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Constructive definitions of discrete random measures, which spec-
ify a sampling procedure for the weights and atom locations of the
measure, have proven to be of great value in statistics and related
fields. We consider the case of completely random measures and ob-
tain a constructive representation for completely random measures
on Euclidean space. For random measures on the real line satisfying
a specific σ-finiteness property, the representation is equivalent to
the Ferguson-Klass representation of pure-jump Lévy processes. As
examples, we provide ”stick-breaking” representations of the gamma
process, the stable process and the beta process.

1. Introduction. Kingman’s [15] notion of a completely random measure
(CRM) has become a key concept in Bayesian nonparametric statistics: Many
nonparametric priors describe a parameter variable which is a random measure
or random probability measure. Most of these random measures are either com-
pletely random measures, or are obtained from a completely random measure by
normalization (so-called normalized random measures with independent incre-
ments, or NRMIs) [7]. The characteristic decoupling properties of CRMs account
for the tractable posterior distributions of such models. Several important aspects
of models based on CRMs, including posterior computations, can be abstracted
from the specific model in question and treated in a generic manner for the entire
class of CRMs [17]. NRMIs have similar generic properties [10].

A completely random measure on a space Ωθ can be represented, in a sense to
be made precise in Sec. 2, by a discrete random measure ξr on Ωθ, and hence as

(1.1) ξr( . ) =
∞∑
k=1

SkδΘk
( . ) .

The random variables Sk and Θk take values in R+ and Ωθ, respectively. For
the Dirichlet process—which is a NRMI rather than a CRM, and hence satisfies∑

k Sk = 1 a.s.— the sequences of variables Sk and Θk can be generated from two
sequences of i.i.d. random variables in a simple procedure known as stick-breaking
[9, 20]. Similar representations are known for the beta process [2, 18, 21]. In
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the following, we derive an analogous constructive representation for completely
random measures, which represents the variables Sk and Θk as the images of
unit-rate Poisson process draws under a fixed transformation mapping and can
be regarded as a generalization of the Ferguson-Klass representation of pure-jump
Lévy processes [4].

2. Results. Let Ωθ be a Polish space with Borel sets B(Ωθ), and let M+(Ωθ)
be the set of measures on Ωθ. Let ξ be a completely random measure on Ωθ, that
is, a M+(Ωθ)-valued random variable for which ξ(A)⊥⊥ ξ(A′) whenever A,A′ ∈
B(Ωθ) are disjoint sets. According to Kingman [15, Theorem 1], ξ admits a unique
decomposition

(2.1) ξ = ξd + ξf + ξr

into a deterministic (non-random) measure ξd, a random, purely atomic measure
ξf with fixed atom locations, and a random discrete measure ξr. The random
component ξr can be described by a Poisson process with mean measure µξ
on the Borel sets B(Ωθ × R+) [16, §8]. For Ωθ = R+, this process is a pure-
jump Lévy process, and slightly abuse terminology and refer to the measure
νξ(dt, dc) := µξ(dt× dc) as the Lévy measure of ξ, regardless of the choice of Ωθ.
Notation. If Y is a subspace of a Euclidean space, λY denotes Lebesgue measure
on Y . The cumulative distribution function of a measure ρ on a one-dimensional
set Y is denoted Fρ(y) := ρ({z ∈ Y |z ≤ y}). For any monotonic function
x 7→ f(x) on R+, we write f−1 for the right-continuous inverse, hence f−1(y) =
inf{x|f(x) ≥ y} (if f is non-decreasing) or f−1(y) = inf{x|f(x) ≤ y} (if f is
non-increasing).

2.1. Poisson representation of CRMs. The class of completely random mea-
sures to which our results are applicable is characterized by the following condi-
tions.

Definition 2.1. Say that a CRM ξ on Ωθ is nice if it satisfies:

(C1) It has no deterministic component, ξ = ξf + ξr.
(C2) It is Σ-finite in the sense of Kingman [16, §8.1]: There is a countable parti-

tion of Ωθ into disjoint sets Dj with P{ξ(Dj) <∞} > 0 for all j.
(C3) There are no jumps of size 0, that is, νξ(Ωθ, {0}) = 0.
(C4) The Lévy measure νξ of ξ satisfies νξ(Ωθ, (s,∞)) <∞.

