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Abstract. A nonparametric Bayesian model for histogram clustering
is proposed to automatically determine the number of segments when
Markov Random Field constraints enforce smooth class assignments. The
nonparametric nature of this model is implemented by a Dirichlet pro-
cess prior to control the number of clusters. The resulting posterior can
be sampled by a modification of a conjugate-case sampling algorithm
for Dirichlet process mixture models. This sampling procedure estimates
segmentations as efficiently as clustering procedures in the strictly con-
jugate case. The sampling algorithm can process both single-channel and
multi-channel image data. Experimental results are presented for real-
world synthetic aperture radar and magnetic resonance imaging data.

1 Introduction

Unsupervised data clustering and image segmentation models usually assume
that an appropriate number of classes is either known a priori or specified by
the data analyst. More sophisticated methods automatically select the number
of clusters, e. g. by resampling strategies [1]. Recently, nonparametric Bayesian
models based on Dirichlet processes have successfully been applied to machine
learning problems such as natural language processing [2] and object categoriza-
tion [3]. These models perform automatic model selection by supporting a range
of prior choices for the number of classes; the different resulting models are then
scored by the likelihood according to the observed data.

The question how automatic model selection can be performed in image seg-
mentation for models such as Markov random fields plays an important role in
computer vision; see e. g. [4] for recent work employing a Bayesian information
criterion. Our approach, which is based on Dirichlet processes, combines spatial
constraints on class labels with an estimate of a preferred number of clusters.
The smoothness constraints are modeled as a Markov random field (MRF) on
a neighborhood graph. To combine MRF image models for segmentation with
a nonparametric selection of the segment number, the Dirichlet process prior is
enhanced by a smoothness constraint on the label field. Local feature histograms
are extracted from the image and grouped by histogram clustering. Adjacent im-
age patches are assigned to the same cluster with high probability if they are
neighbors with respect to the neighborhood graph of the MRF.
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The paper is organized as follows: Sec. 2 briefly reviews Dirichlet process
mixture (MDP) models and their application to data clustering. We discuss
their combination with MRFs in Sec. 3, and the histogram clustering model
used for application to image segmentation in Sec. 4. Sec. 5 proposes a MCMC
sampling algorithm to sample the combined model. Experimental results are
given in Sec. 6.

2 Data Clustering with MDP Models

The statistical model considered in this work is a Dirichlet process mixture
(MDP) model [5]. MDP approaches belong to a class of models referred to as
nonparametric Bayesian models. A MDP clustering model consists of three prin-
cipal ingredients: A parametric likelihood function F , a probability distribution
G0, which is referred to as the base measure, and a Dirichlet process DP (αG0)
parameterized by the base measure and a positive constant α ∈ R+. In this
article, the base measure G0 will generally be assumed to be infinite. Under the
MDP model, a set of distinct classes is assumed to generate the observed data
x1, . . . ,xn. Each class has a generative distribution, described by the likelihood
F . Each cluster (indexed by k) is characterized by a parameter value θ∗k, so the
data within the cluster is generated according to x ∼ F ( . |θ∗k). This makes MDP
models conceptually similar to finite parametric mixture models. MDP mod-
els generate the parameter values θ∗k, which characterize the classes, according
to a Dirichlet process DP (αG0). In contrast to parametric mixture models, the
number of classes is not a constant, and will change during the sampling process.

Formally, models based on Dirichlet processes draw a distribution G at ran-
dom from a stochastic process [5]. The sample values drawn by means of the
DP, the mixture parameters θ1, . . . , θn, are assumed to be generated by the dis-
tribution G:

θ1, . . . , θn ∼ G with G ∼ DP(αG0) . (1)

The practical applicability of the process, however, is based on the observation
that the distribution G can be integrated out. Given a set of samples θ1, . . . , θn,
a new sample θn+1 has a closed-form conditional distribution:

θn+1|θ1, . . . , θn ∼ 1
n + α

n∑

i=1

δθi(θn+1) +
α

n + α
G0(θn+1) , (2)

where δθ denotes the Dirac measure concentrated at θ. Therefore, sampling the
Dirichlet process generates random values in the domain of the base measure
G0, but with a different distribution than the one specified by G0.

