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Abstract

We consider the general problem of constructing nonparametric Bayesian models on
infinite-dimensional random objects, such as functions, infinite graphs or infinite permu-
tations. The problem has generated much interest in machine learning, where it is treated
heuristically, but has not been studied in full generality in nonparametric Bayesian statis-
tics, which tends to focus on models over probability distributions. Our approach applies
a standard tool of stochastic process theory, the construction of stochastic processes from
their finite-dimensional marginal distributions. The main contribution of the paper is a gen-
eralization of the classic Kolmogorov extension theorem to conditional probabilities. This
extension allows a rigorous construction of nonparametric Bayesian models from systems of
finite-dimensional, parametric Bayes equations. Using this approach, we show (i) how exis-
tence of a conjugate posterior for the nonparametric model can be guaranteed by choosing
conjugate finite-dimensional models in the construction, (ii) how the mapping to the poste-
rior parameters of the nonparametric model can be explicitly determined, and (iii) that the
construction of conjugate models in essence requires the finite-dimensional models to be in
the exponential family. As an application of our constructive framework, we derive a model
on infinite permutations, the nonparametric Bayesian analogue of a model recently proposed
for the analysis of rank data.

1 Introduction

Nonparametric Bayesian models are now widely used in machine learning. Common models, in
particular the Gaussian process (GP) and the Dirichlet process (DP), were originally imported
from statistics, but the nonparametric Bayesian idea has since been adapted to the needs of
machine learning. As a result, the scope of Bayesian nonparametrics has expanded significantly:
Whereas traditional nonparametric Bayesian statistics mostly focuses on models on probability
distributions, machine learning researchers are interested in a variety of infinite-dimensional
objects, such as functions, kernels, or infinite graphs. Initially, existing DP and GP approaches
were modified and combined to derive new models, including the Infinite Hidden Markov Model
[2] or the Hierarchical Dirichlet Process [15]. More recently, novel stochastic process models have
been defined from scratch, such as the Indian Buffet Process (IBP) [8] and the Mondrian Process
[13]. This paper studies the construction of new nonparametric Bayesian models from finite-
dimensional distributions: To construct a model on a given type of infinite-dimensional object
(for example, an infinite graph), we start out from available probability models on the finite-
dimensional counterparts (probability models on finite graphs), and translate them into a model
on infinite-dimensional objects using methods of stochastic process theory. We then ask whether
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interesting statistical properties of the finite-dimensional models used in the constructions, such
as conjugacy of priors and posteriors, carry over to the stochastic process model.

In general, the term nonparametric Bayesian model refers to a Bayesian model on an infinite-
dimensional parameter space. Unlike parametric models, for which the number of parameters
is constantly bounded w.r.t. sample size, nonparametric models allow the number of parame-
ters to grow with the number of observations. To accommodate a variable and asymptotically
unbounded number of parameters within a single parameter space, the dimension of the space
has to be infinite, and nonparametric models can be defined as statistical models with infinite-
dimensional parameter spaces [17]. For a given sample of finite size, the model will typically
select a finite subset of the available parameters to explain the observations. A Bayesian non-
parametric model places a prior distribution on the infinite-dimensional parameter space.

Many nonparametric Bayesian models are defined in terms of their finite-dimensional marginals:
For example, the Gaussian process and Dirichlet process are characterized by the fact that their
finite-dimensional marginals are, respectively, Gaussian and Dirichlet distributions [11, 5]. The
probability-theoretic construction result underlying such definitions is the Kolmogorov exten-
sion theorem [1], described in Sec. 2 below. In stochastic process theory, the theorem is used to
study the properties of a process in terms of its marginals, and hence by studying the properties
of finite-dimensional distributions. Can the statistical properties of a nonparametric Bayesian
model, i.e. of a parameterized family of distributions, be treated in a similar manner, by consid-
ering the model’s marginals? For example, can a nonparametric Bayesian model be guaranteed
to be conjugate if the marginals used in its construction are conjugate? Techniques such as the
Kolmogorov theorem construct individual distributions, whereas statistical properties are prop-
erties of parameterized families of distributions. In Bayesian estimation, such families take the
form of conditional probabilities. The treatment of the statistical properties of nonparametric
Bayesian models in terms of finite-dimensional Bayes equations therefore requires an extension
result similar to the Kolmogorov theorem that is applicable to conditional distributions. The
main contribution of this paper is to provide such a result.

We present an analogue of the Kolmogorov theorem for conditional probabilities, which per-
mits the direct construction of conditional stochastic process models on countable-dimensional
spaces from finite-dimensional conditional probabilities. Application to conjugate models shows
how a conjugate nonparametric Bayesian model can be constructed from conjugate finite-
dimensional Bayes equations – including the mapping to the posterior parameters. The converse
is also true: To construct a conjugate nonparametric Bayesian model, the finite-dimensional
models used in the construction all have to be conjugate. The construction of stochastic process
models from exponential family marginals is almost generic: The model is completely described
by the mapping to the posterior parameters, which has a generic form as a function of the
infinite-dimensional counterpart of the model’s sufficient statistic. We discuss how existing
models fit into the framework, and derive the nonparametric Bayesian version of a model on
infinite permutations suggested by [9]. By essentially providing a construction recipe for conju-
gate models of countable dimension, our theoretical results have clear practical implications for
the derivation of novel nonparametric Bayesian models.
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2 Formal Setup and Notation