Conditions (C1)–(C3) entail no loss of generality: (C1) merely simplifies no-
tation. (C2) is generally assumed for CRMs [see e.g. 15, 16], and (C3) ensures
that each jump location in the representation (2.16) of ξ below corresponds to an
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actual jump. The only critical condition is therefore (C4), which ensures that the
tail T of the Lévy measure, defined in (2.2) below, is well-defined. For some types
of completely random measures, (C4) requires the domain Ωθ to be restricted to
a compact subset of the possibly non-compact space Ωθ.

Theorem 2.2 (Poisson sampling of CRMs). Let ξ be a nice completely ran-
dom measure on Ωθ. Denote the tail of νξ(Ωθ, . ) by

T : R+ → R+

s 7→ T (s) := νξ(Ωθ, (s,∞))
(2.2)

and by {θ1, θ2, . . . } ⊂ Ωθ the set of fixed jump locations.
(i) There is a probability kernel p : Ωs →M(Ωθ) such that

(2.3) ξ( . ) = ξf ( . ) + ξr( . )
d
=
∑
i

Jiδθi( . ) +
∑
k

T−1(Uk)δVk( . )

where Uk ∼ Π(λ) is a unit rate Poisson process on Ωs = R+ and V1, V2, . . . are
independent random variables with Vk ∼ p( . , T−1(Uk)). The random variables Ji
are independent of each other and of ξr.
(ii) The regular conditional probability p is unique up to equivalence and deter-
mined by

(2.4) νξ(A,B) =

∫
B
p(A, s)dνξ(Ωθ, s)

even if νξ(Ωθ, . ) is not σ-finite.

If νξ(Ωθ, . ) is σ-finite, (2.4) simply states that p is given by the densities

(2.5) p(A, s) :=
dνξ(A, . )

dνξ(Ωθ, . )
(s) for A ∈ B(Ωθ) .

The intuition underlying Theorem 2.2 is straightforward: As a completely random
measure, ξr can represented by a Poisson process with mean measure µξ (see [16,
§8] for a detailed discussion). Specifically,

(2.6) ξr
d
=
∑
i

SiδΘi if and only if (Si,Θi) ∼ Π(µξ) .

Let φ : Ωθ × R+ → Ωθ × R+ be a measurable mapping. By one of the basic
properties of Poisson processes [16, Chapter 2.3], the image of the Poisson process
Π(γ) under φ satisfies

(2.7) φ(Π(γ)) = Π(φ(γ))
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for any σ-finite measure γ on Ωθ×R+. We can thus posit a simple mean measure
γ—for example Lebesgue measure, if Ωθ is Euclidean—and reduce the repre-
sentation of ξr to a transformation of γ. To determine this transformation, the
equation

(2.8) νξ = φ(γ) s.t. φ measurable

has to be solved for φ. Problems of the form (2.8) are known as transport problems
in applied analysis [23]. In one dimension, these problems admit a simple solution:
If ν and γ are measures on the real line with distribution functions Fν and Fγ ,
respectively, then the transport problem ν = φ(γ) is obviously solved by

(2.9) φ := F−1
ν ◦ Fγ .

If γ is in particular Lebesgue measure, then φ = F−1
ν . Theorem 2.2 substitutes the

tail T for the distribution function Fν , since Fν is not well-defined for measures
whose mass is infinite in a neighborhood of 0.

In multiple dimensions, the transport problem becomes considerably more dif-
ficult, which affects the proof Theorem 2.2, since the sample space is Ωθ × R+

and hence at least two-dimensional. The strategy pursued in the proof is to fac-
tor out a one-dimensional problem on R+, by disintegrating µξ into the pair
(p, νξ(Ωθ, . )), where p is a conditional probability on Ωθ given S ∈ R+, and
νξ(Ωθ, . ) is a measure on R+. The transport problem is then solved only on
R+—without further assumptions on the structure of Ωθ, a general solution for p
is not feasible. Thus, ξr is sampled by sampling (Sk,Θk) from a Poisson process
with mean measure given by p(dθ, T−1(u))λR+(du), and only the weights Sk of
ξr are reduced to unit-rate sampling.

2.2. Representation on Euclidean space. If Ωθ is contained in Euclidean space,
it is possible to construct more elaborate couplings and extend the representation
in Theorem 2.2 to the variables Θk, thus fully reducing ξr to unit-rate Poisson
samples. We will assume here for simplicity that Ωθ = RD, although the approach
carries over immediately to the cone RD+ or to products of closed intervals.