A draw from the distribution (2) will, with probability n
n+α , yield a sample

value which has already occurred. (Provided that G0 is infinite, a draw from the
second term in (2) will generate a previously unobserved value with probability
one.) If any two samples θi, θj are identical, the corresponding Dirac measures
coincide. One may therefore group the samples θ1, . . . , θn into NC ≤ n classes
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containing identical values. Each class k ∈ {1, . . . , NC} is characterized by its
associated sample value, denoted θ∗k. Denoting the number of samples in group
k by nk, the distribution (2) may be rewritten as a sum over clusters rather than
individual samples:

pn+1(θn+1|θ1, . . . , θn) :=
NC∑

k=1

nk

n + α
δθ∗

k
(θn+1) +

α

n + α
G0(θn+1). (3)

The distribution may be regarded as a mixture model. It contains NC finite (de-
generate) components, which correspond to the clusters already created, and the
base measure component, which is responsible for the creation of new classes.
The probability of occurrence for each cluster is proportional to its size. The
probability for a new class to be created is adjusted by means of the DP param-
eter α. Definition (3) also implies that DP (αG0) can be sampled efficiently, if
we provide an algorithm to sample the base measure G0.

Data generation (of n data values x1, . . . ,xn) according to a MDP model can
be summarized by

xi ∼ F ( . |θi)
θi ∼ pi(θi|θ1, . . . , θi−1) . (4)

Inference of this model is not as straightforward as sampling (3), since the ob-
served data is x1,. . .,xn, whereas the DP distribution is conditional on θ1, . . . , θn.
The generative model in (4) has to be sampled conditional on the observed data
xi. A sampling algorithm as described in Sec. 5 obtains estimates of the param-
eters θi. MDP models perform automatic model selection, since the number of
clusters is determined by the dynamics of the process, i.e., it is not an input pa-
rameter. New classes are generated during the sampling process. When sampling
the parameter θi for a given data value xi, the data value may be assigned to an
existing class k (by setting θi := θ∗k). The probability for this to happen depends
on the likelihood F (xi|θ∗k) and on the number of points already assigned to the
class in question (since large classes, with a large value of nk, are more probable
than small ones). If the cluster distribution provides a good description of the
data, the probability of assignment is high, since the likelihood F assumes a large
value. If this is not the case for any existing cluster, a new cluster is created for
the data value with high probability. Generation of a new cluster corresponds to
sampling from the base measure term in (3).

The applicability of MDP models to clustering problems in machine learning
and computer vision may be best illustrated by the following observation: Any
parametric mixture model of the form

m(x|t1, . . . , tK , c1, . . . , cK) =
K∑

k=1

ckr(x|tk) (5)

can be used within the MDP clustering framework by setting F = r and placing
a suitable prior G0 on the parameter tk. The prior serves as the base measure.
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The class parameters tk are substituted by samples θ∗k generated by a process
DP (αG0) as described above, and the cluster sizes nk are analogous to the
mixture weights ck in the parametric case. Given a set of observed data values
x1, . . . ,xn, sampling the MDP model will result in a set of estimates θ1, . . . , θn for
the corresponding class parameters. By grouping identical values, the parameter
estimates implicitly determine the number of clusters, class assignments of the
data and the mixture proportions of the model.

3 Markov Random Field Constraints and Dirichlet
Process Models

This section describes how Markov random field models can be integrated with a
MDP clustering approach. Our objective is to obtain a model capable of combin-
ing the clustering and model selection performed by the MDP with smoothness
constraints on the class labels. The model is applicable to any clustering problem
for which it is reasonable to assume a spatially coherent class structure, such as
segmentation of noisy images: To obtain smooth segments, a MRF constraint
encourages adjacent points in the image to be assigned to the same class.

Consider a clustering problem with vectorial input data x1, . . . ,xn. Each point
xi is assumed to be generated according to a parameter vector θi. Two points are
considered to originate from the same cluster if their respective parameter vectors
are identical. The cluster assignment of feature xi is denoted by Si ∈ {1, . . . , NC}.
We will use the notation θ−i (or S−i) to denote the set of all parameters (or
cluster assignments) with the value corresponding to feature i removed. The
MDP clustering model for this problem is once again defined by a likelihood F
and a base measure G0 to parameterize the Dirichlet process.