Infinite-dimensional probability models cannot generally be described with densities and there-
fore require some basic notions of measure-theoretic probability. In this paper, required concepts
will be measures on product spaces and abstract conditional probabilities (see e.g. [3] or [1]
for general introductions). Randomness is described by means of an abstract probability space
(Ω,A,P). Here, Ω is a space of points ω, which represent atomic random events, A is a σ-algebra
of events on Ω, and P a probability measure defined on the σ-algebra. A random variable is
a measurable mapping from Ω into some space of observed values, such as X : Ω → Ωx. The
distribution of X is the image measure PX := X(P) = P ◦X−1. Roughly speaking, the events
ω ∈ Ω represent abstract states of nature, i.e. knowing the value of ω completely describes all
probabilistic aspects of the model universe, and all random aspects are described by the prob-
ability measure P. However, Ω, A and P are never known explicitly, but rather constitute the
modeling assumption that any explicitly known distribution PX is derived from one and the
same probability measure P through some random variable X.

Multiple dimensions of random variables are formalized by product spaces. We will generally
deal with an infinite-dimensional space such as ΩE

x, were E is an infinite index set and ΩE
x is the

E-fold product of Ωx with itself. The set of finite subsets of E will be denoted F(E), such that ΩI
x

with I ∈ F(E) is a finite-dimensional subspace of ΩE
x. Each product space ΩI

x is equipped with
the product Borel σ-algebra BI

x. Random variables with values on these spaces have product
structure, such as X I =

⊗
i∈I X

{i}. Note that this does not imply that the corresponding
measure P I

X := X I(P) is a product measure; the individual components of X I may be dependent.
The elements of the infinite-dimensional product space ΩE

x can be thought of as functions of the
form E → Ωx. For example, the space RR contains all real-valued functions on the line.

Product spaces ΩI
x ⊂ ΩJ

x of different dimensions are linked by a projection operator πJI, which
restricts a vector xJ ∈ ΩJ

x to xI, the subset of entries of xJ that are indexed by I ⊂ J . For a
set AI ⊂ ΩI

x, the preimage π-1
JIA

I under projection is called a cylinder set with base AI. The
projection operator can be applied to measures as [πJIP

J
X] := P J

X ◦ π-1
JI, so for an I-dimensional

event AI ∈ BI
x, we have [πJIP

J
X](AI) = P J

X(π-1
JIA

I). In other words, a probability is assigned to the
I-dimensional set AI by applying the J-dimensional measure P J

X to the cylinder with base AI.
The projection of a measure is just its marginal, that is, [πJIP

J
X] is the marginal of the measure

P J
X on the lower-dimensional subspace ΩI

x.
We denote observation variables (data) by X I, parameters by ΘI and hyperparameters by

ΨI. The corresponding measures and spaces are indexed accordingly, as PX, PΘ, Ωθ etc. The
likelihoods and posteriors that occur in Bayesian estimation are conditional probability distribu-
tions. Since densities are not generally applicable in infinite-dimensional spaces, the formulation
of Bayesian models on such spaces draws on the abstract conditional probabilities of measure-
theoretic probability, which are derived from Kolmogorov’s implicit formulation of conditional
expectations [3]. We will write e.g. PX(X|Θ) for the conditional probability of X given Θ. For
the reader familiar with the theory, we note that all spaces considered here are Borel spaces, such
that regular versions of conditionals always exist, and we hence assume all conditionals to be reg-
ular conditional probabilities (Markov kernels). Introducing abstract conditional probabilities
here is far beyond the possible scope of this paper. A reader not familiar with the theory should
simply read PX(X|Θ) as a conditional distribution, but take into account that these abstract
objects are only uniquely defined almost everywhere. That is, the probability PX(X|Θ = θ) can
be changed arbitrarily for those values of θ within some set of exceptions, provided that this
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set has measure zero. While not essential for understanding most of our results, this fact is the
principal reason that limits the results to countable dimensions.
Example: GP. Assume that P E

X (XE|ΘE) is to represent a Gaussian process with fixed covari-
ance function. Then XE is function-valued, and if for example E := R+ and Ωx := R, the
product space ΩE

x = RR+ contains all functions xE of the form xE : R+ → R. Each axis label
i ∈ E in the product space is a point on the real line, and a finite index set I ∈ F(E) is a
finite collection of points I = (i1, . . . , im). The projection πEIx

E of a function in ΩE
x is then the

vector xI := (xE(i1), . . . , xE(im)) of function values at the points in I. The parameter variable
ΘE represents the mean function of the process, and so we would choose ΩE

θ := ΩE
x = RR+ .

Example: DP. If P E
X (XE|ΘE) is a Dirichlet process, the variable XE takes values xE in the set

of probability measures over a given domain, such as R. A probability measure on R (with its
Borel algebra B(R)) is in particular a set function B(R)→ [0, 1], so we could choose E = B(R)
and Ωx = [0, 1]. The parameters of a Dirichlet process DP(α,G0) are a scalar concentration
parameter α ∈ R+, and a probability measure G0 with the same domain as the randomly drawn
measure xE. The parameter space would therefore be chosen as R+ × [0, 1]B(R).

