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ABSTRACT

We consider the problem of image segmentation by clus-
tering local histograms with parametric mixture-of-mixture
models. These models represent each cluster by a single
mixture model of simple parametric components, typically
truncated Gaussians. Clustering requires unsupervised in-
ference of the model parameters, for which we derive a
nested variant of the EM algorithm. This learning proce-
dure is designed to deal with the large number of hidden
variables required by the model. Results are presented for
application of the algorithm to unsupervised segmentation
of synthetic aperture radar (SAR) images.

1. INTRODUCTION

Image segmentation defines a fundamental problem in im-
age analysis, which can be addressed by applying cluster-
ing (or grouping) methods to image data [1]. These meth-
ods attempt to group data into a user-specified number of
groups, called the clusters, by means of unsupervised learn-
ing techniques. A widely used clustering technique assumes
a parametric model for each cluster and thus models the
data distribution by a parametric mixture model, often a
mixture of Gaussians. This approach works if the indi-
vidual cluster distributions can be approximated by Gaus-
sians, but it is less well applicable if the cluster distribu-
tions deviate from the Gaussian shape or are multimodal.
More complicated cluster distributions can be modeled by
mixture-of-mixtures models, i. e. mixture models where
each component itself is composed of a parametric mixture
model. Models of this type have been introduced as mix-
ture of experts in the supervised learning context by Jor-
dan and Jacobs [2]. Gaussian mixture-of-mixtures models
have previously been applied to image segmentation in [3],
where the model is optimized by deterministic annealing,
and model components are coupled between clusters to de-
crease computational complexity. In this paper, we consider
an optimization of the model which avoids coupling con-
straints between clusters. Each cluster is represented by a
Gaussian mixture of two or three components, which al-
lows us to approximate non-Gaussian unimodal densities
(such as gamma or logarithmic gamma densities for SAR
image processing), as well as bimodal densities. Unsuper-

vised learning of mixture models is usually performed by
the Expectation-Maximization (EM) algorithm [4, 5]. We
propose a nested EM algorithm to account for the hierar-
chical structure of the mixture-of-mixtures model. EM it-
erations for mixture model optimization alternate between
assigning data to clusters based on the current configura-
tion of the model, and adjusting the model by maximum
likelihood (ML) estimation based on the current assignment
of the data. Since the components themselves are mixture
models, we perform ML estimation by executing an inner
EM algorithm for each cluster within the estimation step.
A nested version of the EM algorithm has been discussed
in a different context by van Dyk [6], who suggests nest-
ing to improve convergence rates of E-steps which rely on
Monte-Carlo integration. Our algorithm, on the other hand,
is nesting the M-step to perform estimation for the compo-
nents of the hierarchical mixture model.

2. SEGMENTATION APPROACH

Our approach to image segmentation is based on histogram
clustering. The features extracted from the image are his-
togram representations of the local data distributions in the
neighborhood of image pixels. The histograms are grouped
into a pre-specified number of clusters, each of which is
modeled by a parametric mixture model.

For a grayscale input image, we extract local histograms
from the image at the sites of an equidistant grid. The lo-
cal histogram at a given grid point is extracted by center-
ing a window at the respective pixel, selecting all pixels
within the window and sorting their grayscale values into
a histogram. This procedure results in a set of histograms
ni = (ni1, . . . , niNBins). Here i = 1, . . . , NSites indexes the
grid points and NBins is the number of histogram bins, so
nij denotes the counts in bin j of histogram i. We assume
that all histograms contain an identical total number NCounts

of counts.

The data is modeled by a mixture-of-mixtures model,
i. e. a finite mixture model the component densities of which
are themselves represented by finite mixtures. In this work,
all component mixture densities consist of an identical num-
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ber NModes of Gaussian components:

p (x|Θ) =
NClusters∑
τ=1

cτpτ (x) =
NClusters∑
τ=1

cτ

(
NModes∑
α=1

cτ
αgτ

α (x)

)
,

(1)
where gτ

α (x) = g (x|µτ
α, στ

α) denotes a normal density and
Θ the full set of Gaussian parameters. cτ , cτ

α are the priors
of the segments and the modes, respectively. We expect the
local image histograms to be uni- or at most bimodal, so
we are interested only in cases where the number of inner
components is small (typically NModes = 2, 3).