To solve the transport problem on Ωθ, the disintegration approach used above
to separate Ωθ and R+ is now in turn applied repeatedly to p( . , s). Each appli-
cation separates off a one-dimensional component, to which (2.9) is applicable.
Formalizing this approach comes at the price of some rather cumbersome nota-
tion: Label the axes of RD as R(1),R(2), ..., and suppose that p has been obtained
by application of Theorem 2.2. For d = 1, . . . , D, denote by pd the marginal mea-
sure of p on the subspace Rd = R(1)× · · · ×R(d). Let qd be the probability kernel
obtained by disintegrating pd with respect to pd−1. That is,

(2.10) pd(dθ1 · · · dθd, s) = qd(dθd|θ1, . . . , θd−1, s)pd−1(dθ1 · · · dθd−1, s) .
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As above, let Fqd
(θd|θ1, . . . , θd−1, s) denote the cumulative distribution function

of the one-dimensional measure qd( . |θ1, . . . , θd−1, s).

Theorem 2.3 (Successive subspace sampling). Let ξ be a nice completely
random measure on Ωθ, and let T be defined as in (2.2). For unit-rate Poisson
samples

(2.11) (U1,W
(1)

k , . . . ,W (d)

k ) ∼ Π(λR+ ⊗ λD[0,1]) ,

define

(2.12) Sk := T−1(Uk) and Θ(d)

k := F−1
qd

(W (d)

k |Θ
(1)

k , . . . ,Θ
(d-1)

k , Sk) .

Then the purely random component ξr of ξ is distributed as

(2.13) ξr
d
=
∞∑
k=1

Skδ(Θ
(1)
k ,...,Θ

(D)
k )

.

This reduction to the one-dimensional solution (2.9) by successive disintegra-
tion is an example of a general approach to the determination of couplings on
Euclidean spaces, due originally to Rosenblatt [19].

Remark 2.4. In (2.5), the disintegration p is obtained as a family of densities.
It is not difficult to see that the relevant argument in the proof of Theorem
2.2 also applies to the disintegration in Theorem 2.3—with some considerable
simplifications, since pd always describes a probability measure. The probability
kernel qd in Theorem 2.3 can therefore be represented as densities

(2.14) qd(A|θ(1) . . . , θ(d-1), s) =
pd(dθ

(1) · · · dθ(d-1) ×A× ds)
pd(dθ(1) · · · dθ(d-1) × R(d) × ds)

,

in direct analogy to (2.5).

2.3. Representation on the line. If Ωθ is in particular an interval in R+, the
collection of functions F−1

qd
reduces to F−1

q1
(w|s) = (p([0, . ], s)−1)(w). Therefore,

nice completely random measures on the positive reals can be represented as
follows:

Corollary 2.5 (Ferguson and Klass [4]). Let ξ be a nice completely random
measure on Ωθ = R+ or Ωθ = [0, θmax], where θmax ∈ R+. Denote the inverse of
the distribution function θ 7→ p([0, θ], s) by

m : [0, 1]× R+ → Ωθ

(w, s) 7→ m(w, s) := (p([0, . ], s)−1)(w) .
(2.15)
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Then

(2.16) ξ( . ) = ξf ( . ) + ξr( . )
d
=
∑
i

Jiδθi( . ) +
∑
k

T−1(Uk)δm(Wk,T−1(Uk))( . )

where (Uk,Wk) ∼ Π(λ⊗ λ[0,1]) is a unit rate Poisson process on Ωθ × [0, 1].

In other words, the transport problem µ = φ(λ⊗ λ[0,1]) is in this case solved by

(2.17) φ(u,w) = (T−1(u),m(w, T−1(u))) .

Remark 2.6 (Distribution of ξf ). If the distribution ξr serves as a prior
distribution in a nonparametric Bayesian model, fixed atoms arise in the poste-
rior, where the locations θk in Theorem 2.2 correspond to observations or latent
observations. The distributions of the random variables Ji can then be derived
explicitly from νξ [17]. For Bayesian models with a conjugate posterior, the rep-
resentation of ξf can be absorbed into that of ξr, by adding a suitable atomic
measure to the Lévy measure νξ.

3. Examples.

3.1. The homogeneous case. In analogy to Lévy processes, a CRM is called

homogeneous if the measure νξ factorizes as νξ(dθ, ds) = H0(dθ)ν
(s)
ξ (ds). Conse-

quently, the conditional probability p of Θ in Theorem 2.2 becomes independent
of S, and hence p(A, s) = H0(A)/H0(Ωθ).

