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Abstract. Video segmentation requires the partitioning of a series of
images into groups that are both spatially coherent and smooth along the
time axis. We formulate segmentation as a Bayesian clustering problem.
Context information is propagated over time by a conjugate structure.
The level of segment resolution is controlled by a Dirichlet process prior.
Our contributions include a conjugate nonparametric Bayesian model for
clustering in multivariate time series, a MCMC inference algorithm, and
a multiscale sampling approach for Dirichlet process mixture models.
The multiscale algorithm is applicable to data with a spatial structure.
The method is tested on synthetic data and on videos from the MPEG4
benchmark set.

1 Introduction

Clustering algorithms usually operate on a fixed set of data. When clustering is
applied to perform segmentation, the input data might e.g. be a digital image
(group the image into spatially coherent segments) or a time series (decompose
the series into coherent segments along the time axis, such as speaker clustering).
In this article, we consider a different problem arising from the formalization of
video segmentation as a clustering problem: Given is a time series of fixed-size
data frames, each of which has a spatial structure, i.e. the 2D structure of the
frame image. The series is to be decomposed into a sequence of spatially coherent
segmentations of the frames, which should reflect the temporal smoothness of
the sequence.

Clustering problems of this type have been actively studied in video segmen-
tation [1]. For example, [2] proposes a parametric mixture model for optical flow
features with neighborhood constraints. The number of clusters is selected by a
likelihood heuristic. Temporal context is modeled implicitly by using differential
motion features. Explicit context models include designs based on HMMs [3] or
frame-to-frame model adaptation [4]. A method which approaches the problem’s
time series structure in a manner similar to Bayesian forecasting has recently
been suggested in [5]. The authors propose a Gaussian mixture model to rep-
resent image rather than motion features. Temporal context is incorporated by
using the estimate obtained on a given frame in the sequence as prior information
for the following frame.
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We propose a Bayesian method capable of addressing both temporal context
and estimation of the number of clusters by a single model. The distribution
of each cluster in feature space is described by an exponential family model,
which is estimated under its respective conjugate prior [6]. The components are
combined in a Bayesian mixture model to represent a segmentation. For each
component, the prior is defined by the component’s posterior estimated during
the previous time step. Due to the “chaining” properties of conjugate pairs, this
results in a closed model formulation for the entire time series. The mixture pro-
portions and number of components are controlled by a Dirichlet process (DP)
prior [7]. As we will argue, the conjugate nature of the DP leads to a chain-
ing property analogous to the exponential family case. This property is used
to propagate cluster structure along the time series in a similar manner as the
conjugate component distributions propagate parameter information. Inference
of the model is conducted by an adaptation of the Gibbs sampler for DP mix-
ture models [8] to the time series model. To facilitate application of our model
to the large amounts of data arising in video segmentation, we (i) show how
the efficiency of the Gibbs sampler can be substantially increased by exploiting
temporal smoothness and (ii) introduce a multiscale sampling method to speed
up processing of individual frames. Just as the model, the multiscale algorithm
is based on the properties of exponential family distributions.

2 Background

Method overview. Our approach to video segmentation is based on local fea-
tures extracted from each image frame (where the “image” may be the original
frame image, one of its color space dimensions, or a filter response image). A
local window is positioned around each point of an equidistant grid within the
image, and the pixel values within the window are extracted as feature values.
The data vectors described in the following may, for example, be histograms of
the pixels within local windows. They will generally be denoted as xt

i, where t
is a time index (frame index) and i indexes a window position within the frame
image. Image segments are modeled as clusters. Each cluster k is modeled by a
distribution F (xt

i|θt
k). That is, the parameter vectors θt

k describe the segments,
and constitute the target variables of the estimation problem. Priors on the pa-
rameters will generally be denoted G. For a given time t, the individual cluster
models are combined into an overall segmentation solution by joining them in a
Bayesian mixture model. A DP is used adapt the model order (i.e. the number
of clusters). DPs define distributions on the mixture weights of a mixture model
such that the total number of clusters is a random variable. In the video or time
series context, they are suitable for the definition of clustering models that allow
the number of clusters to change between time steps, as segments appear in or
disappear from the scene. This section will review the basic ingredients of the
model: Mixture models, conjugate prior distributions and Dirichlet processes
(including MCMC inference). These concepts will be used in Sec. 3 to define
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a model for clustering in time series. Estimation algorithms for the model are
developed in Sec. 4.