To combine the MDP model with a MRF, we restrict the choice of MRF
constraints to pairwise difference priors [6], which are commonly used to model
spatial smoothness of the label field. The MRF definition is based on an undi-
rected neighborhood graph N and we write l ∈ ∂ (i) to denote that the feature of
index l is a neighbor of feature i. The MRF prior Π consists of two components,

Π (θ) ∝ P (θ)M (θ) . (6)

P is a parametric prior on the parameter θ, which will be referred to as the
initial prior. It is used to model initial beliefs about which parameter val-
ues are likely to occur. M is a MRF contribution term of the form M (θi) ∝
exp (−H (θ1, . . . , θn)), H being a cost function defined on the neighborhood
graph N . The term M is used to model constraints such as smoothness, which
are conditional on the neighborhood of a feature. M defines a pairwise difference
prior if the cost function assumes the form H (θi|θ−i) =

∑
l∈∂(i) wilΦ (θi − θl),

where Φ is a non-negative, even function and wil are weights associated with the
edges of the graph. Conditional on θ−i, the prior for θi is given by

Π (θi|θ−i) ∝ P (θi|θ−i) exp (−H (θi|θ−i)) . (7)
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In the above relations, normalization constants have been neglected, because in
many practical cases, M will be improper.

The MDP approach and MRF constraints are combined by drawing the initial
prior P in (6) from a DP. The resulting generative model is summarized by

xi ∼ F (xi|θi)
θi ∼ M(θi|θ−i)P (θi)
P ∼ DP (αG0) . (8)

To obtain a conditional form of this model, i. e. a form in which the random
measure P does not occur explicitly, the conditional MDP prior (3) is substituted
into (7). For a fixed size data set x1, . . . ,xn, the sequential form (3) of the
conditional prior is rewritten as a prior for θi given the remaining parameter
values:

pn(θi|θ−i) ∝
NC∑

k=1

nk
−iδθ∗

k
(θi) + αG0(θi) , (9)

where nk
−i denotes the number of observations assigned to cluster k when xi is

removed from the set. The conditional form of the combined MDP/MRF prior
is then given by

Π (θi|θ−i) ∝ pn(θi|θ−i) exp (−H (θi|θ−i)) . (10)

Smoothness constraints for clustering problems are formulated on the cluster
assignments, so the MRF cost function is a function defined on labels. A cost
function modeling spatial smoothness measures whether or not neighboring fea-
tures are assigned to the same cluster. This binary notion of similarity between
neighbors is expressed by cost functions of the general form

H (Si|S−i) =
∑

l∈∂(i)

δSi,Sl
φ(S1, . . . , Sn) , (11)

as proposed by Geman e. a. [7]. A special property of the MDP setting is the
one-to-one correspondence between cluster labels and cluster parameters (since
two sites belong to the same cluster if and only if their class parameters θ
are identical). The correspondence admits an equivalent formulation of the cost
function (11) in terms of class parameters:

H (θi|θ−i) =
∑

l∈∂(i)

δθi,θl
φ(θ1, . . . , θn) . (12)

Combination of the resulting MRF with the conditional MDP prior (9) affects
only the first, finite term, because the support of H is a subset {θ1, . . . , θn}. A
random value θ ∼ G0 drawn from an infinite base measure will be different from
any value in supp (H) with probability one, and therefore

M(θi|θ−i)G0(θi) = G0(θi) (13)
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almost surely. The relation holds irrespectively of any particular choice of G0 and
H . Intuitively, (13) expresses the modeling assumption that the MRF constraint
should encourage uniform assignments of neighbors.The MRF contribution is non-
trivial for a given label Si only if one or more neighbors of xi are assigned to the
same class as xi. Since a draw from the base measure will always result in the cre-
ation of a new class, the MRF term does not affect the base measure term.

4 The Histogram Clustering Model

The primary focus of this article is on histogram clustering, with application to
image segmentation. The input features are composed of a set of n histograms
hi = (hi1, . . . , hiNbins), hij ∈ N0, representing local intensity distributions of a
digital image. They replace the data values x1, . . . ,xn in the previous sections.
Each histogram is associated with a pixel location in the image, referred to as a
site. All histograms contain an identical number Ncounts of values.

Given a vector θi of bin probabilities, a random histogram hi is multino-
mially distributed with density F (hi|θi) = 1/ZM (hi) exp

(∑Nbins
j=1 hij log(θij)

)
.