2.1 Construction of Stochastic Processes from their Marginals

Suppose that a family P I
X of probability measures are the finite-dimensional marginals of an

infinite-dimensional measure P E
X (a “stochastic process”). Each measure P I

X lives on the finite-
dimensional subspace ΩI

x of ΩE
x. As marginals of one and the same measure, the measures must

be marginals of each other as well:

P I
X = P J

X ◦ π-1
JI whenever I ⊂ J . (1)

Any family of probability measures satisfying (1) is called a projective family. The marginals
of a stochastic process measure are always projective. A famous theorem by Kolmogorov states
that the converse is also true: Any projective family on the finite-dimensional subspaces of an
infinite-dimensional product space ΩE

x uniquely defines a stochastic process on the space ΩE
x [1].

The only assumption required is that the “axes” Ωx of the product space are so-called Polish
spaces, i.e. topological spaces that are complete, separable and metrizable. Examples include
Euclidean spaces, separable Banach or Hilbert spaces, countable discrete spaces, and countable
products of spaces that are themselves Polish.

Theorem 1 (Kolmogorov Extension Theorem). Let E be an arbitrary infinite set. Let Ωx be a
Polish space, and let {P I

X|I ∈ F(E)} be a family of probability measures on the spaces (ΩI
x,BI

x).
If the family is projective, there exists a uniquely defined probability measure P E

X on ΩE
x with the

measures P I
X as its marginals.

The infinite-dimensional measure P E
X constructed in Theorem 1 is called the projective limit

of the family P I
X. Intuitively, the theorem is a regularity result: The marginals determine the

values of P E
X on a subset of events (namely on those events involving only a finite subset of the

random variables, which are just the cylinder sets with finite-dimensional base). The theorem
then states that a probability measure is such a regular object that knowledge of these values
determines the measure completely, in a similar manner as continuous functions on the line
are completely determined by their values on a countable dense subset. The statement of the
Kolmogorov theorem is deceptive in its generality: It holds for any index set E, but if E is
not countable, the constructed measure P E

X is essentially useless – even though the theorem
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still holds, and the measure is still uniquely defined. The problem is that the measure P E
X ,

as a set function, is not defined on the space ΩE
x, but on the σ-algebra BE

x (the product σ-
algebra on ΩE

x). If E is uncountable, this σ-algebra is too coarse to resolve events of interest1.
In particular, it does not contain the singletons (one-point sets), such that the measure P E

X is
incapable of assigning a probability to an event of the form {XE = xE}.

3 Extension of Conditional and Bayesian Models

According to the Kolmogorov extension theorem, the properties of a stochastic process can
be analyzed by studying its marginals. Can we, analogously, use a set of finite-dimensional
Bayes equations to represent a nonparametric Bayesian model? The components of a Bayesian
model are conditional distributions. Even though these conditionals are probability measures for
(almost) each value of the condition variable, the Kolmogorov theorem cannot simply be applied
to extend conditional models: Conditional probabilities are functions of two arguments, and have
to satisfy a measurability requirement in the second argument (the condition). Application of the
extension theorem to each value of the condition need not yield a proper conditional distribution
on the infinite-dimensional space, as it disregards the properties of the second argument. But
since the second argument takes the role of a parameter in statistical estimation, these properties
determine the statistical properties of the model, such as sufficiency, identifiability, or conjugacy.
In order to analyze the properties of an infinite-dimensional Bayesian model in terms of finite-
dimensional marginals, we need a theorem that establishes a correspondence between the finite-
dimensional and infinite-dimensional conditional distributions. Though a number of extension
theorems based on conditional distributions is available in the literature, these results focus on
the construction of sequential stochastic processes from a sequence of conditionals (see [10] for an
overview). Theorem 2 below provides a result that, like the Kolmogorov theorem, is applicable
on product spaces.

To formulate the result, the projector used to define the marginals has to be generalized
from measures to conditionals. The natural way to do so is the following: If P J

X(XJ|ΘJ) is a
conditional probability on the product space ΩJ, and I ⊂ J , define

[πJIP
J
X]( . |ΘJ) := P J

X(π-1
JI . |ΘJ) . (2)

This definition is consistent with that of the projector above, in the sense that it coincides
with the standard projector applied to the measure P J

X( . |ΘJ = θJ) for any fixed value θJ of
the parameter. As with projective families of measures, we then define projective families of
conditional probabilities.

Definition 1 (Conditionally Projective Probability Models). Let P I
X(X I|ΘI) be a family of

regular conditional probabilities on product spaces ΩI
x, for all I ∈ F(E). The family will be

called conditionally projective if [πJIP
J
X]( . |ΘJ) =a.e. P

I
X( . |ΘI) whenever I ⊂ J .

As conditional probabilities are unique almost everywhere, the equality is only required
to hold almost everywhere as well. In the jargon of abstract conditional probabilities, the
definition requires that P I

X( . |ΘI) is a version of the projection of P J
X( . |ΘJ). Theorem 2 states

1This problem is unfortunately often neglected in the statistics literature, and measures in uncountable di-
mensions are “constructed” by means of the extension theorem (such as in the original paper [5] on the Dirichlet
process). See e.g. [1] for theoretical background, and [7] for a rigorous construction of the DP.
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that a conditional probability on a countably-dimensional product space is uniquely defined (up
to a.e.-equivalence) by a conditionally projective family of marginals. In particular, if we can
define a parametric model on each finite-dimensional space ΩI

x for I ∈ F(E) such that these
models are conditionally projective, the models determine an infinite-dimensional parametric
model (a “nonparametric” model) on the overall space ΩE

x.

