π places in a given set A:

ξ(A) := |Π ∩A| =
∑
X∈Π

δX(A) . (8.9)

If we enumerate the points in the random set Π as X1, X2, . . ., we can read this as
a random measure ξ =

∑
k CkδXk with weights Ck = 1 (since the point process is

simple). Such a measure is called a random counting measure.
The random discrete measures we have used as priors have scalar weights Ck.

We can generate such scalar weights in R+ using a point process by throwing points
onto R+. A discrete random measure on Ωφ with non-trivial weights can then be
defined using a simple point process Π on X := R≥0 × Ωφ as

ξ( • ) :=
∑

(C,Φ)∈Π

C · δΦ( • ) . (8.10)

8.3. Poisson processes

By far the most important point process is the Poisson process, for which
the number of points in any fixed set is Poisson-distributed. (Recall the Poisson
distribution (A.2) from Appendix A.)

Definition 8.2. Let µ be a measure on a Polish space X. A point process Πµ on
X is called a Poisson process with parameter µ if

|Πµ ∩A| ⊥⊥ |Πµ ∩ (XrA)| (8.11)
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and

|Πµ ∩A| =
{
∼ Poisson(µ(A)) if µ(A) <∞

∞ a.s. if µ(A) =∞ (8.12)

for every measurable set A in X. /

The Poisson process is explained for sets A of infinite measure µ(A) by “slicing
up” µ into a countable number of finite components: We require

µ =
∑
n∈N

µn for some measures µn with µn(X) <∞ . (8.13)

Perhaps the best way to illustrate the definition of the Poisson process is to provide
an explicit sampling scheme:

Theorem 8.3 (Sampling a Poisson process). Let µ be a measure on a standard
Borel space X. If µ is non-atomic and satisfies (8.13), the Poisson process Πµ on
X exists, and can be sampled as follows:

(1) If µ(X) <∞, then Πµ d
= {X1, . . . , XN}, where

N ∼ Poisson(µ(X)) and X1, . . . , XN ∼iid

µ

µ(X)
. (8.14)

(2) If µ(X) =∞, then

Πµ =
⋃
n∈∞

Πµn . (8.15)

/

The theorem immediately implies several useful properties:

Corollary 8.4. Let µ be a measure and (νn) a sequence of measures, all of which
are non-atomic and satisfy (8.13). Let φ : X→ X be a measurable mapping. Then
the following holds:

φ(Πµ) = Πφ(µ) if µ is σ-finite . (8.16)

Πµ ∩A = Πµ( .∩A) for any set A ∈ B(X) . (8.17)⋃
n∈N

Πµn = Π
∑
n µn (8.18)

/

Informally speaking, Theorem 8.3 shows that sampling from a Poisson process
with parameter µ is “almost” i.i.d. sampling from µ, but sampling is well-explained
even if µ is infinite and cannot be normalized to a probability measure. To obtain
a coherent generalization of sampling to the case µ(X) =∞, we consider the entire
point set as a single draw, rather than drawing points individually. To substitute
for the independence property between separate i.i.d. draws, we now need an inde-
pendence property that holds within the sample; this is given by the independence
(8.11) of the process between disjoint sets. Not that (8.11) implies the total num-
ber of points must be random: If we were to posit a fixed number n of samples,
then observing k samples in XrA would imply |Π ∩A| < n− k, so the numbers of
points on A and XrA would not be independent.
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Complete randomness. Since (8.11) holds for any measurable set A, it im-
plies the numbers of points in any two disjoint sets are independent. In the point
process literature, this property is known as complete randomness or pure random-
ness.

Definition 8.5. A point process Π is called completely random if

(Π ∩A) ⊥⊥ (Π ∩A′) (8.19)

for every pair of disjoint measurable sets A,A′ ∈ B(X). /

The Poisson process is completely random by definition. A rather baffling fact,
however, is that only the Poisson process ic completely random.

Proposition 8.6. If a simple point process Π on an uncountable standard Borel
space X is completely random, the set function defined by the expected number of
points per set,

µ(A) := E[|Π ∩A|] for all Borel sets A , (8.20)

is a non-atomic measure on X. If µ is σ-finite, Π is a Poisson process with param-
eter µ. /

This illustrates why the Poisson process is of such fundamental importance:
As we discussed above, we can think of complete randomness as the point process
analogue of i.i.d. sampling. In this sense, it is perhaps more accurate to think of the
Poisson process as a sampling paradigm (similar to i.i.d. sampling from µ), rather
than as a model with parameter µ. I will give a proof of Proposition (8.6) here,
but the main purpose of doing so is to clarify that it is absolutely elementary.

Proof. For the proof, I will abbreviate the (random) number of points in a set
A as N(A) := |Π ∩A|. The first step is to show that µ in (8.20) is a measure. Let
A1, A2, . . . be a (possibly infinite) sequence of mutually disjoint sets. Disjointness
implies

N(∪iAi) =
∑
i

N(Ai) . (8.21)

Since the sets are disjoint and Π is completely random, the random variables N(Ai)
are mutually independent and their expecations hence additive, so

µ(∪iAi) = E[N(∪iAi)] =
∑
i

E[N(Ai)] =
∑
i

µ(Ai) . (8.22)

Thus, µ is countably additive. Since also µ(∅) = 0 and µ(A) ≥ 0, it is indeed a
measure on X. Since points are distinct almost surely, µ({x}) = 0 for any x ∈ X,
i.e. µ is non-atomic.

To show that µ is a Poisson process with parameter µ, we have to show that
N(A) ∼ Poisson(µ(A)) holds for any Borel set A. What is the probability of ob-
serving precisely k points in A? Since µ is non-atomic, we can subdivide A into a
partition (A1, . . . , An) of measurable sets with

µ(A1) = . . . = µ(An) =
µ(A)

n
, (8.23)

for any n ∈ N. Rather than counting points in each set Ai, we can greatly simplify
matters by only distinguishing whether a set contains points or not, by defining

IAi :=

{
1 N(Ai) > 0
0 N(Ai) = 0

. (8.24)
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Since each IAi is binary, it is a Bernoulli variable with some success probability pin.
As the points of Π are distinct, each point is contained in a separate set Ai for n
sufficiently large, and so

lim
n

n∑
i=1

IAi = N(A) . (8.25)

For a Bernoulli variable, the success probability pin is just the expectation E[IAi ]. If
n os large enough that points are in separate intervals, we have E[IAi ]→ E[N(Ai)],
or more formally,

lim
n

pin
E[N(Ai)]

= lim
n

pin
µ(A)/n

= 1 , (8.26)

so for sufficiently large n, we can assume that IAi has success probability µ(A)/n.
By complete randomness, the variables IAi are independent, so the probabiliy of
observing precisely k successes is binomially distributed,

P{IA1
+ . . .+ IAn = k} =

(
n

k

)(µ(A)

n

)k(
1− µ(A)

n

)n−k
. (8.27)

In the limit n→∞, as we have argued above, this converges to the probability of
observing k points of Π in A. A few lines of arithmetic show that

lim
n→∞

(
n

k

)(µ(A)

n

)k(
1− µ(A)

n

)n−k
=
µ(A)k

k!
lim
n

(
1− µ(A)

n

)n
. (8.28)

We know from basic calculus that (1− a
n )n → e−a, so we obtain

P{N(A) = k} = e−µ(A)µ(A)k

k!
, (8.29)

and Π is indeed a Poisson process. �

8.4. Total mass and random CDFs

If the random measure ξ is not normalized, the mass ξ(Ωφ) it assigns to the
entire space is in general a non-negative random variable. We denote this variable

Tξ := ξ(Ωφ) =
∑
k

Ck (8.30)

and call it the total mass of ξ. This variable may carry a lot of information
about ξ; indeed, for the most important class of non-normalized random discrete
measures—homogoneous Poisson random measures, which we define below—the
distribution of Tξ completely determines the distribution of the weights Ck.