Each vector θi for is assumed to be drawn from the respective conjugate prior,
a Dirichlet distribution G0(θi|β,πππ) = 1

ZD(β,πππ) exp
(∑Nbins

j=1 (βπj − 1) log(θij)
)
,

where β ∈ R+ and πππ is a vector representing a finite probability distribution
on Nbins elements.

To apply MRF constraints to the image segmentation problem, two features
are defined as neighbors in the MRF neighborhood graph N if their associated
sites are neighbors in the image. These neighborhoods are either of size D = 4
(two horizontal and two vertical neighbors) or D = 8 (all direct neighbors),
cropped at the image boundaries. The cost function is of the form (12). For the
sake of simplicity, φ in (12) is chosen to depend only on a scale parameter λ
(defined once for the whole image) and the size of the neighborhood:

H (θi|θ−i) = λ
∑

l∈∂(i)

(D − δθi,θl
) , (14)

where D = 4 or D = 8, respectively. Thus, exp(−H) = exp(−λD) for feature
hi if no neighbor is assigned to the same cluster. If one or more neighbors are
assigned to the same class, exp(−H) will increase and thus favor the assignment.

The model may be extended to the case of multiple histograms available at
each site. This extension makes the method applicable to color images, where
a single one-dimensional histogram is drawn from each color channel at each
site, and to radar images with multiple channels representing different frequency
bands. Another possible application is the inclusion of additional filter infor-
mation, by applying a filter transform to the image and drawing histograms
from the filter response. For example, texture information may be included
in the form of Gabor filter response histograms. Suppose that C histograms
hl

i = (hl
i1, . . . , h

l
iNbins

), l = 1, . . . , C, are available at each site i. First con-
sider the basic parametric Bayesian model without the DP, consisting of the
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multinomial likelihood and Dirichlet prior in the single-channel case. To model
multiple channels, the different channels are assumed to be independent. Each
marginal histogram hl

i is parameterized by its own vector θl
i of bin probabil-

ities, and we write θi := (θ1
i , . . . , θC

i ). Due to independence, the joint likeli-
hood F (h1

i , . . . ,h
C
i |θ1

i , . . . , θC
i ) factors into a product over the channel likeli-

hoods F (hl
i|θl

i) . Each parameter vector θl
i is drawn from a Dirichlet distribution

Gl
0(θ|βl,πππl), resulting in the model

F (h|θ)G0(θ) =
C∏

l=1

F (hl
i|θl

i)G
l
0(θ|βl,πππl) . (15)

The MDP/MRF generative model for multichannel data is then obtained by
substituting F (h|θ) and G0(θ) into the generative model (8).

5 Sampling

The algorithm proposed here to sample the combined MDP/MRF model is a
Markov chain Monte Carlo procedure similar to the algorithm proposed
MacEachern [8] for sampling MDP models with a conjugate likelihood/base
measure pair. Each iteration samples a set of cluster assignments S1, . . . , Sn

for all sites. New estimates of the cluster parameters θ∗k are then sampled condi-
tional on the assignments Si and the observed data. Due to the way in which the
finitely supported cost function of the MRF acts on the MDP model, some key
formulas reduce to the conjugate case. As a consequence, the sampling approach
remains applicable despite the fact that the constrained model is not conjugate.
It is easily extended to the case of multiple channels.

To sample a cluster assignment Si given a current set of parameters θ1, .., θn

and the datum xi, the posterior probability of occurrence for each class is com-
puted by integrating the complete model over θi:

∫

Ωθ

exp (−H(θi|θ−i))F (xi|θi)

(
NC∑

k=1

nk
−iδθ∗

k
(θi) + αG0(θi)

)
dθi

=
NC∑

k=1

nk
−i exp (−H(θ∗k|θ−i))F (xi|θ∗k) + α

∫

Ωθ

F (xi|θi)G0(θi)dθi . (16)

Since H(θ|θ−i) �= 0 only if θ ∈ {θ∗1 , . . . , θ
∗
NC

}, exp (−H(θ|θ−i)) �= 1 holds only
on a set of Lebesgue measure zero. Such a set does not affect the value of the
integral, and the MRF contribution term may therefore be neglected in the base
measure integral, as we have done above. Each term in (16) corresponds to a
single cluster (with the integral involving the base measure G0 corresponding to
the creation of a new group), and we define cluster proportions by setting

q̃i0 := α

∫

Ωθ

F (xi|θi)G0(θi)dθi

q̃ik := nk
−i exp (−H(θ∗k|θ−i)) F (xi|θ∗k) . (17)
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These proportions are transformed into cluster probabilities by normalization,

qik :=
q̃ik∑NC

j=0 q̃ij

. (18)