Theorem 2 (Extension of Conditional Probabilities). Let E be a countable index set. Let
P I

X(X I|ΘI) be a family of regular conditional probabilities on the product space ΩI
x. Then if the

family is conditionally projective, there exists a regular conditional probability P E
X (XE|CE) on the

infinite-dimensional space ΩE
x with the P I

X(X I|ΘI) as its conditional marginals. P E
X (XE|CE) is

measurable with respect to the σ-algebra CE := σ(∪I∈F(E)σ(ΘI)). In particular, if the parameter
variables satisfy πJIΘJ = ΘI, then P E

X (XE|CE) can be interpreted as the conditional probability
P E

X (XE|ΘE) with ΘE :=
⊗

i∈E Θ{i}.

Proof Sketch2. We first apply the Kolmogorov theorem separately for each setting of the param-
eters that makes the measures P I

X(X I|ΘI = θI) projective. For any given ω ∈ Ω (the abstract
probability space), projectiveness holds if θI = ΘI(ω) for all I ∈ F(E). However, for any condi-
tionally projective family, there is a set N ⊂ Ω of possible exceptions (for which projectiveness
need not hold), due to the fact that conditional probabilities and conditional projections are
only unique almost everywhere. Using the countability of the dimension set E, we can argue
that N is always a null set; the resulting set of constructed infinite-dimensional measures is still
a valid candidate for a regular conditional probability. We then show that if this set of measures
is assembled into a function of the parameter, it satisfies the measurability conditions of a reg-
ular conditional probability: We first use the properties of the marginals to show measurability
on the subset of events which are preimages under projection of finite-dimensional events (the
cylinder sets), and then use the π-λ theorem [3] to extend measurability to all events.

4 Conjugacy

The posterior of a Dirichlet process is again a Dirichlet process, and the posterior parameters
can be computed as a function of the data and the prior parameters. This property is known as
conjugacy, in analogy to conjugacy in parametric Bayesian models, and makes Dirichlet process
inference tractable. Virtually all known nonparametric Bayesian models, including Gaussian
processes, Pólya trees, and neutral-to-the-right processes are conjugate [16]. In the Bayesian
and exponential family literature, conjugacy is often defined as “closure under sampling”, i.e.
for a given likelihood and a given class of priors, the posterior is again an element of the prior
class [12]. This definition does not imply tractability of the posterior: In particular, the set of
all probability measures (used as priors) is conjugate for any possible likelihood, but obviously
this does not facilitate computation of the posterior. In the following, we call a prior and a
likelihood of a Bayesian model conjugate if the posterior (i) is parameterized and (ii) there is a
measurable mapping T from the data x and the prior parameter ψ to the parameter ψ′ = T (x, ψ)
which specifies the corresponding posterior. In the definition below, the conditional probability k
represents the parametric form of the posterior. The definition is applicable to “nonparametric”
models, in which case the parameter simply becomes infinite-dimensional.

2Complete proofs for both theorems in this paper are provided as supplementary material.
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Definition 2 (Conjugacy and Posterior Index). Let PX(X|Θ) and PΘ(Θ|Ψ) be regular con-
ditional probabilities. Let PΘ(Θ|X,Ψ) be the posterior of the model PX(X|Θ) under prior
PΘ(Θ|Ψ). Model and prior are called conjugate if there exists a regular conditional probability
k : Bθ×Ωt → [0, 1], parameterized on a measurable Polish space (Ωt,Bt), and a measurable map
T : Ωx × Ωψ → Ωt, such that

PΘ(A|X = x,Ψ = ψ) = k(A, T (x, ψ)) for all A ∈ Bθ . (3)

The mapping T is called the posterior index of the model.

The definition becomes trivial for Ωt = Ωx × Ωψ and T chosen as the identity mapping;
it is meaningful if T is reasonably simple to evaluate, and its complexity does not increase
with sample size. Theorem 3 below shows that, under suitable conditions, the structure of the
posterior index carries over to the projective limit model: If the finite-dimensional marginals
admit a tractable posterior index, then so does the projective limit model.
Example. (Posterior Indices in Exponential Families) Suppose that PX(X|Θ) is an exponential
family model with sufficient statistic S and density p(x|θ) = exp(〈S(x), θ〉−γ(x)−φ(θ)). Choose
PΘ(Θ|Ψ) as the “natural conjugate prior” with parameters ψ = (α, y). Its density, w.r.t. a
suitable measure νΘ on parameter space, is of the form q(θ|α, y) = K(α, y)−1 exp(〈θ, y〉−αφ(θ)).
The posterior PΘ(Θ|X,Ψ) is conjugate in the sense of Def. 2, and its density is q(θ|α+1, y+S(x)).
The probability kernel k is given by k(A, (t1, t2)) :=

∫
A q(θ|t1, t2)dνΘ(θ), and the posterior index

is T (x, (α, y)) := (α+ 1, y + S(x)).
The main result of this section is Theorem 3, which explains how conjugacy carries over from

the finite-dimensional to the infinite-dimensional case, and vice versa. Both extension theorems
discussed so far require a projection condition on the measures and models involved. A similar
condition is now required for the mappings T I: The preimages T I,-1 of the posterior indices T I

must commute with the preimage under projection,

(πEI ◦ T E)-1 = (T I ◦ πEI)-1 for all I ∈ F(E) . (4)

The posterior indices of all well-known exponential family models, such as Gaussians and Dirich-
lets, satisfy this condition. The following theorem states that (i) stochastic process Bayesian
models that are constructed from conjugate marginals are conjugate if the projection equation
(4) is satisfied, and that (ii) such conjugate models can only be constructed from conjugate
marginals.