Since the range of digital image data is restricted to a
finite intensity interval, we have to truncate the Gaussians.
These distributions are referred to as rectified distributions
in the literature [7]. Rectification somewhat complicates pa-
rameter estimation, because a ML estimator for a Gaussian
mean or variance parameter is not a valid ML estimator for
the rectified Gaussian.

3. INFERENCE ALGORITHM

EM algorithms for mixture models: Unsupervised infer-
ence of mixture models is usually conducted by the EM
algorithm [4, 5]. Assignments of sites (indexed by i) to
clusters (indexed by τ ) are encoded by hidden variables,
which we denote by Miτ . These assume binary values, with
Miτ = 1 if site i is assigned to cluster τ and Miτ = 0 oth-
erwise, satisfying the constraint

∑
τ Miτ = 1. The EM al-

gorithm relaxes binary assignments to real numbers in [0, 1]
by computing expectations. For optimization of the stan-
dard mixture model of the form

∑
τ cτpτ (x|Θτ ), the al-

gorithm iterates the following two steps: Compute expec-
tations E [Miτ ] = cτ pτ (xi|Θτ )P

ν cνpν(xi|Θν) (E-step) and maximize

Q(Θ, Θ̃) := EM |x,Θ̃ [l (Θ)] with respect to Θ (M-step),
where Θ̃ denotes the parameter values computed during the
previous step. The latter expression can be shown to be

Q(Θ, Θ̃) =
∑
i,τ

EM |x,Θ̃ [Miτ ] log (cτpτ (xi|Θτ )) , (2)

which is computed by substituting the values obtained dur-
ing the E-step for the expected assignments.
EM for histogram data: We assume our input data to be a
set n = (n1, . . . ,nNSites) of histograms, drawn i. i. d. from
a source modeled by a parametric density of the form (1).
Denote by Ij the interval in the data domain correspond-
ing to bin j. For a histogram drawn from cluster τ , the
probability of a data value to fall into bin Ij is pτ

j (Θ) =∫
Ij

pτ (x|Θτ ) dx. Given the probabilities of occurrence
pτ
1 (Θ) , . . . , pτ

NBins
(Θ), the probability for any one histogram

ni to occur is multinomially distributed according to

pτ (ni|Θ) := NCounts!
NBins∏
j=1

pτ
j (Θ)nij

nij !
. (3)

Including assignment variables for the EM algorithm, n and
M are jointly distributed according to

p (n,M|Θ) :=
∏

i

∑
τ

Miτ cτpτ (ni|Θτ ) . (4)

The resulting log-likelihood is

l (Θ) =
NSites∑
i=1

log (NCounts!) −
NBins∑
j=1

log (nij !)

 (5)

+
∑
i,τ

Miτ log (cτ ) +
∑
i,j,τ

Miτnij log (pj (Θτ )) ,

using the standard EM trick of drawing a sum over normal-
ized binary assignments through the logarithm. Since the
first sum in the log-likelihood is a constant of the input data,
we may drop it for the EM target function:

Q(Θ, Θ̃) :=
∑
i,τ

E [Miτ ]

log cτ +
∑

j

nij log (pj (Θτ ))

 .