A cluster assignment Si is sampled by sampling from the finite probability dis-
tribution defined by the vector (qi0, . . . , qiNC). In the second step, new values for
the cluster parameters θ∗k are chosen by sampling from the class posterior, i. e.
the posterior based on all data values currently assigned to the given class:

θ∗k ∼ G0 (θ∗k)
∏

i|Si=k

F (xi|θ∗k) . (19)

The combined MDP/MRF model is thus sampled by the following algorithm:

Algorithm 1 (MDP/MRF Sampling)
Initialize: Generate θ ∼ G0 and set θi = θ for i = 1, . . . , n.
Repeat:
1. For i = 1, . . . , n:

(a) If xi is the only feature assigned to its cluster k = Si, remove this cluster.
(b) For k = 0, . . . , NC, compute the component probabilities qi,k according

to eqs. (17) and (18).
(c) Draw a random index k according to the finite distribution(qi,0,. . .,qi,NC).
(d) Assignment:

– If k ∈ {1, . . . , NC}, assign xi to cluster k.
– If k = 0, create a new cluster for xi.

2. For each cluster k = 1, . . . , NC: Update the cluster parameters θ∗k given the
class assignments S1, . . . , Sn by sampling

θ∗k ∼ G0 (θ∗k)
∏

i|Si=k

F (xi|θ∗k) . (20)

In the histogram clustering model introduced above for the single-channel
case, F is a multinomial distribution, G0 a Dirichlet distribution and the ob-
served data xi are the histograms hi. Due to the conjugacy of F and G0, the
integral required for the computation of qi0 may be solved analytically:

q̃i0 = α

∫

Ωθ

F (xi|θi)G0(θi)dθi = α
ZD(hi + βπ)

ZD(βπππ)ZM (hi)
. (21)

Conjugacy also implies that the class posterior (20) is a Dirichlet distribution,
with the prior parameters updated by the data assigned to the cluster:

G0 (θ∗k|βπππ)
∏

i|Si=k

F (xi|θ∗k) = G0

⎛

⎝θ∗k

∣∣∣∣∣∣

∑

i|Si=k

hi + βπππ

⎞

⎠ . (22)
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Efficient sampling algorithms based on gamma samples are available for this
distribution [9], which ensures the feasibility of step 2 of the algorithm.

In the case of multiple channels, products of multinomial and Dirichlet distri-
butions have to be substituted for F and G0 in the derivation above, assuming
that the different channels are statistically independent. Since the MRF term is
defined on class labels, it applies to all channels, rather than to each individual
channel. The cluster proportions are computed according to

q̃i0 := α

∫

Ωθ

C∏

l=1

(
F (hl

i|θl
i)G

l
0(θ

l
i|βl,πππl)

)
dθi =

C∏

l=1

ZD(hl
i + βlπl)

ZD(βlπππl)ZM (hl
i)

q̃ik := nk
−i exp (−H(θ∗k|θ−i))

C∏

l=1

F (xl
i|θ∗l

k ) . (23)

The class posterior turns into a product of Dirichlet distributions, each of which
may be sampled individually:

C∏

l=1

⎛

⎝Gl
0
(
θ∗l

k |βlπππl
) ∏

i|Si=k

F
(
hl

i|θ∗l
k

)
⎞

⎠ =
C∏

l=1

Gl
0

⎛

⎝θ∗l
k

∣∣∣∣∣∣

∑

i|Si=k

hl
i + βlπππl

⎞

⎠ . (24)

Sampling of the Dirichlet process for the multichannel model is thus conducted
by parallel Dirichlet process sampling procedures applied to the individual chan-
nels. The channels couple through the class assignments Si, and through the
MRF contribution defined on these labels.

6 Experimental Results

The experiments presented in this section were conducted on two classes of noisy
images, synthetic aperture radar (SAR) and magnetic resonance imaging (MRI)
data. Aside from the visual quality of the segmentations, we especially study
two model selection questions: (i) How does the hyperparameter of the Dirichlet
process influence the model selection (i. e. the number of segments selected)?
(ii) How do results compare to other model selection methods?