Theorem 3 (Functional Conjugacy of Projective Limit Models). Let E be a countable index
set and ΩE

x and ΩE
θ be Polish product spaces. Assume that there is a Bayesian model on each

finite-dimensional subspace ΩI
x, such that the families of all priors, all observation models and

all posteriors are conditionally projective. Let P E
Θ(ΘE), P E

X (XE|ΘE) and P E
Θ(ΘE|XE) denote the

respective projective limits. Then P E
Θ(ΘE|XE) is a posterior for the infinite-dimensional Bayesian

model defined by P E
X (XE|ΘE) with prior P E

Θ(ΘE), and the following holds:

(i) Assume that each finite-dimensional posterior P I
Θ(ΘI|X I) is conjugate w.r.t. its respective

Bayesian model, with posterior index T I and probability kernel kI. Then if there is a
measurable mapping T : ΩE

x → ΩE
t satisfying the projection condition (4), the projective

limit posterior P E
Θ(ΘE|XE) is conjugate with posterior index T .
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(ii) Conversely, if the infinite-dimensional posterior P E
Θ(ΘE|XE) is conjugate with posterior

index T E and probability kernel kE, then each marginal posterior P I
Θ(ΘI|X I) is conjugate,

with posterior index T I := πEI ◦T E ◦π-1
EI. The corresponding probability kernels kI are given

by
kI(AI, tI) := kE(π-1

EIA
I, t) for any t ∈ π-1

EIt
I . (5)

The theorem is not stated here in full generality, but under two simplifying assumptions: We
have omitted the use of hyperparameters, such that the posterior indices depend only on the
data, and all involved spaces (observation space, parameter space etc) are assumed to have the
same dimension for each Bayesian model. Generalizing the theorem beyond both assumptions
is technically not difficult, but the additional parameters and notation for book-keeping on
dimensions reduce readability.

Proof Sketch2. Part (i): We define a candidate for the probability kernel kE representing the
projective limit posterior, and then verify that it makes the model conjugate when combined with
the mapping T given by assumption. To do so, we first construct the conditional probabilities
P I

Θ(ΘI|T I), show that they form a conditionally projective family, and take their conditional
projective limit using Theorem 2. This projective limit is used as a candidate for kE. To show
that kE indeed represents the posterior, we show that the two coincide on the cylinder sets
(events which are preimages under projection of finite-dimensional events). From this, equality
for all events follows by the Caratheodory theorem [1].
Part (ii): We only have to verify that the mappings T I and probability kernels kI indeed satisfy
the definition of conjugacy, which is a straightforward computation.

5 Construction of Nonparametric Bayesian Models

Theorem 3(ii) states that conjugate models have conjugate marginals. Since, in the finite-
dimensional case, conjugate Bayesian models are essentially limited to exponential families and
their natural conjugate priors3, a consequence of the theorem is that we can only expect a
nonparametric Bayesian model to be conjugate if it is constructed from exponential family
marginals – assuming that the construction is based on a product space approach.

When an exponential family model and its conjugate prior are used in the construction, the
form of the resulting model becomes generic: The posterior index T of a conjugate exponential
family Bayesian model is always given by the sufficient statistic S in the form T (x, (α, y)) :=
(α + 1, y + S(x)). Addition commutes with projection, and hence the posterior indices T I of a
family of such models over all dimensions I ∈ F(E) satisfy the projection condition (4) if and
only if the same condition is satisfied by the sufficient statistics SI of the marginals. Accordingly,
the infinite-dimensional posterior index T E in Theorem 3 exists if and only if there is an infinite-
dimensional “extension” SE of the sufficient statistics SI satisfying (4). If that is the case,
T E(xE, (α, yE)) := (α+1, yE +SE(xE)) is a posterior index for the infinite-dimensional projective
limit model. In the case of countable dimensions, Theorem 3 therefore implies a construction
recipe for nonparametric Bayesian models from exponential family marginals; constructing the
model boils down to checking whether the models selected as finite-dimensional marginals are

3Mixtures of conjugate priors are conjugate in the sense of closure under sampling [4], but the posterior index
in Def. 2 has to be evaluated for each mixture component individually. An example of a conjugate model not in
the exponential family is the uniform distribution on [0, θ] with a Pareto prior [12].
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conditionally projective, and whether the sufficient statistics satisfy the projection condition.
An example construction, for a model on infinite permutations, is given in below. The following
table summarizes some stochastic process models from the conjugate extension point of view:

Marginals (d-dim) Projective limit model Observations (limit)
Bernoulli/Beta Beta process; IBP Binary arrays

Multin./Dirichlet DP; CRP Discrete distributions
Gaussian/Gaussian GP/GP (continuous) functions
Mallows/conjugate Example below Bijections N→ N

A Construction Example. The analysis of preference data, in which preferences are rep-
resented as permutations, has motivated the definition of distributions on permutations of an
infinite number of items [9]. A finite permutation on r items always implies a question such
as “rank your favorite movies out of r movies”. A nonparametric approach can generalize the
question to “rank your favorite movies”. Meila and Bao [9] derived a model on infinite permu-
tations, that is, on bijections of the set N. We construct a nonparametric Bayesian model on
bijections, with a likelihood component P E