Example 1 (Gamma CRM). The gamma CRM is the completely random
measure given by

(3.1) νξ(dθ, ds) = s−1e−csdsH0(dθ) ,

for c > 0 and H0(dθ) a finite measure on Ωθ. The tail can therefore be represented
by means of the exponential integral E1 as

(3.2) T (s) = H0(Ωθ)E1(cs) .

Example 2 (Stable CRM). For α ∈ (0, 1), the CRM with Lévy measure

(3.3) νξ(dθ, ds) =
α

Γ(1− α)s1+α
dsH0(dθ) .

is called an α-stable CRM. The tail is given by

(3.4) T (s) = H0(Ωθ)(Γ(1− α)zα)−1 .
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3.2. An inhomogeneous case: Beta processes. The beta process, introduced
by Hjort [8], is a CRM with

(3.5) νξ(dθ, ds) = c(θ)s−1(1− s)c(θ)−1ds dH0(θ) ,

where H0 is a totally finite measure on Ωθ and the function c(θ) is assumed to
be non-negative and piecewise-continuous. In Bayesian nonparametric statistics,
the beta CRM is used as a prior over cumulative hazards, in which case the
corresponding distribution function is neutral-to-the-right. In this case, H0 is a
prior guess at the hazard function on R+ restricted to a subset Ωθ = [0, θmax)
that meets the finiteness constraint.

In general, evaluating the tail involves evaluating a degenerate incomplete beta
function, and cannot be done analytically. Wolpert and Ickstadt [24] describe and
approximate method for evaluating the degenerate incomplete beta function. For
certain choices of c and H0, p([0, θ], s) can be obtained analytically:

Example 3 (c(θ) = exp(−H0(θ))). Consider the beta CRM with c(θ) =
exp(−H0(θ)). Then

p([0, θ], s) =
1− s− (1− s)exp(−H0(θ))

1− s− (1− s)exp(−H0(θmax))
,

and we can obtain p([0, ·], s)−1(u) if H0 is invertible.

Another application of the beta process derives from the Indian buffet pro-
cess [6], a distribution over binary sequences used as a prior in nonparametric
latent feature models. These random sequences are exchangeable, and the mixing
measure in their de Finetti representation is a beta process which is given by
c(θ) = 1 and hence homogeneous [22].

Example 4 (c(θ) = 1). The Lévy measure reduces to νξ(dθ, ds) = ds
s dH0(θ),

and the tail function is

(3.6) T (s) = −H0(Ωθ) log(z) .

Let Ũ1 < Ũ2 < . . . be the ordered arrival times of a unit rate Poisson pro-
cess U ∼ Π(λ). The inter-arrival times Ũn+1 − Ũn are distributed according to
Expon(1), therefore exp{−Ũn+1 + Ũn} is distributed according to Uniform(0, 1)
and exp{(Ũn−Ũn+1)/H0(Ωθ)} is distributed according to Beta(α, 1). The strictly-
ordered atom sizes s1 > s2 > . . . of a beta CRM with c(θ) = 1 can therefore be
generated as

(3.7) sn =

n∏
i=1

bn with bn ∼ Beta(H0(Ωθ)) .
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Equation (3.7) is precisely the stick-breaking construction of the beta process
derived by Teh et al. [21].

4. Related work. The notion of a completely random measure, due to King-
man [15], and has been studied in a variety of contexts in Bayesian statistics (see
e.g. the recent surveys by Lijoi and Prünster [17] and by Jordan [11]).

On Ωθ = R+, the independence property ξ(A)⊥⊥ξ(A′) implies that the random
component of a completely random measure ξ is representable as a stochastic pro-
cess with independent increments. The random measure ξr is therefore equivalent
to a (possibly non-stationary) pure-jump Lévy process. In particular, the marginal
distribution of the jump sizes is infinitely divisible. Khintchine [14, Hauptsatz
III] shows that infinitely divisible laws admit representations of the form (2.16).
Ferguson and Klass [4] re-derive this result for the representation of pure-jump
Lévy processes on the interval, and additionally give an explicit transformation
equivalent to the solution of the transport problem on R+ as in Theorem 2.2.
The proof of Ferguson and Klass [4] implicitly assumes the marginal Lévy mea-
sure νξ(Ωθ, . ) to be σ-finite (cf. the Radon-Nikodym derivative defined on p.
1636 of [4]). Though their result carries over immediately to completely random
measures on the interval, the σ-finiteness assumption excludes some important
CRMs [16, Chapter 9.4]. Representations of the form (2.16), usually without ex-
plicit transformations, exist more generally for exchangeable increment processes
[12, Theorem 16.21], which is closely related to the fact that such processes can
be characterized as mixtures of Lévy processes [13, Theorem 1.19].