The histograms used in the experiments shown here where extracted from a
digital image by centering a square window around each pixel on an equidis-
tant grid and sorting the intensity values of all pixels within the window into
a histogram. Choosing the size of the histogram window generally results in a
trade-off between regularity and detail: Using a large window will smooth seg-
mentation results, but coarsen the resolution. Small windows preserve detail, but
usually give less robust segmentation results. Using a model with a smoothness
constraint permits the choice of small windows. For the experiments shown be-
low, histograms were obtained from a five-by-five pixel sliding window, centered
at each node of a rectangular grid of width two.

The nonparametric Bayesian model selection strategy introduced in the pre-
vious sections is compared with the stability method [10, 1], a competitive model
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Fig. 1. Segmentation results on real-world radar data. Original image (left), uncon-
strained MDP segmentation (middle), MDP segmentation with smoothness constraint
(right).

Fig. 2. A SAR image with a high noise level and ambiguous segments (left). Solutions
without (middle) and with smoothing (right).

selection technique for clustering. Stability is a cross-validation based wrapper
method for an arbitrary clustering algorithm chosen by the user. The method
repeatedly computes clustering solutions on randomly chosen subsets of the in-
put data, and evaluates the predictive power of the obtained cluster model on
the remaining data. An instability index is computed for different number of
clusters, which measures how unstable cluster solutions are under the random
split procedure. The chosen model is the one for which the instability index is
minimal. Usually, a local rather than the global minimum is chosen, since stabil-
ity algorithms are known to preferentially estimate a global minimum for very
simple solutions (often only two classes). Consider, for example, intensity-based
image segmentation: A two-class segmentation, which simply splits the image
into light and dark regions, tends to be highly stable with respect to the random
split procedure, but is usually not the desired solution.

The MDP/MRF method applied for image segmentation employs a multi-
nomial likelihood. To obtain a valid comparison, the algorithm chosen for use
with stability is an EM algorithm which estimates a mixture of multinomial
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Fig. 3. MR frontal view image of a monkey’s head. Original image (left), smoothed
MDP segmentation (middle), original image overlaid with segment boundaries (right).

Fig. 4. Segmentation result for multichannel data: A SAR image with three channels
(left), segmentation result obtained with the MDP/MRF model, and the original image
overlaid with segment boundaries (right)

distributions (also known as the ACM algorithm [11]). Figs. 1 and 2 show
results for two SAR images. Segments of the image in Fig. 1 are well sepa-
rated. As the results show, segmentation quality for noisy data can be improved
significantly by a smoothness constraint. Fig. 2 provides an example of am-
biguous, poorly separated segments. In this case, both the unconstrained and
constrained segmentation results are of limited quality. Another type of noisy
data, a MR image, is shown in Fig. 3 together with its (constrained) segmen-
tation result. Fig. 4 shows segmentation results obtained with the multichannel
version of the algorithm on a SAR image consisting of three separate frequency
bands.

The burn-in phase of the Gibbs sampling algorithm is assumed to have ter-
minated once the number of assignments changed per iteration remains stable
below 1% of the total number of sites. This condition is usually met after at
most 500-1000 iterations. The behavior of the class assignments during the sam-
pling process visualized by the plot in Fig. 5. In both cases, the algorithm takes
about 600 iterations to stabilize (the curves become constant apart from fluc-
tuations). The splitting behavior of the algorithm differs significantly between
the two cases: In the unconstrained case, large batches of sites are reassigned at
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Fig. 5. Cluster sizes during the sampling process for the unconstrained and smoothed
version of the MDP method. The number of sites assigned to each cluster (vertical) are
drawn against the number of iterations (horizontal), with each graph representing a
cluster. Left: Radar image (Fig. 1), no smoothing. Right: Same image, with smoothing.

Table 1. Number of clusters chosen by the algorithm on two radar images for different
values of the hyperparameter

α 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3
Image Fig. 1 MDP 2 4 4 6 5 4 5 6

smoothed 2 2 3 4 4 4 4 4
Images Fig. 2 MDP 4 3 4 7 6 5 5 9

smoothed 2 2 3 4 5 3 3 5

once to new clusters (visible as jumps in the diagram). In the constrained case,
assignments change gradually.