2.1 Clustering with Mixture Models

A finite mixture model is a probability density representable as a convex combi-
nation

p(x|Θ) =
NC∑
k=1

ckF (x|θk) (1)

of component densities F ( . |θk). In the clustering context, each component den-
sity represents the distribution of a single cluster. For a given data set x1, . . . ,xn,
a clustering solution is an assignment of each observation xi to one cluster
k ∈ {1, . . . , NC}. Assigning an observation expresses the assumption that it was
generated by the respective density F ( . |θk). We encode such a solution by a set
of assignment variables S1, . . . , Sn, one for each observation, where Si = k if xi

is assigned to cluster k. Clustering solutions are obtained either by expectation-
maximization (EM) algorithms [9], or by Markov chain Monte Carlo sampling
in a Bayesian regime. Both approaches rely on a latent variable structure, by
treating the assignment variables Si as random quantities that are estimated
from the data along with the parameters.

2.2 Conjugate Models

Several aspects of this work build on exponential family models and the concept
of conjugacy [6]. We provide a brief summary of these models and those proper-
ties of importance for our approach. A distribution of a random variable X with
domain Ωx is called an exponential family model if its density can be written as

F (x|θ) := h(x) exp(〈s(x)|θ〉 − φ(θ)) . (2)

Here, θ ∈ Ωθ is a parameter vector, 〈 . | . 〉 denotes the scalar product on the
parameter space Ωθ, and the function φ is the normalization term φ(θ) :=
log

∫
h(x) exp(〈s(x)|θ〉)dx. Of particular interest is the sufficient statistic func-

tion s : Ωx → Ωθ, which effectively defines all properties of the model relevant
for parameter estimation. If a density F and a prior G are used in a Bayesian
estimation framework, they are called conjugate if the resulting posterior is a
distribution of the same type as G, i.e. prior and posterior differ only in their
parameters. The concept of conjugacy is inherently tied to exponential families:
It can be shown that, on the one hand, any exponential family model has a
conjugate model (which is also an exponential family). On the other hand, only
exponential family models have non-trivial conjugate models [6]. If F is a model
of the form (2), then G(θ|λ, y) := 1

K(λ,y) exp(〈θ|y〉 − λφ(θ)) is a conjugate prior,
and the posterior under n independent observations xi is

G(θ|λ + n,y +
n∑

i=1

s(xi)) . (3)
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The average
∑

s(xi) carries all information the observation sample contains
about the model parameter, i.e. it is sufficient. Conjugacy is a key property for
a Bayesian time series model that uses the posterior of a previous step as prior
for the present one: If a non-conjugate pair is used, the derived prior will change
from time step to time step.

2.3 Dirichlet Process Mixture Models

Model order selection. For mixture model estimation, the overall number
NC of clusters is an input parameter. Techniques for estimation of this quan-
tity from data are referred to as model order selection. Non-Bayesian solutions
are usually based on regularity assumptions: The model’s capability to explain
the given data, measured by the likelihood, is traded off against a measure of
model complexity to avoid overfitting. Model complexity is typically measured
as a function of the model and the sample size (information criteria approaches
such as AIC, BIC and MDL; cf [10] for an overview). The stability method [11]
measures model complexity as stability of the solution under random perturba-
tions of the data. All these methods proceed in an exhaustive search manner,
i.e. scores for a range of models are computed and the best model is chosen.
Bayesian DP-based methods [8] represent the number of clusters as a random
variable. An estimate is obtained by sampling the model posterior under the
observed data. Whereas scoring methods aim at identifying the “true” number
of clusters under a chosen set of assumptions, DP methods provide a user pa-
rameter that controls the qualitative behavior of the random variable NC . As
will be discussed below, this makes them a natural choice for problems in which
the number of model clusters has to change adaptively over a range of instances.

The Dirichlet process approach. In our clustering model, individual clus-
ter components will be represented by parametric exponential family models,
which are combined in a mixture model. To control the structure of the mix-
ture, we use a Dirichlet process mixture (DPM) model [8, 12]. For the sake of
brevity, we will forego the model’s derivation as a stochastic process and only
describe its practical properties. Loosely speaking, a DPM is a mixture model
with a “complexity control” term. The extra term governs the creation of new
components. In the finite parametric mixture (1), different components of the
mixture are defined by different values of the parameter vector θk. If the mixture
is estimated from data, the mixture weights are chosen in proportion to the size
of classes, i.e. ck = nk

n if nk out of n total data points are assigned to component
k. The model (1) can be regarded as the result of integrating the distribution
function F against