X (XE|ΘE) equivalent to the model of Meila and Bao.
Choice of marginals. The finite-dimensional marginals are probability models of rankings of a
finite number of items, introduced by Fligner and Verducci [6]. For permutations τ ∈ Sr of length
r, the model is defined by the exponential family density p(τ |σ, θ) := Z(θ)−1 exp(

〈
S(τσ−1), θ

〉
),

where the sufficient statistic is the vector Sr(τ) := (S1(τ), . . . , Sr(τ)) with components Sj(τ) :=∑r
l=j+1 I{τ−1(j) > τ−1(l)}. Roughly speaking, the model is a location-scale model, and the

permutation σ defines the distribution’s mean. If all entries of θ are chosen identical as some
constant, this constant acts as a concentration parameter, and the scalar product is equivalent
to the Kendall metric on permutations. This metric measures distance between permutations
as the minimum number of adjacent transpositions (i.e. swaps of neighboring entries) required
to transform one permutation into the other. If the entries of θ differ, they can be regarded as
weights specifying the relevance of each position in the ranking [6].
Definition of marginals. In the product space context, each finite set I ∈ F(E) of axis labels is a
set of items to be permuted, and the marginal P I

Θ(τ I|σI, θI) is a model on the corresponding finite
permutation group SI on the elements of I. The sufficient statistics SI maps each permutation
to a vector of integers, and thus embeds the group SI into RI. The mapping is one-to-one
[6]. Projections, i.e. restrictions, on the group mean deletion of elements. A permutation τ J

is restricted to a subset I ⊂ J of indices by deleting all items indexed by J \ I, producing
the restriction τ J|I. We overload notation and write πJI for both the restriction in the group
SI and axes-parallel projection in the Euclidean space RI, into which the sufficient statistic SI

embeds SI. It follows from the definition of SI that, whenever πJIτ
J = τ I, then πJIS

J(τ J) =
SI(τ I). In other words, πJI ◦ SJ = SI ◦ πJI, which is a stronger form of the projection condition
SJ,-1 ◦ π-1

JI = π-1
JI ◦ SI,-1 given in Eq. 4. We will define a nonparametric Bayesian model that

puts a prior on the infinite-dimensional analogue of θ, i.e. on the weight function θE. For
I ∈ F(N), the marginal of the likelihood component is given by the density pI(τ I|σI, θI) :=
ZI(θI)−1 exp(

〈
SI(τ I(σI)−1), θI

〉
). The corresponding natural conjugate prior on θI has density

qI(θI|α, yI) ∝ exp(〈θI, yI〉 − α logZI(θI)). Since the model is an exponential family model, the
posterior index is of the form T I((α, yI), τ I) = (α+1, yI +SI(τ I)), and since SI is projective in the
sense of Eq. 4, so is T I. The prior and likelihood densities above define two families P I(X I|ΘI)
and P I(ΘI|Ψ) of measures over all finite dimensions I ∈ F(E). It is reasonably straightforward
to show that both families are conditionally projective, and so is the family of the corresponding

9



Draft

posteriors. Each therefore has a projective limit, and the projective limit of the posteriors is the
posterior of the projective limit P E(XE|ΘE) under prior P E(ΘE).
Posterior index. The posterior index of the infinite-dimensional model can be derived by means
of Theorem 3: To get rid of the hyperparameters, we first fix a value ψE := (α, yE) of the
infinite-dimensional hyperparameter, and only consider the corresponding infinite-dimensional
prior P E

Θ(ΘE|ΨE = ψE), with its marginals P I
Θ(ΘI|ΨI = πEIψ

E). Now define a function SE

on the bijections of N as follows. For each bijection τ : N → N, and each j ∈ N, set SE
j (τ) :=∑∞

l=j+1 I{τ−1(j) > τ−1(l)}. Since τ−1(j) is a finite number for any j ∈ N, the indicator function
is non-zero only for a finite number of indices l, such that the entries of SE are always finite.
Then SE satisfies the projection condition SE,-1 ◦ π-1

EI = π-1
EIS

I,-1 for all I ∈ F(E). As candidate
posterior index, we define the function T E((α, yE), τE) = (α+ 1, yE +SE(τE)) for yE ∈ ΩN

θ . Then
T E also satisfies the projection condition (4) for any I ∈ F(E). By Theorem 3, this makes T E

a posterior index for the projective limit model.

6 Discussion and Conclusion

We have shown how nonparametric Bayesian models can be constructed from finite-dimensional
Bayes equations, and how conjugacy properties of the finite-dimensional models carry over to the
infinite-dimensional, nonparametric case. We also have argued that conjugate nonparametric
Bayesian models arise from exponential families.