The influence of the DP hyperparameter α is shown in Tab. 1. In general, the
number of clusters increases for larger values of α (i. e. when the probability is
high that a new cluster is created by the DP). When the smoothing constraint is
activated, the number of clusters becomes more stable with respect to changes
of α than without smoothing. We note that the number of clusters selected is
more volatile for the poorly separated image in Fig. 2.

For comparison of the model selection results, the stability method has been
applied to the two SAR images in Figs. 1 and 2. The resulting instability in-
dices for two to nine clusters are given in Tab. 2. For the image in Fig. 1, the
local minimum of the instability index is assumed for five clusters, with the so-
lutions NC = 3, 4, 5 within range of the error bars. This outcome is comparable
to the result of the smoothed MDP model, which (except for very small val-
ues of α) selects three or four clusters. The unconstrained MDP model tends
to select a larger number of clusters. Since the instability index is obtained by
averaging over results on random subsets, one should expect its results to be
conservative. This is indeed the case, since the smoothed MDP approach pro-
duces a comparable number of segments as the stability method does without
smoothing. Now consider the image in Fig. 2, for which MDP results, even
in the smoothed case, are rather unstable (cf. Tab. 1). The local minimum
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Table 2. Stability indices computed with ACM clustering on two radar images for
different numbers of clusters

Stability index Stability index
NC Image Fig. 1 Image Fig. 2 NC Image Fig. 1 Image Fig. 2
2 0.0012 ± 0.0009 0.0003 ± 0.3341 6 0.4740 ± 0.0867 0.2933 ± 0.3437
3 0.3359 ± 0.2324 0.1765 ± 0.2856 7 0.5164 ± 0.0434 0.2907 ± 0.3007
4 0.3204 ± 0.2113 0.1233 ± 0.3481 8 0.5598 ± 0.0728 0.3532 ± 0.2889
5 0.2947 ± 0.0884 0.1436 ± 0.1929 9 0.6637 ± 0.0512 0.3378 ± 0.2801

of the instability index is assumed at NC = 4, but the whole range of com-
puted solutions (NC = 2, . . . , 9) is within one standard deviation of the local
minimum. Thus both the MDP/MRF approach and the stability method give
unreliable results on an image with a high noise level and poorly discernible
segments. Both methods are constructed around the same probabilistic model of
the data (a multinomial histogram clustering model). We therefore conclude
that the reliability of model selection results depends, for both approaches,
on the ability of the clustering model to resolve differences between segment
distributions.

7 Discussion

There exists a considerable number of DP-based models [12] with a wide range
of applications in statistics and, more recently, natural language processing and
document retrieval [13, 2]. To our knowledge, this paper summarizes the first
attempt both to apply the Dirichlet nonparametric approach to image segmen-
tation, and to combine it with Markov random fields, the standard Bayesian
approach to image processing and spatial statistics.

We believe that a wide range of applications for MDP models may emerge
in computer vision. Despite their mathematical intricacies, the fact that these
models may be regarded as mixture distributions with a variable number of
mixture components (cf. Sec. 2) makes them an intuitive and powerful tool for
probabilistic modeling. Instead of the multinomial distribution employed in our
histogram clustering approach, any type of parametric likelihood may be used
with the MDP model. If the base measure is set to the respective conjugate
prior, standard sampling algorithms are applicable. For example, a nonparamet-
ric analogue of the widely used k-means algorithm may be obtained by choosing
a Gaussian of fixed, uniform covariance as the likelihood and a Gaussian prior
on the mean parameter as the base measure. For applications requiring fast in-
ference, sampling algorithms may be substituted by more efficient approximate
methods [14].

We have shown how to combine the MDP clustering model with a spatial
smoothness constraint. We like to emphasize that this nonparametric framework
is applicable to any type of mixture component distribution and our sampling
algorithm remains applicable for any conjugate likelihood/base measure pair.
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Our experiments confirm what the structure of the model suggests: The ability
of the parametric model used within the nonparametric framework to resolve
differences between segments determines the quality of segmentation results. It
also determines how stable model selection results are with respect to changes
of the hyperparameter.

In summary, the MDP approach can be regarded as a model selection frame-
work built in the style of a wrapper method around an application dependent
parametric model. Additionally, it may be equipped with a smoothness con-
straint for image segmentation. The comparison with the stability framework
based on cross-validation yields consistent results for the number of clusters.
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