GMM(θ) :=
NC∑
k=1

ckδθk
(θ), (4)
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where δθk
denotes the Dirac function on Ωθ centered at θk. DPM models augment

the expression (4) by an extra term,

GDP(θ) :=
NC∑
k=1

ckδθk
(θ) + αG0(θ) . (5)

The function G0 is a probability distribution on the domain Ωθ of mixture
parameters, and α ∈ R+ a positive scalar parameter. The dynamics of this
model can be illustrated by considering a data generation process: A new datum
x is generated by drawing from a standard mixture or DPM, which we assume
to have been estimated from data x1, ...,xn. When drawing from a mixture
model (corresponding to (4)), x will be drawn from one of the NC parametric
mixture components in a two-stage manner by sampling θ ∼ GMM, then x ∼
F ( . |θ). In the DPM case (5), x is drawn either according to one of the NC

parametric mixture components, or (with a probability proportional to α) from
a new mixture component F ( . |θ∗NC+1), where the new parameter value θ∗NC+1

is sampled from G0. The DPM model constitutes a Bayesian approach to model
order selection in mixture models, due to its ability to generate as many clusters
as required to explain the observed data.

The standard Gibbs sampling algorithm for DPM models [13] encodes as-
signments of data points to mixture components by means of latent variables, in
a manner similar to the EM algorithm. For each xi, the discrete index variable
Si specifies the index of the mixture component to which xi is assigned. Within
the algorithm, a value of Si = 0 indicates the generation of a new mixture com-
ponent from G0 as a model for xi. The Si are determined by computing mixture
proportions q̃ik as

q̃i0 :=
∫

Ωθ

F (xi|θ)G0(θ)dθ (6)

q̃ik := n−i
k F (xi|θk) for k = 1, ..., NC ,

where n−i
k is the number of data points assigned to component k with xi re-

moved from the data set. The proportions are normalized to obtain mixture
probabilities qik := q̃ik∑NC

l=0 q̃il

, for k = 0, . . . , NC . The sampling algorithm repeats

the following steps:

Assignment step: For all i = 1, ..., n,

1. Compute qi0, ..., qiNC
.

2. Sample Si ∼ (qi0, ..., qiNC
).

3. If Si = 0, create a new component: Sample θNC+1 ∼ F (xi|θNC+1)G0(θNC+1).

Estimation step: For each k = 1, ..., NC , sample

θk ∼ G0(θk)
∏

i|Si=k

F (xi|θk) . (7)
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In the conjugate case, the integral in (6) has an analytic solution and the com-
ponent posteriors in (7) are distributions of the same type as G0. Thus, if G0

can be sampled, the component posterior can be sampled as well.

3 Order-Adaptive Clustering in Time Series

The present article considers the problem of obtaining a clustering solution for
each time step in a multivariate time series. The clustering solutions are required
to exhibit a temporal coherence. In a video sequence, each time step corresponds
to a single frame image. The overall clustering solution then consists of a seg-
mentation for each frame. If the number of clusters can change between frames,
a suitable clustering method must be order-adaptive, i.e. capable of adjusting
the model order over time. Order-adaptive methods require (i) automatic model
order selection and (ii) a meaningful way to match clusters in different frames.
If clustering solutions are obtained independently on each frame, the latter must
be addressed by matching heuristics. Any principled approach requires the use
of context information, i.e. the clustering solution for a given frame has to be
obtained in a manner conditional on the solutions for the previous frame. In this
section, we discuss how cluster structure can be propagated along a time series
if the clustering solutions on individual frames are controlled by a DP prior.

An Order-Adaptive Clustering Model. We consider a multivariate time
series xt := (xt

1, . . . ,x
t
n) that, for each time step t = 1, 2, . . . , generates a set of n

outputs xt
i. For each t, a single clustering solution St := (St

1, . . . , S
t
n) is obtained.

For temporal coherence, we require that, if St
i = k, then also St+1

i = k with high
probability, unless the corresponding observations xt

i and xt+1
i differ significantly.