A number of interesting questions could not be addressed within the scope of this paper,
including (1) the extension to model properties other than conjugacy and (2) the generalization
to uncountable dimensions. For example, a model property which is closely related to conjugacy
is sufficiency [14]. In this case, we would ask whether the existence of sufficient statistics for the
finite-dimensional marginals implies the existence of a sufficient statistic for the nonparametric
Bayesian model, and whether the infinite-dimensional sufficient statistic can be explicitly con-
structed. Second, the results presented here are restricted to the case of countable dimensions.
This restriction is inconvenient, since the natural product space representations of, for example,
Gaussian and Dirichlet processes on the real line have uncountable dimensions. The GP (on
continuous functions) and the DP are within the scope of our results, as both can be derived
by means of countable-dimensional surrogate constructions: Since continuous functions on R
are completely determined by their values on Q, a GP can be constructed on the countable-
dimensional product space RQ. Analogous constructions have been proposed for the DP [7]. The
drawback of this approach is that the actual random draw is just a partial version of the object
of interest, and formally has to be completed e.g. into a continuous function or a probability
measure after it is sampled. On the other hand, uncountable product space constructions are
subject to all the subtleties of stochastic process theory, many of which do not occur in countable
dimensions. The application of construction methods to conditional probabilities also becomes
more complicated (roughly speaking, the point-wise application of the Kolmogorov theorem in
the proof of Theorem 2 is not possible if the dimension is uncountable).

Product space constructions are by far not the only way to define nonparametric Bayesian
models. A Pólya tree model [7], for example, is much more intuitive to construct by means of
a binary partition argument than from marginals in product space. As far as characterization
results, such as which models can be conjugate, are concerned, our results are still applicable,
since the set of Polyá trees can be embedded into a product space. However, the marginals may

10
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then not be the marginals in terms of which we “naturally” think about the model. Nonetheless,
we have hopefully demonstrated that the theoretical results are applicable for the construction
of an interesting and practical range of nonparametric Bayesian models.

Acknowledgments. I am grateful to Joachim M. Buhmann, Zoubin Ghaharamani, Finale
Doshi-Velez and the NIPS 2009 reviewers for helpful comments. This work was in part supported
by EPSRC grant EP/F028628/1.

A Proof of Theorem 2

Construction of the projective limit: In the following, we have to explicitly treat the conditional
P I

X(X I|ΘI) as the function P I
X(A|ΘI)(ω) for A ∈ BI

x and ω ∈ Ω. As a function of ω, the conditional
is measurable w.r.t. the σ-algebra σ(ΘI). As a regular conditional probability, the function
A 7→ P I

X(A|ΘI)(ω) is a probability measure for P-almost all ω ∈ Ω. The null set of exceptions
will be denoted N I ⊂ Ω. Since the conditional probabilities are conditionally projective, we
have P I

X( . |ΘI)(ω) = P J
X(π-1

JI . |ΘJ)(ω) for almost all ω. Again there is a null set of exceptions,
which we will denote N JI. Denote the union of all exceptions a N := (∪IN I) ∪ (∪I⊂JN JI). As
a countable union of null sets, N is itself a null set. Now for any fixed ω 6∈ N , the probability
measures P I

X( . |ΘI)(ω) form a projective family of measures in the sense of the Kolmogorov
theorem. Application of the theorem yields a unique probability measure νω on (ΩE

x,BE
x) for

each ω 6∈ N . Treat this collection of measures as a function ν(A,ω) := νω(A) for ω 6∈ N , and
set ν(A,ω) := δXE(ω) for ω ∈ N , where δx denotes the Dirac measure concentrated at x. (The
only purpose of the latter is to ensure that v is a probability measure for every ω; the choice of
the Dirac measure is arbitrary.)
CE-measurability: The function ν( . , . ) so obtained describes a conditional distribution of XE

w.r.t. a σ-algebra CE if we can show that ω 7→ ν(A,ω) is CE-measurable for every A ∈ BE
x . This

can be shown by means of the π-λ theorem (also called the Dynkin lemma, [14]): First show
that ν(A,ω) is measurable for all A in a generator of BE

x , and then deduce that this implies
measurability for all A by means of the π-λ theorem. As a generator, we choose the “cylinder
sets” ZE = {A ∈ BE

x |A = π-1
EIA

I}, i.e. the set of all sets which are preimages under projection
of some finite-dimensional event. Then BE

x = σ(ZE), a fact used for example in the proof of
the Kolmogorov theorem (cf [1]). For any A ∈ ZE, the function ν(A, . ) is measurable: Since
ν(π-1

EIA
I, ω) = P I

X(AI|ΘI)(ω), the function ω 7→ ν(π-1
EIA

I, ω) is σ(ΘI)-measurable, and therefore
CE-measurable as σ(ΘI) ⊂ CE. Let L ⊂ BE

x denote the system of all A for which ν(A, . ) is
CE-measurable. In the sense of the π-λ theorem, L is a λ-system: For A = ΩE

x, ν is constant
hence measurable. Let A ∈ L. Then ν({A, . ) = 1− ν(A, . ), which is measurable. If An ∈ L is
a pairwise disjoint sequence and A′ = ∪∞n An, then ν(A, . ) = limn→∞

∑n
i=1 ν(An, . ), which as

a limit of measurable functions is measurable. It is well known that the cylinder sets ZE form
an algebra [1], so ZE is in particular a π-system. Then by the π-λ theorem,

BE
x = σ(ZE) = L ⊂ BE

x . (6)

In other words, the set of all sets A for which ω 7→ ν(A,ω) is CE-measurable is just BE
x . Therefore,

ν(A,ω) is a regular version of the conditional probability P E
X (A|CE)(ω). By construction, its

marginals are πEIP
E
X ( . |CE)(ω) = P I

X( . |σ(ΘI))(ω) almost everywhere.
Interpreting P E

X (XE|CE) as P E
X (XE|ΘE): Under the additional assumption πJIΘJ = ΘI, define

the variable ΘE as ΘE :=
⊗

i∈E Θ{i}. Then any conditional distribution given CE can serve as a

11



Draft

conditional given ΘE, since the σ-algebra σ(ΘE) generated by ΘE is just CE:

σ(ΘE) =ΘE,-1(BE
θ ) = ΘE,-1

(
∪I∈F(E)σ(π-1

EIBI
θ)
)

= σ
(
∪I∈F(E)Θ

E,-1π-1
EIBI

θ

)
=σ
(
∪I∈F(E)Θ

I,-1BI
θ

)
= σ

(
∪I∈F(E)σ(ΘI,-1

)
= CE .