Kingman [16, Chapter 8.2] shows in detail how CRMs can represented as Pois-
son processes, and points out that these are indeed marked Poisson processes if
the measure νξ(Ωθ, . ) is σ-finite. Thus, the beta process of Hjort [8] is a marked
Poisson process; the gamma process is not. Motivated by applications in non-
parametric statistics, the beta process has recently received much attention in
statistics and computer science. Analogues of the stick-breaking construction of
the Dirichlet process have been derived for the beta process by Teh et al. [21]
(cf. Sec. 3), and more recently by Paisley et al. [18] and Broderick et al. [2], who
both emphasize the Poisson representation.

5. Proofs. Verifying the existence of the disintegration (p, νξ(Ωθ, . )) raises
some technical issues, since the measure νξ(Ωθ, . ) is not generally σ-finite. The
intuition is, once again, very simple: If νξ(Ωθ, . ) is σ-finite, p(A, . ) is given by the
density of νξ(A, . ) with respect to νξ(Ωθ, . ), and it is easy to see that p(∅, s) = 0,
that p(Ωθ, s) = 1, and that A 7→ p(A, s) is increasing in A. In the general case,
the analogous result is expressed by the following lemma.
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Lemma 5.1. Let ξ be a nice completely random measure on Ωθ whose Lévy
measure νξ satisfies νξ(Ωθ, (s,∞)) < ∞. Then there is a probability kernel p :
R+ →M(Ωθ) satisfying

(5.1) νξ(A, ds) = p(A, s)νξ(Ωθ, ds) for each A ∈ B(Ωθ) .

Each function s 7→ p(A, s) is uniquely determined up to a νξ(Ωθ, . )-null set.

The proof of Lemma 5.1 is more technical than instructive, and we defer it
until the end of this section and first proceed with proofs of the main results.

Proof of Theorem 2.2. Any Σ-finite CRM ξ without non-random compo-
nent can be represented by means of a Poisson process Π(µ) with mean measure
µ(A×B) = νξ(A,B). More precisely,

(5.2) ξ = ξf + ξr
d
=
∑
i

Jiδθi +
∑
k

SkδΘk
,

where θi are fixed atoms, the random variables Ji are mutually independent and
do not depend on ξr, and (Θk, Sk) follow a Poisson process Π(µ) [3, Theorem
10.1.III]. Since the existence of p and Theorem 2.2(ii) follow from Lemma 5.1,

what remains to be shown is that
∑
SkδΘk

d
=
∑
T−1(Uk)δVk .

To this end, consider first the measure νs( . ) := νξ(Ωθ, . ) on jump sizes. Since
ξ is Σ-finite, the tail T of νs is finite on (0,∞] [16]. It is straightforward to verify,
for Lebesgue measure λ on R+,

(5.3) λ(T ([a, b))) = νs[a, b)

for all 0 < a < b. Since the intervals [a, b) generate the Borel sets, (5.3) implies
T−1λ = νs, solving the one-dimensional transport problem.

Now consider the entire measure µ(A×B) = νξ(A,B). By construction,

(5.4) µ(A×B) =

∫
B
p(A, s)νs(ds) =

∫
B
p(A, s)[T−1λ](ds)

for all A ∈ B(R+). Therefore, p is the conditional probability

(5.5) p(A, s) = P [Θ ∈ A|S = s]

under the law of the Poisson process, and the proof is complete.

Theorem 2.3 is a direct consequence of the construction of disintegrations and
the representation of CRMs in Theorem 2.2. Corollary 2.5 then follows immedi-
ately as the special case D = 1.
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Proof of Theorem 2.3. Suppose Sk = sk and Θ(d)

k = θ(d)k are sampled as in
(2.12). By construction, each Θ(d)

k has distribution

(5.6) Law(Θ(d)

k ) = qd( . |θ(1)k , . . . , θ
(d-1)

k , sk) .

