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A Bayesian model is nonparametric if its parameter space has in-
finite dimension; typical choices are spaces of discrete measures and
Hilbert spaces. We consider the construction of nonparametric priors
when the parameter takes values in a more general functional space.
We (i) give a Prokhorov-type representation result for nonparamet-
ric Bayesian models; (ii) show how certain tractability properties of
the nonparametric posterior can be guaranteed by construction; and
(iii) provide an ergodic decomposition theorem to characterize con-
ditional independence when de Finetti’s theorem is not applicable.
Our work is motivated primarily by statistical problems where ob-
servations do not form exchangeable sequences, but rather aggregate
into some other type of random discrete structure. We demonstrate
applications to two such problems, permutation-valued and graph-
valued observations, and relate our results to recent work in discrete
analysis and ergodic theory.

1. Introduction. Nonparametric priors can be classified according to
the type of random functional which serves as a model parameter: Examples
include discrete measures [18, 19, 23, 27], continuous functions [50], mix-
tures and other density functions [25, Chapter 5], and monotone functions
[26, Chapter 3]. Bayesian nonparametric statistics predominantly revolves
around various mathematical modeling primitives available on each of these
domains, such as the Dirichlet process (DP) [19, 23] and the Gaussian pro-
cess (GP) [1, 10, 47]. Adaptations of these modeling primitives to the needs
of specific applications, and the modular way in which they can be combined
to express hierarchical structures, account for the vast majority of the large
and growing literature on nonparametric priors [26, 49]. The rather limited
attention which certain important types of data—e.g. networks, relational
data, or ranked lists—have to date received in the field is arguably due to a
lack of readily available primitives. The design of nonparametric priors for
such problems raises a range of mathematical questions. A small subset of
these are addressed in this paper.
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2 P. ORBANZ

Nonparametric priors tend to be technically more challenging than their
parametric counterparts since the underlying parameter space is not locally
compact; prior and posterior hence have no density representation with re-
spect to a translation-invariant measure. Additionally, Bayes’ theorem is
often not applicable, since a nonparametric posterior is not generally domi-
nated [45]. A cornerstone of nonparametric constructions are therefore rep-
resentations which substitute for densities and permit the computation of
posteriors. Most representations used in the literature—stick-breaking, Lévy
processes, etc—are too model-specific for the purposes of generalization.

We build on work of Lauritzen [36] who, in a different context, intro-
duced projective limits of regular conditional probabilities which he referred
to as projective statistical fields. Much like the defining components of a non-
parametric Bayesian model, his limit objects are regular conditional prob-
abilities on a space of infinite dimension. Projective statistical fields thus
almost provide a generic representation of nonparametric priors and poste-
riors. Not quite, since random quantities arising as parameters in Bayesian
nonparametrics exhibit almost sure regularity properties—e.g. continuity or
σ-additivity—which projective limits do not express. The missing link be-
tween projective limit representations and regularity are “Prokhorov condi-
tions” for stochastic processes, i.e. tightness conditions on compact sets [e.g.
12, Chapter III]. Using such regularity conditions, we obtain a construction
which, roughly speaking, represents a nonparametric Bayesian model by a
projective system of parametric Bayesian models (Theorems 2.3 and 2.5).

With this representation in place, we derive conditions under which the
existence of analytic update formulae for posterior distributions is guaran-
teed (Theorem 2.7). In the specific case of nonparametric models obtained
as limits of exponential families, we obtain an explicit formula (Corollary
2.8). For types of data not representable as exchangeable sequences, the req-
uisite conditional independence properties of a Bayesian model cannot be
identified, as they usually are, by de Finetti’s theorem. For such problems,
de Finetti’s result can be substituted by more general ergodic decomposi-
tion theorems [15, 29, 36]. We give a version of such a theorem tailored
to Bayesian nonparametrics (Theorem 2.9), which also establishes a close
connection between popular nonparametric priors and Lauritzen’s work on
extremal families [36].