For the video segmentation problem, this reflects the assumption that size and
location of segments change slowly on the time scale of frame renewal. The
standard Bayesian approach to address temporal coherence requirements in time
series models is to encode context with priors. The posterior distribution of the
model parameter vector θt at a given time is used as prior distribution θt+1. This
requires a conjugate model, i.e. a model for which prior and posterior belong to
the same family of distributions (otherwise, the type of the prior distribution
would change between time steps). Though we are ultimately interested in DP
priors, let us first exemplify the approach for a parametric model. Let F (x|θ) be
a density modeling observations at a single time step (that is, a likelihood). We
use the ab initio form G( . |λ,y) of the prior, with G conjugate to F . The prior
for the parameter vector θt+1 is the corresponding posterior under the previous
observation xt,

G(θt|λ + 1,y + s(xt)) ∝ F (xt|θt)G(θt|λ,y) . (8)

One may variate upon this strategy to accumulate observations over time,

G
(
θt+1

∣∣∣λ + τ,y +
∑

t−τ<r≤t

s(xr)
)
∝

∏
t−τ<r≤t

F (xr|θr)G(θt−τ+1|λ,y) (9)
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resulting in a process with a τ -step memory. A similar mechanism is applicable
to DP models. The DP has a natural conjugate property, implicit in Fergu-
son’s [7] characterization of the DP posterior: If θ1, . . . , θn ∼ DP(αG0), then
θn+1 ∼ DP

(
αG0 +

∑n
i=1 δθi

)
. For convenience, we adopt the following symbolic

notation: Observe that the Dirac sum Ĝn :=
∑n

i+1 δθi of n draws from G can be
regarded as a finite draw from an infinite categorial distribution (i.e. as a par-
tial, finite observation from an “infinite histogram”). Just as a finite histogram
can be generated by a multinomial distribution parameterized by a draw from a
Dirichlet (its conjugate prior), the measure Ĝn can be explained as a draw from
a multinomial process (MP) parameterized by a draw from a DP. The DP prior
and posterior can then be linked explicitly in a Bayesian formula

DP
(
αG0 + Ĝn

)
∝ MP

(
Ĝn|G

)
DP(αG0) .

Although our use of this notation is purely symbolic, it can be derived in a math-
ematically precise manner using Kolmogorov’s extension theorem for stochastic
processes. In perfect analogy to the conjugate parametric case, we can construct
a DP prior for an estimation problem in a time series at time (t + 1) as the DP
posterior at time t:

Gt+1 ∼ DP
(
αG0 + Ĝt

n

)
∝ MP

(
Ĝt

n|Gt
)

DP(αG0) .

The formulation immediately extends to a τ -step memory, by means of

DP
(
G

∣∣∣αG0 +
∑

t−τ<r≤t

Ĝr
n

)
∝

∏
t−τ<r≤t

MP
(
Ĝr

n|G
)

DP(G|αG0) . (10)

Note that, for the cluster propagation problem, the draws from the DP are
parameters θi rather than observations. The observed data xt+1 at time (t + 1)
is then generated as

xt+1
i ∼ F ( . |θt+1

i ) (11)
θt+1

i ∼ Gt+1

Gt+1 ∼ DP
(
αG0 + Gt

)
.

Observations from multiple channels. In image and video processing
applications, the input data usually consists of multiple channels. For standard
color videos, three channels correspond to the three color space dimensions. Ad-
ditional channels may include other features in the form of transformed data or
filter responses. For multiple data channels indexed c = 1, . . . , C, multiple obser-
vations (xt

i,c)c=1,...,C are obtained for each frame t and location i. These are rep-
resented in the model as a product of likelihoods. That is, the generative model is
obtained by substituting suitable product distributions

∏C
c=1 F (xt+1

i,c |θ
t+1
i,c ) and∏C

c=1 Gt+1
c for F and G0 in (11). This does not increase the complexity of the

clustering problem. Cluster assignments are still encoded by one variable St
i per
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location. The product model defines C parallel estimation problems, which are
coupled by the assignment variables. Since the latter are the actual target vari-
ables of the clustering problem, the approach effectively increases the amount
of observational data per estimated solution variable. If the features are chosen
well, this can significantly increase the quality of estimates. Choosing a large
number of uninformative channels may have a converse effect: The assignment
probabilities qt

ik computed by the inference algorithm are derived from the prod-
uct model as averages over channels. Multiple uninformative features may thus
obfuscate information provided by informative ones.