Nested EM algorithm for the hierarchical model: Each
component of our model (1) is again a Gaussian mixture.
Optimization of the model requires a ML estimation for a
simple Gaussian mixture model in the M-step. Therefore,
we perform the M-step by executing an EM algorithm for
each component mixture model. The approach requires hi-
erarchical assignments: Variables for the outer EM loop,
which indicate cluster assignments and will again be de-
noted Miτ , and a complete set of assignment variables for
each inner mixture, denoted Mτ

iα, where i indicates the site,
τ the cluster and α the Gaussian mode. Additionally, for
the inner EM algorithm, we drop the assumption that each
site is assigned to a model component: A site not assigned
to the cluster in question (Miτ = 0 for the current cluster
τ ) should not be taken into account by the inner loop. Thus,
Mτ

iα = 1 indicates that site i is assigned to component α of
cluster τ iff Miτ = 1. We define effective inner assignment
indicators Lτ

iα by

Lτ
iα := Mτ

iα · Miτ . (6)

To make the algorithmic treatment feasible, we assume sta-
tistical independence of Mτ

iα and Miτ .
The outer algorithm computes expectations in the E-step

according to

E [Miτ ] =
cτpτ (ni|Θτ )∑
ν cνpν (ni|Θν)

. (7)

The M-step computes the mixture weights cτ from the outer
assignments as cτ =

∑
i E [Miτ ] /NSites.

The inner loop consists of one EM algorithm for each
cluster, which is initialized by the final inner model param-
eters obtained for the current cluster by previous execution



of the inner loop (i. e. during the previous step of the outer
algorithm). The E-step computes expectations as

E [Mτ
iα] =

cτ
αpτ

α (ni|Θτ
α)∑

ν cτ
νpτ

ν (ni|Θτ
ν)

, (8)

where, in our case, pτ
α (ni|Θτ

α) = g (ni|µτ
α, στ

α). Since we
assume independence, we can compute expectations for the
effective inner assignments Lτ

iα as

E [Lτ
iα] = E [Mτ

iα] · E [Miτ ] . (9)

The M-steps require one target function for each cluster:

Qτ (Θτ , Θ̃τ ) =
∑
i,α

E [Lτ
iα] log (cτ

αpτ
α (ni|Θτ

α)) . (10)

By substituting histogram probabilities as in (5), we obtain

Qτ (Θτ , Θ̃τ ) =
∑

i

J (ni) +
∑
i,α

E [Lτ
iα] log (cτ

α)

+
∑
i,α,j

nijE [Lτ
iα] log

(
pτ

αj (Θτ
α)
)
, (11)

where J (ni) denotes the constant term depending only on
the input data, which can again be neglected for optimiza-
tion purposes. Of the two remaining terms, one depends
only on the inner mixture weights cτ

α and one on the mode
parameters Θτ

α. Therefore, the two terms can be optimized
independently. Solving for the mixture weights gives

cτ
α :=

∑
i E [Lτ

iα]∑
i,α E [Lτ

iα]
=
∑

i E [Lτ
iα]

cτ
. (12)

ML estimation for the Gaussian parameters during the in-
ner M-step has to be conducted by numerical optimization
of the last term in (11), because ML equations for recti-
fied Gaussians lack closed-form solutions. The last term
of (11) may be regarded, up to histogram normalization,
as a cross-entropy between the average cluster data distri-
bution and the discretized cluster model distribution. This
can be turned into the negative Kullback-Leibler divergence
between the two discrete distributions by adding the aver-
age data distribution’s entropy (cf. [8]). ML estimation is
therefore equivalent to minimization of the KL divergence
between the data and the discretized model. Instead of com-
puting ML estimators for the rectified model, we minimize
the KL divergence on the restricted domain.

As a stopping criterion for both the outer and inner EM
algorithm, we can threshold the change in assignments be-
tween consecutive steps. During the first steps of the algo-
rithm, however, the assignments in the outer loop are still
subject to large changes. It turns out that, by gradually in-
creasing the number of inner iterations with each outer step,
we can obtain results comparable (and sometimes superior)
to a thresholding approach. The outer loop can then be inter-
preted as a generalized EM algorithm [5], since the M-step
(the inner EM loop) is not designed to fully maximize the
log-likelihood, only to increase it.