For the purposes of Bayesian nonparametrics, we are only interested in the case
where Tξ is almost surely finite. Recall the applications of random measures we
have seen so far; they suggest three possible uses for ξ:

(1) ξ is a random probability measure (so Tξ = 1 almost surely).
(2) ξ is not normalized, but we use it to define a random probability measure, by

dividing by its total mass. That requires Tξ <∞ a.s.
(3) ξ is used in a latent feature model as in Sec. 3.4. We already argued in Section

3.4 that this also requires Tξ <∞ a.s.

We are also generally only interested in homogeneous random measures (recall: the
atoms Φi are i.i.d. and independent of the weights). For all that follows, we hence
make the following
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General assumption 8.7. All random measures we discuss are assumed to be
homogoneous and have finite total mass almost surely.

If ξ is homogeneous, we can assume without loss of generality that

Ωφ = [0, 1] and Φ1,Φ2, . . . ∼iid Uniform[0, 1] (8.31)

That is possible because the weights do not depend on the atom locations—to turn
ξ into a random measure on an arbitrary Polish space Ωφ instead of [0, 1], we can
simply replace the uniform scalar atoms and replace them by other i.i.d. random
variables. All non-trivial structure in ξ is encoded in the weight sequence.

One great advantage of this representation is that measures on [0, 1] can be
represented by their cumulative distribution functions. A homogeneous random
measure ξ on [0, 1], can hence be represented by the random CDF

Fξ(φ) := ξ([0, φ]) . (8.32)

The total mass of ξ is then

Tξ =a.s. Fξ(1) . (8.33)

Since ξ is discrete, the random function Fξ is piece-wise constant and, as a CDF,
non-decreasing, for example:

φ

Fξ(φ)

Φ1 Φ2 Φ3 1

Tξ

C1

C2

C3

We can alternatively regard this as the path of a real-valued, non-decreasing, piece-
wise constant stochastic process on [0, 1]. Those are a lot of adjectives, but processes
of this type are particularly easy to handle mathematically—roughly speaking, be-
cause all action happens at a countable number of points (the jumps), and since
non-decreasingness can be enforced in a completely local manner by requiring the
jumps to be non-negative, without introducing complicated long-range dependen-
cies between different points of the path.

8.5. Infinite divisibility and subordinators

Suppose we are want to define a homogeneous random measure ξ; as we have
noted in the previous section, we are interested in measures with finite total mass
Tξ. Recall our basic design principle that components of our random objects should
be as independent from each other as possible. Since ξ is homogeneous, the atom
locations are i.i.d., but we cannot sample the weights Ck i.i.d.; if we do, Tξ =∞
holds almost surely (infinite sums of positive i.i.d. variables have to diverge, by
Borel-Cantelli).

How much independence between the weights Ck can we get away with? Ar-
guably the next best thing to i.i.d. weights Ck would be to make Tξ infinitely
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divisible: Recall that a scalar random variable T is called infinitely divisible if,
for every n ∈ N, there is a probability measure µn such that

L(T ) = µn ∗ . . . ∗ µn .
n times

In other words, for every n, there exists a random variable T (n) with L(T (n)) = µn
such that T can be represented as the sum of n i.i.d. copies of T (n),

T
d
=

n∑
i=1

T (n)

i . (8.34)

A random variable can be infinitely divisible and almost surely finite—gamma and
Gaussian variables are both infinitely divisible. Thus, although we cannot represent
T as an infinite sum of i.i.d. variables, we can subdivide into any finite number of
i.i.d. components.

It turns out that, if we assume the total mass Tξ of a homogeneous random
meaures is infinitely divisible, then its CDF Fξ is necessarily a special type of Lévy
process called a subordinator. Recall that we can think of a real-valued stochastic
process F on [0, 1] as a random function F : [0, 1]→ R. We have already discussed
random functions in Chapter 4, where we were particularly interested in distribu-
tions on continuous functions. The CDFs of discrete measures jump at a countable
number of points, so we now require instead that F is almost surely a so called
right-continuous function with left-hand limits (rcll function). That means simply
that F is piece-wise continuous with an at most countable number of jumps, and if
it jumps at a point φ, the function value F (φ) at the jump location already belongs
to the right branch of the graph.

If we choose a sub-interval I = [a, b) in [0, 1], then F (b)− F (a), i.e. the (ran-
dom) amount by which F increases between a and b, is called the increment of F
on I. Recall that F is called a Lévy process if:

(1) It is almost surely an rcll function.
(2) It has independent increments: If I and J are two disjoint intervals, the incre-

ments of Y on I and on J are independent random variables.

There is a direct correspondence between Lévy processes and (scalar) infinitely
divisible variables: If F is a Lévy process, the scalar variable F (1) (or indeed F (φ)
for any φ ∈ (0, 1] is infinitely divisible, and the converse is also true:

Proposition 8.8 (e.g. [56, Theorem 7.10]). A scalar random variable T is infinitely

divisible iff there is a real-valued Lévy process F (φ) on [0, 1] such that F (1)
d
= T . /

Informally, we can “smear out” the scalar variable T into a stochastic process
on [0, 1], and this process can always be chosen as a Lévy process.

We can then use the special structure of Lévy processes to simplify further:
The Lévy-Khinchine theorem [28, Theorem 15.4] tells us that any Lévy process can
be decomposed into three, mutually independent components as

Lévy process path = non-random linear function + centered Brownian motion +
Poisson process jumps .