We consider applications to two types of data; observations which aggre-
gate into dense graphs or into ranked lists (permutations). Analytic proper-
ties of the sample spaces are given in recent work from Lovász and Szegedy
[38, 39] for dense graphs, and from Kerov, Olshanski, and Vershik [33] for
permutations. The derivation of Bayesian statistical models using our results
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is demonstrated for both problems in some detail. To clarify the connection
to existing methods in the Bayesian nonparametric literature, we also show
how the familiar Gaussian process and Dirichlet process priors arise as in-
stances of our approach.

Article Structure. Results are stated in Sec. 2 and illustrated by applica-
tions in Sec. 3. Related work is discussed in Sec. 4. All proofs are collected
in App. A, and App. B summarizes relevant facts on projective limits.

Notation. We assume throughout that the underlying model of random-
ness is an abstract probability space (Ω,A,P). If X is a topological space,
M(X) denotes the set of probability measures on the Borel sets B(X). For
a mapping φ : X→ X′, we denote the push-forward (the image measure)
of a measure µ ∈M(X) as φ#µ ∈M(X′). Similarly, φ#ν ∈ M(X) is the
pull-back of ν ∈M(X′), i.e. the measure defined implicitly by φ#(φ#ν) = ν.
We write ν∗ for the outer measure of ν. The pull-back exists if ν∗(φ(X)) =
ν(X′) [22, 234F]. Law(X) := X#P denotes the law of a random variable
X : Ω→ X. We use the term probability kernel for measurable mappings of
the form p : X′′ →M(X). A kernel p is also denoted as a function p(A, x′′)
on B(X)×X′′, and its push-forward is (φ#p)( . , x′′) := φ#p( . , x′′).

2. Results. We define a Bayesian model as a random probability mea-
sure Π on a sample space X, i.e. a probability kernel Π : Ω→M(X). We
generally decompose Π as follows: Let T be another space, called the pa-
rameter space of the model. We assume that there is a probability ker-
nel p : T→M(X), called the likelihood, and a random variable Θ : Ω→ T,
called the parameter, such that Π = p ◦Θ. Observations are described by
a random variable X : Ω→ X with conditional probability p given Θ. The
law Q := Θ#P of the parameter is the prior distribution of the model. A
probability kernel q̂ : X→M(T) given by P[Θ ∈ . |X = x] =a.s. q̂( . , x) is
the posterior under observation x [21, 45].

In Bayesian statistics, the prior distribution Q is usually itself parameter-
ized by a hyperparameter variable Y with values y ∈ Y. The resulting family
of priors is then a probability kernel q( . , y) = Law(Θy) = P[Θ ∈ . |Y = y],
and the posterior takes the form q̂ : X×Y →M(T). We refer to a Bayesian
model as nonparametric if the parameter space T has infinite dimension, and
as parametric if the dimension is finite. The main analytical implication is
that T is not locally compact if the model is nonparametric.

2.1. Representations. The presentation in this section assumes basic fa-
miliarity with projective limits of measures [8, 9]. A summary of relevant def-
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initions is given in App. B. To define statistical models on infinite-dimensional
spaces T and X, the spaces are represented by means of projective limits.
More precisely, to represent a space X, a family

〈
XI

〉
Γ

of finite-dimensional

spaces XI is assembled into a projective limit space XΓ := lim
〈
XI

〉
Γ
. Since

the spaces of “regular” mappings of interest in Bayesian nonparametrics—
for instance, the sets X = C(R+,R) of continuous functions, X = M(R) of
probability measures or X = D(R+,R) of cádlág functions—are not directly
representable as a projective limit XΓ, we represent X indirectly by embed-
ding it into XΓ. Conditional probabilities p on X are then represented by
families of conditional probabilities pI on XI.

Some of the complete separable metric spaces of interest in the follow-
ing admit more than one relevant compatible metric, and we hence state
results in terms of spaces which are Polish, i.e. complete, separable and
metrizable. Let

〈
XI

〉
Γ

be a family of Polish spaces indexed by a partially or-
dered, directed index set (Γ,�). Throughout, Γ is countable. We assume that
the spaces XI are linked by generalized projections fJI : XJ → XI whenever
I � J , and that the mappings fJI are continuous and surjective. The pro-
jective limit space is denoted XΓ := lim

〈
XI, fJI

〉
Γ
, with canonical mappings

fI : XΓ → XI (cf. App. B). Since Γ is countable and the fJI are surjective,
XΓ is again Polish [30, §17D] and non-empty [8, III.7.4, Proposition 5].