Since q1( . |sk) = p1( . |sk), we have

qD(dθ(D)|θ(1)k , . . . , θ
(D-1)

k , sk) · · · q2(dθ(2)|θ(1)k , sk)p1(dθ(1)k |sk) = p(dθ(1)k · · · dθ
(D)

k , sk)

and the joint law of Θk = (Θ(1)

k , . . . ,Θ
(D)

k ) is thus Law(Θk) = p( . , sk). An appli-
cation of Theorem 2.2 yields the representation (2.13) of ξr.

Both proofs above are contingent on Lemma 5.1, which remains to be es-
tablished. The proof uses the following result to address the problem that the
marginal measure νξ(Ωθ, . ) is not in general σ-finite.

Lemma 5.2 (Generalized Radon-Nikodym Theorem [5, 232E and 232B(b)]).
Let ν, ν ′ be measures on a measurable space (X ,A). There is a measurable func-
tion f : X → R+ satisfying ν(A) =

∫
A fdν

′ for all A ∈ A if and only if:

(i) ν is absolutely continuous with respect to ν ′.
(ii) For all A ∈ A with ν(A) > 0, there exists another set B ∈ A such that

ν ′(B) <∞ and ν(A ∩B) > 0.

In this case, f is uniquely determined ν ′-a.e.

If ν ′ is σ-finite, absolute continuity implies condition (ii), and the lemma re-
duces to the Radon-Nikodym theorem.

Proof of Lemma 5.1. For the proof, abbreviate µA := νξ(A, . ). We proceed
in two steps:
Step (1). We first show that, for every A ∈ B(Ωθ), there exists a measurable
function p(A, . ) : R+ → R+ which satisfies (5.1). By Lemma 5.2, this is the case
if the measures µA and νξ(Ωθ, . ) satisfy conditions (i) and (ii) of Lemma 5.2. Ab-
solute continuity clearly holds since νξ(A,D) ≤ νξ(R+, D) for every D ∈ B(R+)
by construction. To verify condition (ii), observe that (2.5) implies µA(ε,∞) <∞
for all ε > 0. The obvious strategy is therefore to show that (ii) is satisfied for a
set B of the form B = (ε,∞). To this end, let µA = µ‖A +µ⊥A the decomposition of
µA into its purely atomic component µ⊥A and the atomless measure µ‖A = µA−µ⊥A.
Suppose µA(D) > 0 as in (ii). We distinguish two cases:

Case 1 : µ‖A(D) > 0. Since µ‖A is atomless, any set with µ‖A(D) > 0 has a
subset D1 with µ‖A(D1) > 0 and µ‖A(D rD1) > 0. In particular, since D ⊂ R+,
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there exists ε > 0 such that µ‖A(D ∩ [0, ε]) > 0 and µA(D ∩ (ε,∞)) > 0. Hence,
B := (ε,∞) satisfies condition (2) for any D.

Case 2 : µ‖A(D) = 0, which implies µ⊥A(D) > 0. Since {0} is by assumption not
an atom, D contains an atom {c} of µ⊥A with c > 0. Hence, B = (c/2,∞) satisfies
µ⊥A(D ∩B) ≥ µ⊥A({c}) > 0.
Step (2). What remains to be shown is that the separate functions p(A, . ) for
each A can be assembled into a probability kernel, i.e. we need to know that
s 7→ p(A, s) is measurable and A 7→ p(A, s) is a measure for every s ∈ R+. Mea-
surability follows from Lemma 5.2. To establish σ-additivity of p( . , s), suppose
that (An) is a sequence of disjoint sets in B(Ωθ) with A := ∪An. By σ-additivity
of νξ,

(5.7)

∫
B
p(∪An, s)νξ(Ωθ, ds) =

∞∑
n=1

νξ(An, B) =

∞∑
n=1

∫
B
p(An, s)νξ(Ωθ, ds) .

Since s 7→ p(An, s) are measurable functions with values in [0,+∞], we have [1,
Corollary 11.5]

(5.8)
∞∑
n=1

∫
B
p(An, s)νξ(Ωθ, ds) =

∫
B

( ∞∑
n=1

p(An, s)
)
νξ(Ωθ, ds) ,

which by a.e.-uniqueness implies p(A, s) =a.e.

∑
p(An, s). Moreover,

(5.9) 0 = νξ(∅, B) =

∫
B
p(∅, s)νξ(Ωθ, ds)

for all B ∈ B(R+) implies p(∅, s) = 0 for almost all s. Thus, there is a version of
p such that A 7→ p(A, s) is a probability measure for all s.
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