Since we know our random function F is non-decreasing, it cannot have a Brownian
motion component: The increment of a centered Brownian motion on any interval
I ⊂ [0, 1] is positive or negative with equal probability. Without Brownian motion,
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the effect of the non-random linear function would be to turn the piece-wise constant
path in the figure above into a piece-wise linear one, where each segment has the
same slope. For a discrete random measure, the CDF should not change between
jumps, so the linear component has to vanish. What we are left with is a Poisson
process on [0, 1]. This process is given by a Poisson process Πµ with on R+ × [0, 1]
as

F (φ) =
∑{

C
∣∣(C,Φ) ∈ Πµ and Φ < φ

}
. (8.35)

If the mean measure of the Poisson process has product structure µ = µc × µφ on
R+ × [0, 1], a stochastic process F of the form (8.35) called a subordinator. The
product structure of µ means that F has independent increments. In summary:

homogeneous random discrete measures with infinitely divisible total mass
l

CDFs generated by a subordinator

We also see that there is a direct correspondence between the random CDF repre-
sentation and the point process representation of such measures through (8.35).

8.6. Poisson random measures

Suppose we define a random measure ξ using a point process in (8.36). Our
discussion in the previous section shows that, in order for the total mass Tξ to be
infinitely divisible, we need to choose the point process specifically as a Poisson
process. If Πµ is a Poisson process on R+ × Ωφ, then

ξ( • ) :=
∑

(C,Φ)∈Πµ

C · δΦ( • ) . (8.36)

is called a Poisson random measure. If ξ is also homogeneous, the parameter
measure µ of the Poisson factorizes as

µ = µC ⊗ µφ (8.37)

into non-atomic measures µC on R+ and µφ on Ωφ. This is precisely the case in
which the CDF of ξ is a subordinator, if we choose Ωφ = [0, 1].

Altough the class of Poisson random measures is huge, there are only a few
which play an actual role in Bayesian nonparametrics. The most important exam-
ples are arguably gamma and stable random measures, which can be used to derive
Dirichlet and Pitman-Yor processes. Both are standard models in applied proba-
bility. A model which was hand-taylored for Bayesian nonparametrics is the beta
process or beta random measure [23], which has applications in survival analysis
and can be used to represent the IBP.

A family of homogeneous Poisson random measures is defined by specifying the
measure µC in (8.37), which controls the distribution of the weights. If we sample
a weight sequence (Ck) from a Poisson process with parameter µC, we can then
choose a probability measure on some space Ωφ, sample a sequence of atoms, and
attach them to (Ck) to obtain a random measure on Ωφ.

Definition 8.9. A homogeneous Poisson random measure ξ as in (8.36) is called
a gamma, stable, or beta process, respectively, if µC in (8.37) is of the form:
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Random measure Parameter measure µC

gamma process µC(dc) = αc−1e−βcdc
stable process µC(dc) = γc−α−1dc
beta process µC(dc) = γc−1(1− c)α−1dc

/

Example 8.10 (beta process). The beta process was originally introduced by Hjort
[23] as a prior for survival models. Thibeaux and Jordan [66] pointed out that the
IBP can be generated by first sampling a random measure ξ from a beta process,
and then sampling a binary matrix Z from ξ according to thee Bernoulli sampling
scheme in Section 8.1.

Teh and Görur [62] showed how this perspective can be used to generalize the
IBP to distributions where the row sums of Z—i.e. the sizes of groups or clusters—
follow a power law distribution, in analogy to the cluster sizes generated by a
Pitman-Yor process. If ξ is a homogeneous Poisson random measure with

µ(dc) = γ
Γ(1 + α)

Γ(1− α)Γ(α+ d)
c−1−d(1− c)α−1+d , (8.38)

and if Z is a random binary matrix generated from ξ according to the Bernoulli
sampling model, then:

• For d = 0, Z is distributed according to an Indian buffet process.
• For d ∈ (0, 1], the column sums of Z follow a power law distribution.

The random measure (8.38) is is obtained by modifying a beta process according
to the intuition

Poisson random measure + stable random measure → power law ,

and Teh and Görur [62] refer to it as a beta-stable random measure. For more
background on beta processes, I recommend the survey [63]. /

8.7. Completely random measures

Suppose we use a Poisson random measure ξ to derive a prior for a Bayesian
nonparametric model. That may mean that we normalize ξ to obtain a random
probability measure and then sample from it, that ξ is a beta process sampled
with a Bernoulli sampling model, etc. Regardless of the specific sampling model we
use, we usually observe atom location of ξ. Suppose Φ1, . . . ,Φn are observed atom
location. If we compute the posterior of ξ given Φ, we know that a random measure
ξn sampled from this posterior has atoms at Φ1, . . . ,Φn. Hence, ξn is no longer a
Poisson random measure (since the parameter measure µ of a Poisson process must
be atomless).

Poisson random measures can be generalized to a very natural class of measures,
called completely random measures, which includes both Poisson random measures
and fixed atom locations: Recall the complete randomness property (8.19) for point
processes. Now consider the analogous property for random measures: If ξ is a
random measure on Ωφ, we require that for any two measurable sets A and A′

ξ(A)⊥⊥ ξ(A′) whenever A,A′ disjoint. (8.39)

In analogy to point processes, we call a random measure satisfying (8.39) a com-
pletely random measure, or CRM for short.
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If ξ has finite total mass almost surely—and in fact under much more general
conditions not relevant for us, see [32]—a CRM can always be represented as follows:
If ξ is completely random, then

ξ =a.s. ξn + ξf + ξr (8.40)

where ξn is a non-random measure on Ωφ, ξf is a random measure

ξf
d
=
∑
φi∈A

CiδΦi (8.41)

with a fixed, countable set A ⊂ Ωφ of atoms, and ξr is a Poisson random measure
[30, Theorem 1].

In particular, a CRM does not have to be discrete, but only the non-random
component ξn can be smooth: Informally, suppose B is a set and we know what the
smooth component looks like on B. Then, by smoothness, that provides information
on how it behaves on ΩφrB, at least close to the boundary, so if the smooth
component is random, its restrictions to B and ΩφrB are stochastically dependent,
and (8.39) is violated.

For Bayesian nonparametrics, the non-random component is not of interest, so
we always assume ξn = 0. In the prior, we usually have no reason to assume atoms
at specific locations. Hence, the distribution of ξr in (8.40) is sampled from the
prior, and ξf appears in the posterior. A very readable derivation of completely
random measures is given by Kingman [32, Chapter 8], but it is useful to keep in
mind that the only CRMs of interest to Bayesian nonparametrics are usually those
which satisfy assumption 8.7 and are of the form

ξ =a.s. ξf + ξr .

appears in posterior sampled from prior (8.42)

Even if the prior is a completely random measure, though, the posterior need
not be a CRM. One example of a CRM prior whose posterior is indeed of the
form (8.42) is the beta process or, more generally, the beta-stable, combined with
a Bernoulli sampling model as in Example 8.10.

8.8. Normalization

So far in this chapter, we have only discussed unnormalized random measures.
We will now turn to the arguably more important case of random probability mea-
sures. Suppose ξ is a random measure with a.s. finite total mass Tξ. We can define

a random probability measure ξ̂ from ξ by normalization, as

ξ̂( • ) :=
ξ( • )

Tξ
. (8.43)

If ξ is a completely random measure as above, ξ̂ is also known as a normalized
completely random measure.