Definition 2.1. A topological space X is embedded into a projective
system

〈
XI, fJI

〉
Γ

of Polish spaces if there are continuous, surjective mappings
FI : X→ XI for all I ∈ Γ satisfying the conditions

(2.1) fJI ◦ FJ = FI if I � J and ∀x 6= x′ ∃I ∈ Γ : FI(x) 6= FI(x
′) .

The projective limit of the mappings
〈
FI

〉
Γ

is denoted F := lim
〈
FI

〉
Γ
. As

a projective limit of continuous mappings, F : X → XΓ is continuous and
satisfies FI = fI ◦ F, but it is not generally surjective. By condition (2.1), F
is injective, and hence embeds X into XΓ. The individual components form
a commutative diagram:

(2.2)

X

XΓ

XJ XI

F

FJ FI

fJ fI

fJI

In the statistical models considered further on, I ∈ Γ describes the dimension
of parameter space. As the number of observations grows, a larger number
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of parameter dimensions is required to explain the sample, and I increases
in terms of �.

A family
〈
PI

〉
Γ

of probability measures PI on the spaces XI is called a
promeasure (or projective family) if fJI#PJ = PI whenever I � J , i.e. if
each measure PI is the marginal of all higher-dimensional measures PJ in the
family [9]. We define an analogous concept for families of regular conditional
probabilities pI( . , ω) = P[XI ∈ . |CI](ω).

Definition 2.2. Let (Ω,A,P) be a probability space. A family
〈
pI

〉
Γ

of
probability kernels pI : Ω→M(XI) is called a conditional promeasure if

(2.3) fJI#pJ =a.s. pI whenever I � J .

It is tight on X if, for each ε > 0, there exist compact sets Kω ⊂ X with

(2.4) pI(FIK
ω, ω) > 1− ε P-a.s. for all I ∈ Γ .

Analogously, a promeasure
〈
PI

〉
Γ

is tight on X if for each ε > 0 there is a
compact K ⊂ X such that PI(FIK) > 1− ε for all I.

A tight promeasure
〈
PI

〉
Γ

uniquely defines a probability measure P on
(X,B(X)), by Prokhorov’s extension theorem [9, IX.4.2, Theorem I]. Con-
versely, any measure P on X defines a tight promeasure

〈
FI#P

〉
Γ
. This bi-

jective correspondence makes families of finite-dimensional measures useful
proxies for stochastic processes. Our first result generalizes the correspon-
dence from measures to the conditional probabilities relevant to Bayesian
statistics. For a family of σ-algebras CI ⊂ A, we denote the limit σ-algebra
by CΓ := σ(CI; I ∈ Γ) and the tail σ-algebra by CT := lim supI∈Γ CI.

Theorem 2.3. Let X be a Hausdorff space embedded into
〈
XI, fJI

〉
Γ

as in

(2.2), and let
〈
pI

〉
Γ

be a conditional promeasure of kernels pI : Ω→M(XI).
There is a probability kernel p : Ω→M(X) satisfying

(2.5) FI#p =a.s. pI for all I ∈ Γ

if and only if
〈
pI

〉
Γ

is tight on X. The conditional promeasure uniquely
determines p outside a P-null set, and p almost surely takes values in the
set RM(X) ⊂M(X) of Radon probability measures. If pI is CI-measurable
for each I, then p has both a CΓ-measurable and a CT-measurable version.

The limit object is denoted F# lim
〈
pI

〉
Γ

:= p. The notation is motivated
by the fact that p can be regarded as a pull-back: A kernel pΓ : Ω→M(XΓ)
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can be constructed by setting X := XΓ in the theorem. In this case, tightness
is trivial: Any conditional promeasure is tight on XΓ. If

〈
pI

〉
Γ

is additionally
tight on some other, embedded space X, Lemma A.2 shows that the limit p
on this space is a version of the pull-back F#pΓ. In the parlance of stochastic
process theory, p( . , ω) is a modification of pΓ( . , ω) with paths in X.