A note on exchangeability. A well-known fact in statistics is that data
generated from a DP is exchangeable, i.e. its probability is invariant under per-
mutations of the order [6]. This raises some questions about the applicability of
such models to time series, where the order of observations is crucial. The model
described above derives a prior for step (t+1) based on two inputs, the initial pa-
rameters (λ,y), which apply uniformly in all steps, and the previous observation
xt. The implicit assumption is that pairs of adjacent steps are exchangeable. This
local exchangeability is, in turn, equivalent to assuming processing of the time
series to be invariant under inversion of the time axis. In other words, inference
results should not depend on whether the time series is processed in increasing
or decreasing index order. Such an assumption is justifiable for some time se-
ries, and in particular for the video segmentation problem. Segmentation as a
mid-level vision problem is oblivious to semantic and high-level content (such as
whether a falling object moves downwards or upwards). However, it requires the
neighborhood relations of frames to be preserved. Hence, we may invert the or-
der, but not shuffle the frames. The argument does not apply to a process with a
multi-step memory as in (10), which would require exchangeability of more than
two frames. Such a model should therefore be regarded as an approximation.
Note that many models assume independence of data points, which is a much
stronger assumption than exchangeability. Such models often perform well even
in applications where the generative process of the data will clearly result in de-
pendent observations. We therefore believe that, in many cases, approximation
by multi-step exchangeability may be beneficial, and the ability of such a model
to draw on multiple observations will outweigh the loss of descriptive precision
incurred by the violation of the model assumption.

4 MCMC Inference for High-Throughput Problems

In this section, we discuss inference techniques for the model described in Sec. 3.
Available methods for DPM inference are extended to address two issues: Time
series structure and efficiency. Existing hidden-variable methods can be modified
for time series inference by initializing inference for a given time step by the
model state estimated for the previous step. To increase the sampler efficiency
for individual time steps, we propose a multi-scale sampling scheme exploiting
the spatial structure of frame sequence data. Both approaches can be combined
to obtain a efficient sampling algorithm.
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4.1 Sampling in Time Series

Parameter inference for the time series clustering problem estimates the cluster
parameters θt

k and the states of the assignment variables St
i , for each t = 1, . . . .

Estimates are obtained by sampling the relevant posteriors with a Gibbs sampler.
To derive a suitable algorithm, we note that, for a given time index t, recovering
the states St

i and parameters θt
k given the current observations xt

i is a DPM
mixture inference problem with prior DP(αG0 + Ĝt

n). The history of the process
enters via the prior parameter, i.e. the measure (αG0 + Ĝt

n). Full conditionals
for the Gibbs sampler are immediately obtained from the standard sampling
algorithm, by substituting (αG0 + Ĝt

n) for αG0. (A sampler for a series with
a τ -step memory can be obtained by substituting the corresponding posterior
parameter in (10)). Estimates for the whole time series can be computed by
running the Gibbs sampler for the appropriate posterior at each time step. The
parameter estimates (summarized by Ĝt

n) are then substituted into the DP prior
of the subsequent step. The algorithm is an online method, as it only performs
a single pass over the time series. The cluster correspondence problem is solved
implicitly, by propagating information from one time step to the next through the
DP base measure. Initially, the same clusters as in the previous step are available
for assignment, and their indices are preserved. Classes may be newly generated
by drawing from the continuous component G0 of the DPM, or deleted if no
longer supported by the data. Gibbs sampling is potentially time-consuming, and
performing a full run of a DPM Gibbs sampler for each time step in the series
is computationally prohibitive. A substantial speed-up is achieved by exploiting
temporal smoothness. If changes in the data occur slowly w. r. t. to the time scale
(frame rate) of the time series, the model state estimated at time t provides an
almost-perfect initialization for sampling at time (t+1). The algorithm therefore
obtains an initial estimate at time t = 1 by performing a full run of the Gibbs
sampler. For t ≥ 2, the Gibbs sampler is initialized by the previous model state,
and then run only for a few steps, to allow the model to adapt to changes in the
data.

4.2 Multiscale Sampling

For data exhibiting a spatial neighborhood structure, DPM inference algorithms
that are more efficient then the standard Gibbs sampler can be derived using
a multiscale approach. Multiscale methods attempt to increase the efficiency of
iterative algorithms by replacing the original input problem with a compressed
replacement problem (coarsening). This reduced-size problem is solved, and the
solution transformed into a solution of the larger input problem (refinement).
The compression operation exploits neighborhood structures in the data (such
as spatial or sequential neighborhoods). In images, adjacent pixels are grouped
into blocks, and each block B is compressed by computing a summary variable
xB . The coarsened problem is given by the set of summary variables for all
blocks. The coarsening operation therefore has to be designed to limit the loss of
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relevant information under compression, and to result in a coarse-scale problem
to which the processing algorithm in question is applicable.