Before we can define ξ̂, we have to verify that its total mass if finite. That may
not be a trivial matter in general; if ξ is in particular a Poisson random measure
with parameter measure µ, a sufficient condition for Tξ <∞ is∫

R+

∫
Ωφ

min{1, c}µ(dφ, dc) <∞ . (8.44)
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Example 8.11. The most important example is the gamma random measure (cf.
Definition 8.9). In this case, it can be shown that the random mass ξ(A) assigned by
ξ to a Borel set A is a gamma variable with parameters (αG0(A), 1). In particular,
Tξ is Gamma(α, 1), and hence finite a.s., so we do not have to invoke condition
(8.44). The random measure obtained by normalizing ξ is the Dirichlet process,

ξ̂ ∼ DP (αG0) . (8.45)

We can easily see that this is the case by subdividing the space Ωφ into a finite par-
tition I := (A1, . . . , An) of Borel sets. Then each entry ξ(Ai) of the random vector
ξ(I) (using notation (8.5)) is a Gamma(αG0(Ai), 1) random variable. A normalized
vector of such gamma variables has the Dirichlet distribution with concentration
α and expectation G0(I) (see Appendix A.3). Thus, for any partition of Ωφ, the

vector ξ̂(I) is Dirichlet-distributed, and ξ̂ is indeed a DP. /

Although it is perhaps not completely obvious at first glance, a normalized

discrete random measure ξ̂ in (8.43) is in general not independent of Tξ. For

illustration, suppose we sample a finite random measure ξ =
∑3
k=1 CiδΦk , where

the weights Ck are generated i.i.d. from a degenerate distribution consisting of two
point masses at, say, 1 and 10:

c

p(c)

1 10

1
2

We sample three weights, compute their sum Tξ, and normalize to obtain ξ̂. Even
after we have normalized, if we are told that Tξ = 12, we can precisely read off

the values of the Ck, and hence of the weights Ĉk of ξ̂, except for the order in

which they occur. Thus, Tξ and ξ̂ are clearly dependent. The distribution of ξ does
not have to be degenerate—we could replace the mixture of point masses with a
mixture of, say, two narrow Gaussians, and we could still tell if Tξ ≈ 12 that one of

the weights Ĉk is about ten times as large as all others. The same can happen for
an infinite number of atoms in a Poisson random measure, if e.g. the Poisson mean
measure peaks sharply at two points.

In fact, ξ and Tξ are always dependent, except in one special case:

Proposition 8.12. If ξ is a completely random measure, then ξ̂⊥⊥Tξ holds if and

only if ξ is a gamma random measure, that is, if ξ̂ is a Dirichlet process. /

This characterization of the gamma and Dirichlet processes is a direct con-
sequence of the special propertis of the gamma distribution, see Theorem A.1 in
Appendix A.

In Remark 2.2, we argued that we want our random measures to be as simple
as possible, in the sense that we try to limit coupling between their components.
In this sense, Proposition 8.12 says that the Dirichlet process is the simplest object
we can possibly hope to obtain—unless we keep the number of atoms finite, in
which case it would be the Dirichlet distribution, again due to Theorem A.1. We
also argued that restricting coupling between components of the random measure
in the prior keeps the posterior tractable, which suggests that the Dirichlet process
posterior should be particularly simple. Indeed:
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Theorem 8.13 (James, Lijoi, and Prünster [25]). Suppose Θ is a normalized
completely random measure and homogeneous. If observations are generated as
X1, X2, . . . ∼iid Θ, the posterior distribution L(Θ|X1, . . . , Xn) is the law of a ho-
mogeneous normalized completely random measure if and only if Θ is a Dirichlet
process. /

The Pitman-Yor process is not a normalized completely random measure: Note
that the variables Vk are not i.i.d., since L(Vk) depends on k.

8.9. Beyond the discrete case: General random measures

Random discrete measures are comparatively easy to define, since it is suffi-
cient to define the two random sequences (Ck) and (Φk). Defining general, possibly
smooth random measures, is a much harder problem: Informally speaking, in order
to enforce smoothness, we have to introduce sufficiently strong stochastic depen-
dencies between points that are close in Ωφ.

There is a generally applicable way to define arbitrary random measures on a
Polish space Ωφ; I will only discuss the case of random probability measures, since
the general case is a bit more technical. Here is the basic idea: Suppose ξ is any
random probability measure on Ωφ, i.e. a random variable with values in PM(Ωφ),
and let P := L(ξ) be its distribution. Now choose a partition I = (A1, . . . , Ad) of
Ωφ into a finite number d of measurable sets. If we evaluate ξ on each set Ai, we
obtain a vector

ξ(I) = (ξ(A1), . . . , ξ(Ad)) . (8.46)

with d non-negative entries and sum 1, and hence a random element of the simplex
4d ⊂ Rd. We can define a different random vector ξ(I) for each possible partition
of Ωφ into finitely many sets. Let I be the set of all such partitions. If we denote
the distribution of ξ(I) by PI := L(ξ(I)), we obtain a family of distributions

P := {PI|I ∈ I} . (8.47)

Theorem 8.14 below implies that P completely determines P . This means we can
construct P (and hence ξ) by positing a suitable family of distributions P. These
distributions PI are much easier to specify then P , since they live on the finite-
dimensional sets 4d, whereas P lives on the infinite-dimensional space PM(Ωφ).

What I have described so far is a uniqueness statement, not a construction
result: I have started with the object ξ we want to construct, and told you that we
can derive distributions from ξ which then define ξ. What we really need is a set of
criteria for whether a given family P of distributions defines a random probability
measure ξ.

One property is clearly necessary: If all PI are supposed to be derived from
the same P , they must cohere over different partitions. For example, suppose I is
obtained from another partition J = (A1, . . . , Ad, Ad+1) by merging two sets in J ,
say I = (A1, . . . , Ad ∪Ad+1). If ξ is a random measure on Ωφ, it must satisfy

ξ(I)
d
= (ξ(A1), . . . , ξ(Ad) + ξ(Ad+1)) . (8.48)

Hence, if ξI ∼ PI and ξJ ∼ PJ, they must accordingly satisfy

(ξI,1, . . . , ξI,d)
d
= (ξJ,1, . . . , ξJ,d + ξJ,d+1) . (8.49)
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More generally, we have to consider the case where we obtain I from J by
merging an arbitrary number of sets in J , which is notationally a bit more cumber-
some: Suppose J = (A1, . . . , Ad), and I is a coarsening of J , i.e. there is a partition
ψD = (ψ1, . . . , ψk) of [d] such that

I = (∪i∈ψ1Ai, . . . ,∪i∈ψkAi) . (8.50)

We then define a mapping prJI : 4J →4I as

prJI(p1, . . . , pd) := (
∑
i∈ψ1

pi, . . . ,
∑
i∈ψk

pi) . (8.51)

The general form of requirement (8.49) is then

prJI(ξJ)
d
= ξI or equivalently prJI(PJ) = PI . (8.52)

The family (8.47) of distributions is called projective if it satisfyies (8.52) whenever
I is a coarsening (8.50) of J .