For our purposes, the probability kernels pI are typically given by para-
metric models, in which case each pI is defined on a separate parameter
space TI. In this case, Theorem 2.3 immediately translates into:

Corollary 2.4. Let T be a Polish space, embedded into
〈
TI, gJI

〉
Γ

by

maps
〈
GI

〉
Γ
, and Q a probability measure on B(T). For probability kernels

pI : TI →M(XI), the family
〈
pI ◦GI

〉
Γ

is a conditional promeasure defined
on (T,B(T), Q) iff fJI#pJ =a.s. pI ◦ gJI for I � J . If it satisfies (2.4), there is
an a.s.-unique kernel p : T→M(X) satisfying FI#p =a.s. pI ◦GI for I ∈ Γ.

The Hausdorff space formulation in Theorem 2.3 is more general than
typically required for Bayesian models, whose natural habitat are Polish
spaces. If X is Polish, all conditional probabilities have a regular version
and RM(X) = M(X). It is worth noting, though, that regularity of the
conditional probabilities pI and the Polish topologies on the spaces XI en-
sure p to be a regular conditional probability and almost surely Radon, even
if X itself is not Polish. We will from here on restrict our attention to the
Polish case, but we note that there are examples in Bayesian nonparamet-
rics which, at least in principle, require less topological structure. Sethura-
man’s representation of the Dirichlet process—for which the domain V of
the Dirichlet random measure, and hence the parameter space T = M(V ),
are not required to be Polish—is a case in point [23].

2.2. Construction of nonparametric Bayesian models. Let X be embed-
ded as above, and let T be a parameter space embedded into

〈
TI, gJI

〉
Γ

by
〈
GI

〉
Γ
, where we generally assume TI to be of finite dimension. Let

pI : TI →M(XI) and qI : Y →M(TI) be probability kernels and Θy
I : Ω→ TI

a random variable with distribution qI( . , y). Then Πy
I = pI ◦Θy

I is a para-
metric Bayesian model on XI, with a posterior q̂I( . , x, y) = q̂yI ( . , x). If the
families

〈
pI

〉
Γ

and
〈
qI

〉
Γ

have well-defined limits on X and T, they define a
nonparametric Bayesian model with posterior q̂ and parameter space T, but
in a non-constructive sense, since the posterior is a purely abstract quantity.

However, parametric models are typically well-parameterized in the sense
that the observation variable XJ on each space XJ depends on ΘI only
through XI if I � J . In this case, the posteriors form a conditional promea-
sure (Lemma A.1), and the model becomes much more tractable.
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Theorem 2.5. Let
〈
pI ◦GI

〉
Γ

and
〈
qI

〉
Γ

be tight conditional promeasures
on Polish spaces X and T, respectively, with limits p and q. If the family〈
q̂I

〉
Γ

of posteriors also forms a conditional promeasure, the following holds:

(i) The family
〈
q̂I

〉
Γ

is tight on T and G# lim
〈
q̂I ◦ FI

〉
Γ

=a.s. q̂.
(ii) Let (In)n be a cofinal sequence in Γ. Fix y ∈ Y and a sequence (xIn)n
of points xIn ∈ XIn satisfying fIn+1InxIn+1 = xIn for all n. Then for any se-
quence (z(n))n in X with FInz

(n) = xIn, the posterior on T converges weakly,

(2.6) q̂y( . , z(n))
w−−→ q̂y( . ,F−1 lim 〈xIn〉N) X#P-a.s. on X .

In other words, there is a random element X in X such that the condi-
tional probability of FIX given Θ is precisely pI. This element is of infinite
dimension and never fully observed; rather, n observation steps yield “cen-
sored” information XIn = FInX. In the simplest case, XIn is a sequence of
length n. More generally, it is a function of the first n recorded observations,
for instance, each observation may be a vertex in a graph and its associated
edges, and XIn the aggregate subgraph obtained after n steps. Theorem
2.5(i) shows that the diagram

(2.7)

q q̂

qI q̂I

{X = x}

GI G#lim

{XI = FIx}

GI G#lim

commutes. If each censored observation is augmented arbitrarily to form a
full element z(n) of X, part (ii) shows that posteriors computed from z(n)

converge weakly to the actual posterior. Convergence holds almost surely
under the prior q( . , y). All caveats pertaining results which neglect null
sets under the prior apply [e.g. 26, Chapter 2].