Coarsening. Our aim is the design of MCMC sampling algorithms. The
information to be preserved under coarsening is therefore the information rel-
evant to statistical parameter estimation. A simple averaging approach is not
suitable in general, as it will only preserve moment information of first order.
For the models considered in our work, a suitable coarsening approach can be
derived from the properties of sufficient statistics. For an exponential family
density as in (2), all information relevant to parameter estimation is contained
in the sufficient statistic s(x). Furthermore, for multiple observations x1, . . . ,xn,
the sum ŝn :=

∑n
i=1 s(xi) is sufficient. Given a data block B, consisting of the

observations {xb1 , . . . ,xbN
}, the summary variable sB is computed as

sB :=
N∑

i=1

s(xbi
) . (12)

If Rd data, for example, is modeled by a Gaussian distribution, the summary
variable will be the pair sB =

(∑N
i=1 xbi ,

∑N
i=1 xbix

T
bi

)
. Coarsening is therefore

performed by averaging in parameter space, in contrast to the standard multi-
scale schemes used by many computer vision algorithms, which average in the
data domain. A spatial partition of the input data into blocks B1, . . . , Bm will
result in a set of summary variables xB1 , . . . ,xBm . The DPM sampling algo-
rithm described in Sec. 2.3 is directly applicable to this replacement data, by
substituting summary variables xB for sufficient statistic values s(xi).

The coarsening operation is perfect in the sense that it does, by the proper-
ties of sufficient statistics, preserve all information relevant for estimation pur-
poses. More precisely, assume that xb1 , . . . ,xbN

∼ F ( . |θ), with a conjugate prior
G(θ|λ,y) on the parameter. Then the posterior Π satisfies the invariance

Π(θ|sB ;λ,y) = Π(θ|xb1 , . . . ,xbN
;λ,y) , (13)

since

Π(θ|xb1 , . . . ,xbN
;λ,y) = G

(
θ
∣∣∣λy+

N∑
i=1

s(xbi
)
)

= G(θ|λy+sB) = Π(θ|sB ;λ,y) .

Intuitively, a parameter estimated from data is a valid description of the data
on the fine scale or any coarsened scale.

Refinement. The coarsening strategy described above and subsequent sam-
pling on the coarse scale will result in a DPM clustering solution defined by
cluster parameters θ∗1 , . . . , θ∗k. Because these parameters also define an admissi-
ble clustering solution on the fine (original) scale of the problem, it is not neces-
sary to explicitly propagate coarse-scale assignments to the fine scale. Instead,
a solution of the fine-scale problem is obtained by substituting the estimates θ∗k
into the fine-scale model and performing a single assignment step. We note that,
as another consequence of the parametric description applying simultaneously
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Fig. 1. Erroneous creation of classes during coarse-scale sampling: Average histograms
of the three input classes (blue/left) and parameter vectors of the five classes estimated
by coarse-scale sampling (red/right).

over different coarsening scales, the method is capable of incorporating locally
adaptive coarsening/refinement strategies.

Coarse-scale artifacts. When applied to clustering, the multiscale sampler
may erroneously produce additional classes at a coarse scale, if a block summa-
rized by a single variable during coarsening overlaps the boundary between two
segments. The resulting mixed distribution may distinctively differ from the av-
erage distribution of both segments, and thus produce an additional cluster. Such
errors can be corrected by the fine-scale assignment step. To illustrate the behav-
ior of the sampler, Fig. 1 shows estimation results obtained on a simple artificial
image consisting of three block segments arranged in sequence (i.e. there are two
boundaries between adjacent segments). Local windowed grayscale histograms
are extracted as features. As clustering model, we apply a DPM model, with a
multinomial likelihood F to account for the histograms. The cluster parameters
θ∗k can be interpreted as average histograms of the respective cluster. These av-
erage histograms are plotted for the true (generative) model on the left in Fig. 1.
The multiscale algorithm is run on the data with a coarsening coefficient of 2,
and the coarse-scale solution is compared to the artificial ground-truth. When
sampling on a coarse scale, the algorithm models five classes, for which the class
parameter vectors θ∗k are plotted on the right. Clusters 2 and 4 are due to mixing
of histograms at the segment boundaries. When assignments are performed for
the fine-scale histograms to the coarse-scale class parameters, all histograms are
correctly assigned to their original three classes, and clusters 2 and 4 remain
empty. That is, coarse-scale artifacts vanish during the fine-scale assignment.
The algorithm benefits from the ability of the DP to create new clusters for the
boundary points, without distorting the remaining cluster structure.