A second obvious requirement is the following: If the expected measure (i.e.
the expected value) of a random measure ξ on Ωφ is E[ξ] = G, then E[ξ(I)] = G(I).
Hence, if the family P is supposed to define a random measure, there must be a
probability measure G on Ωφ such that

E[ξI] = G(I) for all I ∈ I . (8.53)

Remarkably, it turns out that conditions (8.52) and (8.53) are all we need to
construct random measures:

Theorem 8.14 (Orbanz [46]). Let Ωφ be a Polish space. A family {PI|I ∈ I} of
distributions PI ∈ PM(4I) uniquely defines the distribution P of a random measure
ξ on Ωφ if and only if (i) it is projective and (ii) there is some probability measure
G on Ωφ such that

EPI
[ξI] = G(I) . (8.54)

If so, P satisfies EP [ξ] = G. /

Example 8.15 (Dirichlet process). We can in particular choose each distribution PI

as a Dirichlet distibution on4I (see Section A.3). We choose the same concentration
parameter α for all PI, fix a probability measureG on Ωφ, and define the expectation
parameter of each PI as gI := G(I). It is then not hard to show that the resulting
family P is projective, and by definition, it satisfies (A.3). The resulting random
measure ξ on Ωφ is a Dirichlet process with concentration α and base measure G.
The Dirichlet process was originally constructed (roughly) in this way by Ferguson
[12], and then shown to be almost surely discrete by Blackwell [4]. Our definition
of the Dirichlet process, via the stick-breaking construction—where discreteness is
obvious—is informed by hindsight. See [46] for details. /

Although Theorem 8.14 in principle allows us to construct arbitrary random
measures, there are very few examples of continuous random measures used in
Bayesian nonparametrics. One is the Dirichlet process mixture: The DP mixture
model (2.18) with a smooth parametric component density p defines a smooth
random measure. We have only used such mixtures for clustering, but they are also
used for density estimation problems, where the random density (2.18) is used to fit
a target distribution. Another example is the Pólya tree prior [13], which contains
the DP as a special case, but for certain parameter settings generates continuous
distributions almost surely—with the caveat that continuous in this case only means
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absolutely continuous with respect to Lebesgue measure, and a Polýa tree measure
actually is piece-wise smooth rather than smooth.

I would name to main reasons why there is little work on priors on smooth
measures:

• Tractability: Forcing a random measure to be smooth requires stochastic de-
pendence. Distributions on such measures are hard to construct to begin with,
but to use them as priors, we have to condition on data, and dependencies
typically become much more complicated in the posterior. Comparing to those
random measures which are actually used—in particular the CRMs and nor-
malized CRMs discussed above—shows that they are defined precisely to keep
dependencies between different subsets of Ωφ at an absolute minimum.
• More bespoke models have proven more useful: As discussed already in the

introduction to this chapter, the main motivation to construct general, smooth
random measure priors was originally to model the unknown random mea-
sure in de Finetti’s theorem directly. Three decades of research in Bayesian
nonparametrics show rather compellingly that that approach seems to be too
brute-force for most problems; modelling a more specific pattern turns out to
be more useful.

8.10. Further references

The book to read on Poisson processes is [32]; if you have any interest in random
discrete measures, I would recommend to read at least Chapters 2, 5.1, 8 and 9.
A very accessible exposition of point processes, Lévy processes and related topics
is given by Cinlar [6]. For more general point process theory, I have also found
the two volumes by Daley and Vere-Jones [7] useful. For posterior properties of
normalized CRMs, see [26] and [34]. Mixture models based on normalized CRMs
can be sampled with an algorithm similar to Neal’s Algorithm 8 [11].





APPENDIX A

Poisson, gamma and stable distributions

The distributions we encounter most commonly when working with random
discrete measures are the Poisson, gamma and Dirichlet distributions. The next
few pages collect their most important properties for purposes of Bayesian non-
parametrics.

A.1. The Poisson

Recall that the Poisson distribution is the distribution we obtain from the series
expansion

eλ =

∞∑
k=0

λk

k!
(A.1)

of the exponential function: If we normalize by multiplication with e−λ and multiply
in a point mass δk at each k, we obtain a probability measure

Pλ( • ) :=

∞∑
k=1

e−λ
λk

k!
δk( • ) (A.2)

on N ∪ {0}, called the Poisson distribution with parameter λ. The Poisson
distribution is usually defined for λ > 0, but our definition includes the case λ = 0,
for which Pλ = δ0.

The Poisson distribution has two very useful properties that we use at various
points in these notes:

(1) Additivity: If K1 ∼ Poisson(α1) and K2 ∼ Poisson(α2) then

(K1 +K2) ∼ Poisson(α1 + α2) . (A.3)

(2) Thinning: The number of successes in a Poisson number of coin flips is Pois-
son, namely if K ∼ Poisson(α) and X1, . . . , XK ∼iid Bernoulli(p), then

K∑
i=1

Xi ∼ Poisson(pα) . (A.4)

A.2. The gamma

The gamma distribution is the distribution on R+ with Lebesgue density

fα,β(λ) =
βα

Γ(α)
λα−1e−βλ α, β > 0 . (A.5)

The gamma has a “magic” property which makes it unique among all distributions
on positive scalars, and which directly accounts for many special properties of the
Dirichlet process:
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Theorem A.1 (Lukacs [39]). Let X and Y be two non-degenerate and positive
random variables, and suppose that they are independently distributed. The random
variables U := X + Y and V := X/Y are independently distributed if and only if
both X and Y have gamma distribution with the same scale parameter β. /

Remark A.2 (Gamma and Poisson). The gamma can be obtained as the natural
conjugate prior of the Poisson: If the variables K1, . . . ,Kn are i.i.d. Poisson(λ),
the sum Sn(K1:n) =

∑
iKi is a sufficient statistic for λ. By additivity (A.3) of

the Poisson, the sum is distributed as Sn ∼ Poisson(nλ). Following Remark 7.13,
we can obtain the natural conjugate prior by passing to the image measure under
S—which is again Poisson(nλ), since S is the identity—and renormalizing it as a
density with respect to λ. Since

Pnλ(k) = e−nλ
(nλ)k

k!
= e−nλ

(nλ)k

Γ(k + 1)
, (A.6)

the normalization constant is given by∫
R+

e−nλ(nλ)kdλ =
1

n

∫
R+

e−nλ(nλ)kd(nλ) =
1

n
Γ(k + 1) . (A.7)

(The first equality is a change of variables, the second the definition of the gamma
function.) The conjugate prior density is hence

e−nλ
nkλk

1
nΓ(k + 1)

= e−nλ
nk+1λk

Γ(k + 1)
= fk+1,n(λ) , (A.8)

that is, a gamma density with parameter α = k + 1 and β = n. /

The additivity of the Poisson is inherited by the gamma. Since the first pa-
rameter α corresponds to the value of the Poisson draw and the gamma variable λ
to the Poisson parameter, (A.3) translates into the following property:

(1) Additivity: If λ1 ∼ Gamma(α1, β) and λ2 ∼ Gamma(α2, β) then

(λ1 + λ2) ∼ Gamma(α1 + α2, β) . (A.9)

We have already seen above that the sum of n i.i.d. Poisson(λ) variables has dis-
tribution Poisson(nλ). If we double the number of samples, the Poisson parameter
doubles to 2nλ. Since n corresponds to the second parameter of the gamma, Poisson
additivity induces another useful property:

(2) Scaling: If λ ∼ Gamma(α, β), then

c · λ ∼ Gamma(α, cβ) for any constant c > 0 . (A.10)

A.3. The Dirichlet

Suppose we sample K positive random variables λk. Since the λk take positive
scalar values, the random vector

C1:K :=
( λ1∑

k λk
, . . . ,

λK∑
k λk

)
(A.11)

is a random element of the simplex 4K , that is, a random probability distribution
on K events. If the λk are independent gamma variables λk ∼ Gamma(αk, β), the



A.4. THE STABLE 89

α = 0.8
Large density values

at extreme points

α = 1
Uniform distribution

on 4K

α = 1.8
Density peaks

around its mean

α = 10
Peak sharpens

with increasing α

Figure A.1. Dirichlet distribution on 43, with uniform expectation, for various concentration

parameters (dark colors = small density values).

distribution of C1:K is the Dirichlet distribution, given by the density

f(c1:K |α, g1:K) :=
1

K(α, g1:K)
exp
( K∑
k=1

(αgk − 1) log(ck)
)

with respect to Lebesgue measure (restricted to the subset 4K ⊂ RK). The Dirich-
let is parametrized by its mean g1:K = E[C1:K ] ∈ 4K and a concentration param-
eter α > 0. These parameters are derived from the parameters of the gamma
variables λk as

α (in the Dirichlet) = β (in the gamma) (A.12)

and

g1:K :=
( α1∑

k αk
, . . . ,

αK∑
k αk

)
. (A.13)

The two different uses of α are a bit unfortunate, but are so common in the liter-
ature that I will not meddle. Figure A.1 illustrates the effect of the concentration
parameter in the case of uniform expectation g1:3 = (1/3, 1/3, 1/3) on 43.

For any random element of C1:K of 4K , the individual entries Ck are de-
pendent random variables, since they couple through the normalization constraint∑
k Ck = 1. If C1:K is defined by normalizing a vector of positive variables as in

(A.11), the variables Ck additionally couple through the total mass: If T :=
∑
λk

in (A.11), and hence Ck = λk/T , then Ck and T are in general stochastically de-
pendent, which introduces additional stochastic dependence between any two Ci
and Cj through T . Theorem A.1 above shows that the only exception to this rule
is Dirichlet distribution: In the Dirichlet, the Ck couple only through normaliza-
tion. In this sense, Dirichlet random variables have the simplest structure among
all random variables with values in 4K .

A.4. The stable

The additivity property (A.3) shows that sums of Poisson random variables
are again Poisson; since summation changes the Poisson parameter, the sum and
the individual summands differ in their means and variances (both of which are
controlled by λ). Can we obtain a similar property for R-valued random variables?
Instead of positing a specific parametric model like the Poisson and demanding that
we remain within the model when we take sums, though, we now demand simply
that sum and summands differ only in terms of mean and variance. Two random

variables X and Y differ only in their mean and variance iff they satisfy X
d
= aY + b
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for some constants a and b. Hence, we ask how i.i.d. variables X0, X1, . . . , Xn have
to be distributed to satisfy

n∑
i=1

Xi
d
= anX0 + bn , (A.14)

for two suitable sequences (an) and (bn) of constants. The additive constant is
less interesting: Clearly, if we center the Xi, then the sum is also centered, so we
can always eliminate bn. It can be shown that the constants an must always be
of the form an = n1/α for some α ∈ (0, 2]. We hence define our class of random
variables as follows: A distribution Pα ∈ PM(R) is called a stable distribution
or α-stable if

n∑
i=1

Xi
d
= n1/αX0 + bn whenever X0, X1, . . . ∼iid Pα,(bn) (A.15)

for some α ∈ (0, 2] and b1, b2, . . . ∈ R. The constant α is called the index. If bn = 0
for all n, Pα = Pα,(bn) is called strictly stable.

The stable distribution does not in general have a Lebesgue-density, except in
some special case, notably for α = 2, in which case Pα is a Gaussian. However,
(A.15) clearly implies that a strictly stable distribution Pα is infinitely divisible,
and it hence has a Lévy -Khinchine representation: A random variable is α-stable
if and only if it is (i) normal (if α = 2) or (2) has Lévy measure

ρ(x) =

{
c⊕x

−α−1 if x > 0
c	x

−α−1 if x < 0
, (A.16)

where at least one of the constants c⊕ , c	 ≥ 0 is non-zero [28, Proposition 15.9].
Reading up on the stable is a bit of a mess, since definitions, parametrization

and naming are not uniform in the literature; almost every author treats the stable
slightly differently. Perhaps the closest thing to a standard reference is [69]. As a
concise reference available online, I recommend [27].
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Nice spaces

Non-trivial probability models require a modicum of topological assumptions:
The most relevant spaces for probability and statistics are Polish spaces and stan-
dard Borel spaces, which are essentially two sides of the same coin. Also relevant
are locally compact spaces, which are spaces on which we can properly work with
density representations of probability measures.

B.1. Polish spaces

A topological space X is called a Polish space if it is complete, separable and
metrizable. Complete means the limit of every convergent sequence of points in
X is again in X. Separable means X has a dense subset that is countable. X
is metrizable if there exists a metric that generates the topology (it is possible to
define topologies that cannot be generated by any metric).1 Roughly speaking, a
Polish topology is the minimum structural requirement necessary to ensure that
real and functional analysis are applicable on a space. A Polish structure ensures,
for example, that:

• Conditional probabilities are well-behaved.
• All probability measures are Radon measures, i.e. their value on any set can

be approximated to arbitrary precision by their values on compact sets—which
at first glance may not seem to be a big deal, but for almost all purposes of
statistics and most purposes of probability theory, non-Radon measures are
basically useless.

As we trade of generality against nice properties, Polish spaces emerge as the golden
mean for most applications of probability and statistics. They have have most of
the pleasant analytical properties of Euclidean spaces (though not necessarily the
geometric ones, such as a vector space structure and a scalar product). The class
of Polish spaces is much larger, though, and practically all spaces of interest for the
purposes of statistics; examples include:

(1) All finite spaces (in the discrete topology).
(2) Euclidean space.