(7)

B Proof of Theorem 3

Proof of (1). We have to construct a candidate for the probability kernel kE, and show that T is
a posterior index for the projective limit posterior with kernel kE. To this end we will show that
the conditionals P I

Θ(ΘI|T I) are conditionally projective and define kE in terms of their projective
limit. For each I ∈ F(E) and AI ∈ BI

θ, the function ω 7→ kI(AI, . ) ◦ T I ◦ X I(ω) is σ(T I ◦ X I)-
measurable, and kI(AI, . ) ◦ T I ◦ X I(ω) = P I

Θ(AI|T I)(ω) a.e. Therefore, kI(AI, . ) ◦ T I ◦ X I is a
version of P I

Θ(AI|T I). The conditional probabilities P I
Θ(ΘI|T I) are conditionally projective:

P I
Θ(AI|T I = tI) =P I

Θ(AI|X I ∈ T I,-1(tI)) = P J
Θ(π-1

JIA
I|XJ ∈ π-1

JIT
I,-1(tI))

=P J
Θ(π-1

JIA
I|XJ ∈ T J,-1π-1

JI(t
I)) = P J

Θ(π-1
JIA

I|T J ∈ π-1
JI(t

I))
(8)

Hence P J
Θ(π-1

JIA
I|T J) = P I

Θ(AI|T I), which is just the definition of conditional projectiveness. By
Theorem 2 there is an a.e.-unique projective limit of the form P E

Θ(ΘE|CE), where CE is the
σ-algebra

CE := σ
(
∪I∈F(E)σ(T I)

)
. (9)

It is straightforward to check that σ(T ) = CE, because T satisfies Eq. (4). Therefore, the
projective limit P E

Θ(ΘE|CE) can serve as the conditional distribution P E
Θ(ΘE|T ). Now define a

candidate for the kernel kE as

kE(A, t) := P E
Θ(A|T = t) for all A ∈ BE

θ , t ∈ ΩE
t . (10)

What remains to be shown is that kE(A, T (x)) = P E
Θ(A|XE = x) a.e. for all A ∈ F(E). If this

identity can be shown to hold for A ∈ ZE, then it holds for all A: Since σ(ZE) = BE
θ , and since

ZE is an algebra, the Carathéodory extension theorem is applicable to extend measures from
ZE to BE

θ . Since the conditional probability kE is a Markov kernel, the Carathéodory theorem
can be applied pointwise in x. (For a conditional that is not a Markov kernel, the subset of
exceptional points x ∈ ΩE

x on which the conditional is not unique depends on A. Over all A,
these could then aggregate into a non-null set.) To show that the identity holds on ZE, consider
any A ∈ ZE, i.e. there is some I ∈ F(E) such that A = π-1

EIA
I. Then

kE(π-1
EIA

I, t ∈ π-1
EIt

I) =P E
Θ(π-1

EIA
I|T ∈ π-1

EIt
I) = P I

Θ(AI|T I = tI) = P I
Θ(AI|X I ∈ T I,-1tI)

=P E
Θ(π-1

EIA
I|XE ∈ π-1

EIT
I,-1tI) = P E

Θ(π-1
EIA

I|XE ∈ T -1π-1
EIt

I) ,
(11)

such that kE(π-1
EIA

I, T (x)) = P E
Θ(π-1

EIA
I|XE = x). By the Carathéodory theorem, this implies

that kE(π-1
EIA

I, T (x)) = P E
Θ(π-1

EIA
I|XE = x), and hence T is a posterior index for the projective

limit posterior P E
Θ(ΘE|XE), and kE is the probability kernel corresponding to T .

Proof of (2). To proof part (2), we have to show that the posterior index T I and corresponding
probability kernel kI as specified in the theorem make each of the marginal Bayesian systems
on the finite-dimensional subspaces ΩI

x conjugate. That is, we have to verify kI(AI, T I(xI)) =
P I

Θ(AI|X I = xI). To this end, write

kI(AI, tI) =k(π-1
EIA

I, t ∈ π-1
EIt

I) = P E
Θ(π-1

EIA
I|XE ∈ T -1π-1

EIt
I) = P I

Θ(AI|X I ∈ πEIT
-1π-1

EIt
I)

=P I
Θ(AI|X I ∈ πEIT

I,-1tI)
(12)
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Since, for each xI, there is some tI such that T I(xI) = tI, this means:

kI(AI, tI) = P I
Θ(AI|X I = xI) ⇔ xI ∈ T I,-1(tI) , (13)

and thus P I
Θ(AI|X I = xI) = kI(AI, T I(xI)) as we had to show. In other words, the posterior

P I
Θ(AI|X I) is conjugate with posterior index T I and probability kernel kI.
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