Fig. 1. SAR image and segmentation solution obtained with
4 clusters and 3 modes per cluster.

Fig. 2. SAR image and segmentation solution for 3 clusters,
3 modes per clusters.

4. APPLICATION TO SAR DATA

SAR image segmentation is an interesting application for
mixture-of-mixtures models, because SAR data is known to
be distributed in a characteristic fashion. The gamma distri-
bution (and several other, closely related distributions) have
been suggested as parametric models for this data [9]. A
gamma distribution can be approximated roughly by a sin-
gle Gaussian, but very closely by a mixture of two or more
Gaussians. For certain parameter configurations, gamma
distributions are monotonously decreasing rather than peaked;
these cases can be closely approximated by the right tail of

Fig. 3. Cluster distributions (i. e. summed inner Gaussian
mixtures) for the clustering solution in Fig. 2. Two modes
closely resemble Gaussians, one is clearly non-Gaussian.



a Gaussian when using a rectified model. If we assume that
each segment is roughly gamma distributed, we can thus ap-
ply our algorithm to SAR image segmentation by clustering
local histograms extracted from a SAR image using Gaus-
sian mixtures. Figs. 1 and 2 show segmentation solutions
obtained by our algorithm on two different SAR images.
The locally correlated structure of the errors is typical for
histogram data with overlapping windows: Due to the size
of the histogram window, local deviations from the average
distribution of the segment enter in all histograms within a
certain neighborhood, which are then erroneously assigned.
Fig. 3 provides a plot of the summed Gaussian mixtures
modelling the three clusters for the solution in Fig. 2. The
middle mode shows how a Gaussian mixture can model a
distribution of typical gamma shape.

SAR image data is often processed by logarithmic trans-
forms. Deriving appropriate model distributions for this
processed data has proven rather difficult (see, for exam-
ple, [10]). The shape of the resulting distribution is roughly
of reversed gamma shape, i. e. it resembles a gamma dis-
tribution of inverse skewness. The Gaussian mixtures of
our model are just as suited to model this kind of data as to
model gamma distributions, since a Gaussian mixture ap-
proximating a gamma distribution can be turned into a dis-
tribution of reversed gamma shape by simply shifting com-
ponents.

5. DISCUSSION AND FURTHER WORK

The algorithm converges despite the large number of hidden
variables. In general, the performance of EM algorithms is
known to deteriorate as the number of hidden variables (and
thus their total entropy) increases. The special property of
our algorithm is that each of the inner EM algorithms works
only on a fixed subset of hidden variables, leaving all others
untouched; therefore, only the entropy of the hidden vari-
ables in the subset is relevant for the performance of the
corresponding inner loop. Since these subsets are pairwise
disjoint, sequential execution of the inner algorithms per-
forms a consecutive series of steps on orthogonal subspaces
of the space spanned by the hidden variables, as a refine-
ment of the alternating series of orthogonal maximization
steps performed by a standard EM algorithm.

In theory, the hierarchical structure of both the model
and our algorithm could be extended to a nesting depth greater
than two, but due to the increasingly complicated struc-
ture of the hierarchy of hidden variables and the question
of model identifiability, optimization of models with more
than two layers is unlikely to be reliable. The image seg-
mentation approach was described here only for grayscale
or single-channel image data. It can easily be extended to
multiple channels (without increasing the number of hidden
variables) by using marginal histograms for each channel.

In this case, the EM target function becomes a simple sum
over the channels. Since short inner iterations seem to be
advisable during the first few loops of the overall algorithm,
one might consider a stopping criterion for the inner loop
depending on the change of assignments in the outer loop,
so optimization in the inner loop becomes increasingly pre-
cise as cluster assignments become more reliable. Further
work will address the issue of how the model complexity
may be adjusted in a data-dependent manner.
Acknowledgment: The SAR images are shown courtesy
of Infoterra GmbH, Friedrichshafen, Germany (Fig. 1) and
Definiens AG, Munich, Germany (Fig. 2).
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