1If you are not used to working with topologies, think of X as a set of points. We choose

some metric d on X. A metric defines a notion of convergence, so now we can ask whether X

is complete in this metric. It also defines whether a subset A is dense—it is if we can arbitrary
close to any point in X by choosing an appropriate point in A, where closeness is measured by

d. If the space is separable and complete, we have a complete, separable metric space. The open
sets in this space are called the topology of X, and the σ-algebra they generate are the Borel

sets. There may be many different metrics d, though, which all generate the same topology; if

so, many analytical properties (such as continuity) and all measure-theoretic properties of X are
independent of the specific choice of d. We hence do not fix a specific d, and say that X, with the

topology we have chosen, is a metrizable space.
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(3) Any separable Banach space, in particular all separable Hilbert spaces and Lp
spaces.

(4) The space C(R+,R) of continuous functions (in the topology of compact con-
vergence).

(5) The space D(R+,R) of càdlág functions (in the Skorohod topology).
(6) The set PM(X) of probability measures is Polish in the topology of weak

convergence if and only if X is Polish.
(7) Cantor space, i.e. the set {0, 1}∞ (in the discrete topology).
(8) Any countable product of Polish spaces, such as RN, in the product topology.

(Uncountable products of Polish spaces, such as RR, are not Polish. They are
not even Hausdorff spaces, unless in the trivial case where each factor is a
singleton.)

B.2. Standard Borel spaces

To reap the benefits of a Polish topology for most measure-theoretic purposes,
the space we use does not actually have to be Polish—rather, it is sufficient if
the measurable sets we use are generated by some space which is Polish. This
topology need not be the same we use for analytic purposes—to define convergence
of sequences, continuity of functions, etc—the two topologies only have to generate
the same measurable sets.

Definition B.1. A measurable space (X,A) is called a standard Borel space2if
there is a Polish topology T on X that generates the σ-algebra A. /

Clearly, if X is a Polish space and B(X) are the Borel sets on X, then (X,B(X))
is standard Borel. But the definition is considerably more general: The system of
measurable sets generated by a topology is much larger than the topology itself,
and we can often make a topology considerably finer or coarser (i.e. considerably
increase or decrease the number of open sets) without changing the Borel sets. The
finer the topology, the fewer sequences converge, and the fewer sets are hence dense.
If the topology on a separable (uncountable) space is made finer and finer, the space
will cease to be separable at some point.

We have already seen that standard Borel spaces guarantee conditionals. An-
other important property is that they are, roughly speaking, spaces of countable
complexity:

Lemma B.2. Let X be a standard Borel space. Then there exists a countable
system of measurable sets A1, A2, . . . which separates points in X, that is, for any
two distinct points x1, x2 ∈ X, there is a set Ai in the system such that x1 ∈ Ai
and x2 6∈ Ai. /

IfA1, A2, . . . is a separating sequence, we can uniquely characterize each element
x ∈ X by the sequence

I(x) := (IA1
(x), IA2

(x), . . .) (B.1)

of indicator functions. Thus, each element of a standard Borel space is determined
by a countable sequence of scalars, a property which we can informally think of as

2 Some authors call standard Borel spaces simply “Borel spaces”, a very sensible terminology

which I would use here if not for its ambiguity: Other authors use the term Borel space for any
measurable space generated by a topology, or simply for any measurable space, or specifically only

for uncountable spaces.
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a countable dimension, even though the entries of the sequence do not correspond
to axes in a vector space.

B.3. Locally compact spaces

Locally compact spaces are relevant for statistical modeling purposes since they
are basically the spaces on which we can use densities to represent distributions.
The reason why we do not use densities representations for the Gaussian process
or Dirichlet process, for example, is precisely because these distributions live on
infinite-dimensional spaces that are not locally compact.

The Radon-Nikodym theorem does of course tell us that densities of probability
measures exist on any measurable space. The problem is that a density p is always
the representation of one measure P with respect to another measure, say µ:

P (dx) = p(x)µ(dx) (B.2)

The measure µ is often called the carrier measure. For modeling purposes, this
representation is only useful if the measure µ is “flat”: If µ is, say, a Gaussian,
then a large value of p in a given region could indicate either that P puts a lot of
mass in the region, or that µ is small in the region. That means p by itself is not
informative; to make it informative, we have to integrate against µ, and have not
simplified the representation of P at all.

More formally, for µ to be a useful carrier measure, we need it to be translation
invariant. To formulate translation invariance, we first need a translation operation,
which we denote + (since on most standard spaces it coincides with addition). A
translation should be reversible, so we require (X,+) to be group. Since we regard
X as a space with a topological structure, rather than just a set of points, + has
to be compatible with that structure, i.e. the +-operation must be continuous in
the topology of X. A group whose operation is continuous is called a topological
group.

We call a measure µ on (X,+) translation invariant if µ(A+ x) = µ(A) for
every Borel set A and point x in X. Informally, this means that, if we shift a set
A around in X by means of the operation A+ x, the mass of A under µ does not
change. Thus, µ(A) depends on the shape and size of A, but not on where in the
space A is located. The general class of spaces on which such measures exist are
locally compact spaces.

Definition B.3. A space X is called locally compact if every point has a compact
neighborhood, i.e. if for every x ∈ X, there is a compact subset of X that contains
x. /

An attempt at explanation: Very informally, there are different ways to create
a non-compact space from compact ones. We could, say, glue together a count-
able number of unit intervals (which are compact) to produce a space like the
real line (which is not compact). That means we are changing the global struc-
ture of the space, but the local structure around an individual point remains the
same—the neighborhood of any given point is still a line. Obviously each point
is enclosed in a compact set, so the resulting non-compact space is still locally
compact. Alternatively, we could multiply the intervals into a Cartesian product.
In this case, the local structure around each point changes—it is now something
infinite-dimensional—and the resulting space is not locally compact.
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Theorem B.4. Let (X,+) be topological group. If X is locally compact and sepa-
rable, there is a measure λ on X, unique up to scaling by a positive constant, which
satisfies λ(A+ x) = λ(A) for all Borel sets A and points x ∈ X. /

The measure λ is called Haar measure on the group (X,+). Lebesgue measure
is Haar measure on the group (Rd, d), scaled to satisfy λ([0, 1]d) = 1.

Most nonparametric priors have no useful density representations, because the
parameter spaces we encounter in Bayesian nonparametrics are infinite-dimensional,
and infinite-dimensional spaces are not locally compact. We have to be careful
with this statement, because only vector spaces have a straightforward definition
of dimension (by counting basis elements), and spaces such as PM(X) have no
natural vector space structure. In the case of vector spaces, however, we can make
the statement precise:

Lemma B.5. A topological vector space is locally compact if and only if it is finite-
dimensional. /



APPENDIX C

Conditioning

Bayesian statistics involves a lot of conditional probabilities, and in Bayesian
nonparametrics, we cannot just get away with using conditional densities. Measure-
theoretic conditioning is, unfortunately, the problem child in most probability text-
books, and I am frankly at a loss to provide a single concise reference. Below, I
have summarized some basic properties for reference.