Multiscale approaches to Markov Chain sampling have been considered e.g.
in [14]. These methods are based on the idea that suitable coarse-scale formu-
lations of a Markov chain may mix faster than the original chain, and use a
coupled formulation integrating both chains. The aim is to reduce the number
of iterations required for the algorithm to converge, while retaining accuracy. In
contrast, our approach aims at reducing the execution time of individual iter-
ations. Keeping in mind the large amounts of data arising in visual processing
and video, we trade in accuracy and statistical guarantees for speed. Though
the coarsening operation is perfect for individual distributions, it will lose in
accuracy when the coarsening blocks overlap segment boundaries, as shown in
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Fig. 2. Synthetic noisy data (top) and segmentation results (bottom). Clusters are
correctly created or deleted as objects enter or leave the scene.

the example. In practice, we should not expect the fine-scale assignment step
to correct all errors. The rationale for risking a loss of accuracy is that, for vi-
sion applications, we put more emphasis on speed and plausible results than on
statistical guarantees.

5 Experiments

This section provides experimental results for the application of our model to
video segmentation. Experiments were performed on both synthetic data and
real-world data (sequences from the MPEG4 benchmark set).

Processing pipeline. Features are extracted from each frame image by plac-
ing an equidistant grid within the image. A local window is placed around each
grid node i, pixel values are extracted from within the window, and collected in
a histogram (denoted xt

i in the previous sections). For color images, the method
is applied individually to each color channel. The resulting set of features for
each frame is a list of multiple histograms, indexed by their position i within
the image. On this data, the inference algorithm described in Sec. 4 is applied.
Inference is conducted single-pass, and is hence capable of online processing. For
each time step t, the assignment variables St

i describe the estimated segmenta-
tion (i.e. St

i is interpreted as the segment index of site i). In the examples shown
in Figs. 2-5, segment assignments have been color-coded.

Results. Synthetic data experiments were conducted to verify the method’s
capability to adjust the number of clusters. The artificial data consists of sim-
ple geometric objects with additive Gaussian noise moving at random within a
scene. Objects may newly appear or disappear, but only by entering or leaving
the scene from the border (i.e. temporal changes are smooth). A sample exper-
iment is shown in Fig. 2. Features used are local gray-scale histograms. In all
experiments conducted, the algorithm consistently assigns each object to the
same cluster over the whole running time of the sequence. The cluster number
only changes if an object vanishes temporarily, either by occlusion or because
it leaves the scene and reappears (as is the case for the disc in Fig. 2). As a
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Fig. 3. “Mother and child” test sequence (top). Results are shown for color and satu-
ration histogram features (middle), and with additional location features modeled by
Gaussian distributions (bottom).

Fig. 4. “Table tennis” test sequence, with histogram and location features.

Fig. 5. More difficult data:“Coastguard” test sequence (top) and segmentation results
(bottom), with histogram and location features.
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mid-level vision algorithm, the method cannot (and should not) distinguish be-
tween initial appearance and reappearance of an object. Results on real video
data were obtained on sequences from the MPEG4 benchmark set. Five feature
channels where used: Four are histograms, representing the three RGB color
channels plus saturation, and described by a multinomial likelihood F . In ad-
dition, we used a location feature, i.e. the center position of the local window
in the image, represented by a two-dimensional Gaussian likelihood. The overall
model likelihood is a product likelihood as described in Sec. 3. The scatter pa-
rameters of the parametric priors and the scatter parameter α of the DP, which
control the level of cluster resolution, can be adjusted on the first few frames of
the sequence. The key parameter of the feature extraction is the size of the local
windows, which has to trade off sample size against precision: Large windows, to
their advantage, contain many pixel examples, which results in stable histogram
estimates and reduces scatter in feature space. Their drawback is a lack of pre-
cision: Large windows overlapping a cluster boundary generate histograms that
represent a mixture of the two cluster distributions. Such mixtures tend to differ
significantly from the individual distributions of the clusters, and hence cause
additional clusters to appear at the segment boundaries. All results shown here
were obtained using window sizes of 5 × 5 or 9 × 9 pixels. Sample results are
shown in Figs. 3-5. In Fig. 3, results shown in the middle row where obtained
using only the four histogram features (color and saturation). The background
is split up into incoherent segments. Results are improved by the additional use
of location features. Modeling these with a Gaussian in the spatial domain fa-
vors spatially coherent solutions, improving the segmentation of the background
(bottom row). Likewise, all five features where used in the computation of results
shown in Fig. 4. A more difficult sequence is shown in Fig. 5. In this case, local
segmentation features provide poor information. Color differences within some
segments (e.g. the large boat) are more significant than those between segments.
With the size of the windows chosen sufficiently large during feature extraction
to obtain stable input histograms, a boundary cluster effect is observable (note
the two boats being split into an internal and a boundary segment). Results
may possibly be improved by including additional motion features (such as his-
tograms of frame differences). In general, the choice of features proves crucial for
the performance of the segmentation algorithm. The parametric components of
the clustering model (e.g. Gaussian and multinomial) are location-scatter type
models, which represent “clouds” in their respective feature spaces. Like most
mixture models, the method relies on the feature extraction step to map the
segments to groups in feature space that are sufficiently well-separated to be
resolved by the probabilistic model.