C.1. Probability kernels

A probability kernel is a measurable, measure-valued mapping. That is, if
X and Y are Borel spaces, a measurable mapping p : Y → PM(X) is a probability
kernel. For each y ∈ Y, p(y) is a probability measure on X, and it is hence useful
to write p as a function of two arguments:

p(A, y)

measurable set in X point in Y

Our two most important uses for probability kernels are conditional probabilities
and statistical models. A conditional probability of X ∈ RV(X) given Y ∈ RV(Y)
is a probability kernel Y → PM(X), namely

p( • , y) := P[X ∈ • |Y = y] . (C.1)

Similarly, a model M = {Pθ|θ ∈ T} can be regarded as a probability kernel by
defining

p( • , θ) := Pθ( • ) . (C.2)

We recover the set M as M = p( • ,T).

C.2. Conditional probability

A conditional probability of X given Y is formally a probability kernel p with
the interpretation

P[ • |Y = y] := p( • , y) . (C.3)

The intuitive notion of a conditional distribution implies some technical require-
ments which the mapping p must satisfy to be of any use:

Definition C.1. Let X and Y be two random variables with values in X and Y
respectively. A measurable mapping p : Y → PM(X) (i.e. a probability kernel) is
called a conditional probability of X given Y if it satisfies

∀A ∈ B(X) :

∫
B

p(A, y)Y [P](dy) = P{X ∈ A, Y ∈ B} (C.4)

for all A ∈ B(X) and B ∈ B(Y) and

P[{Y = y}|Y = y] = 1 Y [P]-a.s. (C.5)
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/

The definition makes three requirements on the mapping p, namely (C.4),
measurability, and (C.5). Each of has an intuitive meaning:

(1) Equation (C.4) simply says that p(A, y) is the probability of X ∈ A given that
Y = y, although the statement is disguised as an integral: If the event {Y = y}
has non-zero measure, we would state this in the form

P(X ∈ A|Y = y) =
P({X ∈ A} ∩ {Y = y})

P({Y = y})
=: p(A, y) .

Since in general {Y = y} may very well be a null set—say, if Y is a Gaussian
variable and y a point on the line—(C.4) instead requires that p integrates
as if it was an expression of the form above. That such an implicit defini-
tion is meaningful is not at all obvious: We have to proof that (C.4) actually
determines p for almost all y; see Theorem C.2 below.

(2) If p is not measurable, elementary statements about conditional probabili-
ties become meaningless. For example, the probability (under the distribu-
tion of Y ) that the conditional probability p(A, y) has value t ∈ [0, 1] is
P(Y −1(p(A, • )−1{t} ∩B)), which is only defined if p is measurable.

(3) Equation (C.4) simply states that, if we already know that Y = y, any event in
X that would imply otherwise has zero probability. Although this requirement
is semantically simple and clearly necessary, it is a bit harder to formulate and
proof in detail.1

We have to make sure that p exists when we need it. The next theorem shows
that this is the case whenever the sample space of X is a standard Borel space, which
is pretty much everything we ever need to know about the existence of conditionals.

Theorem C.2 (conditional probability). Let X and Y be random variables with
values in measurable spaces X and Y . If X is a standard Borel space, there is a
probability kernel p : Y → PM(X) which is a probability kernel of X given Y in
the sense of Definition C.1. holds for all A ∈ B(X) and B ∈ B(Y). The kernel p
is uniquely determined up to modification on a Y [P]-null set on Y. /

C.3. Conditional random variables

In modeling problems, we frequently encounter “conditionally” distributed ran-
dom variables of the form X|Y . A fact very useful for technical purposes is that
X|Y = y can indeed be regarded as a random variable “parameterized” by y.

Theorem C.3 ([28, Lemma 3.22]). Let X be a Polish and Y a measurable space.
Let X : Ω → X be a random variable and p : Y → PM(X) a probability kernel.
Then there is a measurable mapping X ′ : Ω×Y → X such that

P(X ′( • , y) ∈ A) = p(A, y) (C.6)

for Y [P]-almost all y. /

1 Technically, (C.5) means that (a) in the abstract probability space Ω, the fibres Y −1(y)
of the mapping Y are X−1B(X)-measurable and (b) for almost all y ∈ Y, the pullback measure

X#p( • , y) concentrates on the fibre Y −1(y).
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Depending on the context, it can be useful to denote X ′ as Xy(ω) := X ′(ω, y).
Note that Xy depends measurably on y. What the theorem above says is, in other
words, that given a conditional probability of the form P[X ∈ • |Y = y] on a Polish
space X, there are random variables Xy such that

L(Xy) = P[X ∈ • |Y = y] . (C.7)

We can hence interpret Xy as the “conditional random variable” X|Y = y.

C.4. Conditional densities

Let X and Y be random variables with values in standard Borel spaces X and
Y. Now choose a σ-finite measure µ on X. Since the conditional probability of X
given Y is a probability measure on X for every y ∈ Y, we can ask whether it has
a density with respect to µ, i.e. if there is a measurable function p such that

P[X ∈ dx|Y = y] = p(x|y)µ(dx) L(Y )-a.s. (C.8)

If so, p is called a conditional density of X given Y . As a probability measure,
each distribution P[X ∈ dx|Y = y] is of course absolutely continuous with respect
to some σ-finite measure, but the question is whether a single µ can be found
for all values of y. (It hence comes down to the question whether the family
{P[ • |Y = y]|y ∈ Y} is dominated, cf. Sec. 7.2.) It will therefore not come as a
surprise that a sufficient condition can be formulated based on absolute continuity
of the joint distribution:

Lemma C.4. Require that the joint distribution P := L(X,Y ) satisfies

P � µ⊗ ν and define p(x, y) :=
P (dx× dy)

µ(dx)ν(dy)
. (C.9)

Then P[X ∈ dx|Y = y]� µ(dx) holds L(Y )-a.s., i.e. the conditional density p(x|y)
exists. It is given by

p(x|y) =
p(x, y)

p(y)
where p(y) :=

∫
X

p(x, y)P(X ∈ dx) . (C.10)

Additionally, the function p is a density of L(X) with respect to µ. /
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Fréchet derivative, 65
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Gaussian process, 29

GEM(α) distribution, 19
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kernel density estimator, 2
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locally Lipschitz-continuous, 33

mass partition, 49

mean function, 30
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mixture distribution, 5
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nonparametric Bayesian model, 3

nonparametric model, 1
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order, 24
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parametric, 1

partition, 15

partition function, 64

Pitman-Yor process, 18

point mass, 6
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Poisson distribution, 87

Poisson process, 73
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posterior distribution, 3
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prior distribution, 3
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projective limit, 33
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rate of posterior convergence, 69
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simple point process, 73
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single-p model, 42

species sampling models, 20

stable distribution, 90
stable process, 80

standard Borel space, 92
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statistical model, 1

stick-breaking, 9
strictly stable, 90
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sufficient, 64
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trace, 33
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