Average running times for our experiments on different video test sequences
(300 frames at resolution 144 × 176 each) were: ∼ 190 seconds at full resolu-
tion, ∼ 110 seconds using a multi-scale sampler with coarsening coefficient 2,
and ∼ 35 seconds with a coarsening coefficient of 4. This does not include the
feature extraction, i.e. the extraction of the fine-scale input data from the image
sequence. The running time of the algorithm scales, in addition to the obvious
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dependence on the amount of input data, with the number of segments. The av-
erages above were measured for relatively small numbers of classes (NC ≤ 10). If
a large number of clusters is required (i.e. an over-segmentation), longer running
times will have to be expected.

6 Conclusions

We have presented a clustering model for multivariate time series that repre-
sents temporally coherent sequences of clustering solutions. At each time index,
the cluster structure is represented by a Bayesian mixture model, with a DP
prior controlling the number of clusters. A conjugate model structure is used
to propagate information along the time axis in a Bayesian framework. Two
such structures are present in the model, one between parametric components
(carrying parameter information of the mixture components), and one between
the nonparametric DP components (carrying cluster structure information). To
estimate the model from data, we have introduced an efficient Gibbs sampling
approach which draws on both temporal context between frames and a mul-
tiscale approach for individual frames to increase efficiency. Applied to video
segmentation, the model dynamically adjusts the number of clusters (segments)
when new objects appear in or vanish from the scene. The achieved processing
times of the sampler are just one order of magnitude below real time for videos
in half-PAL format.

We have not provided convergence results for the sampling algorithm, since
our analysis of the coarsening operation implies that, for individual component
distributions, results for standard Gibbs samplers carry over to the multiscale
approach. Any inaccuracies are due to coarsening blocks overlapping segment
boundaries, a problem hard to capture by mathematical analysis. Furthermore,
our estimation results are necessarily approximate, since the sampler is only run
for a few steps on each frame image. Such an algorithm, for which the observed
data changes (smoothly) in regular intervals raises some interesting questions.
On the one hand, frame changes may pose a problem, if the model has not
yet been sufficiently adapted to the current data. On the other hand, small data
perturbations may help to avoid local minima. In-depth analysis of the algorithm
is beyond the scope of this article.

The results presented here were computed on low-level features, such as color
and saturation histograms, which necessarily results in limited precision. Since
the model applies to both Gaussian and multinomial feature distributions, it is
directly applicable to a wide range of features. Tracking applications, for exam-
ple, require robustness but no coherent partition of the image. Hence, interest
point features could be extracted on each frame and grouped with our model
using a Gaussian likelihood supported on the frame image. Since DP models can
be constrained by Markov random fields [15], the model itself can be extended
by spatial smoothing, as advocated for video segmentation in [2]. Such an ex-
tension probably comes at the price of an increase in computation time, as more
iterations per frame would be required for the smoothing to take effect.
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The DP approach models the number of clusters as a random variable. The
model order as an input parameter is replaced by a control parameter that
allows the user to adjust the approximate level of cluster resolution. For fixed,
static data sets, the approach may not constitute a practical advantage, as it
arguable replaces one input parameter by another. We face a different situation
for dynamic data, such as videos, where the number of clusters may change
over time and the model has to adapt. Adaptation requires either a random
description of the model order, or a transition heuristic (such as BIC scoring, or
reversible jump in a Bayesian framework). Bayesian methods in general, and DP
approaches in particular, are often regarded as inapplicable to data-intensive
problems due to their computational costs. In our view, the reported results
convincingly demonstrate that algorithmic efficiency need not pose an obstacle
to the practical application of DP models, if temporal and spatial structure in
the data can be exploited.
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