The models (pI,qI) used in the construction will in most cases have sepa-
rate, finite-dimensional hyperparameter spaces YI. It is then useful to collect
these spaces in a projective system

〈
YI, hJI

〉
Γ
, into which Y is embedded by

mappings
〈
HI

〉
Γ
.

Example 2.6. We illustrate the construction by a familiar model: Choose
T as the Hilbert space T = L2[0, 1]. Let Γ consist of all finite subsets of N,
ordered by inclusion, and define TI = YI = RI. The projective limits space
TΓ = RN contains `2 as a proper subset. Hence, the Hilbert space isomor-
phism G : L2[0, 1] → `2 embeds L2[0, 1] into TΓ. Choose Y identically as
Y := T with H := G. Let Σ be a covariance function on [0, 1]2 and y ∈ Y.
Each kernel qI is a Gaussian distribution on TI with mean vector yI = HIy
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and a covariance matrix defined by Σ. Then
〈
qI

〉
Γ

is a conditional promea-
sure; whether it is tight on T depends on the choice of Σ. If the family
is tight, q = G# lim

〈
q
〉

Γ
is a family of Gaussian processes. More precisely,

q( . , y) is a Gaussian process with paths L2[0, 1], expected function y and
covariance function Σ. If pI is chosen as a suitable Gaussian likelihood, each
posterior q̂I is a location family of Gaussians, and by (2.7), q̂ is a family of
Gaussian processes. See Sec. 3.4 for details.

2.3. Conjugate posteriors. A Bayesian model is conjugate if the posterior
belongs to the same class of distributions as the prior [45]. The limit in The-
orem 2.5 preserves conjugacy—part (i) shows that conjugacy of all (pI,qI)
implies conjugacy of (p,q), as in Example 2.6. There is, however, a stronger
form of conjugacy which is of greater practical importance, since it permits
the computation of posteriors even when Bayes’ theorem is not applicable:
A hyperparameter specifying the posterior can be computed as a function
of observed data and of a prior hyperparameter. Lijoi and Prünster [37]
call such models parametrically conjugate, since they are characterized by
updates of a (hyper-)parameter. Virtually all commonly used Bayesian non-
parametric models are parametrically conjugate [49]. An immediate question
is hence whether the limit also preserves parametric conjugacy. The next re-
sult addresses this question and the closely related concept of sufficiency.

Given a measurable mapping S from X into a Polish space S and a prob-
ability kernel v : S→M(X), define the set of measures

(2.8) MS,v := {µ ∈M(X) |µ[ . |S = s] =a.s. v( . , s)} .

Recall that S is called a sufficient statistic for a set M0 ⊂ M(X) if M0 ⊂
MS,v for some kernel v. We call v a sufficient kernel. The statistic is sufficient
for a kernel p : T→M(X) if the image p( . ,T) is contained in MS,v.

The next result involves the notion of a projective family of mappings:
Let S be a Polish space embedded into a projective system

〈
SI, eJI

〉
Γ

by
mappings EI. Suppose the measurable mappings SI : XI → SI are projective,
i.e. SI◦fJI = eJI◦SJ for I � J . Then there is a unique, measurable projective
limit mapping SΓ : XΓ → SΓ. The mapping SΓ has a well-defined pull-back
(F,E)#SΓ := E−1 ◦ SΓ ◦ F if the image of SΓ ◦ F is contained in ES. Hence,
the family

〈
SI

〉
Γ

determines a unique limit mapping S : X→ S, given by

(2.9) S = (F,E)# lim
〈
SI

〉
Γ
.

Since S is Polish, the pull-back mapping S is measurable [30, Corollary 15.2].
Bayesian inference can be represented abstractly as a mapping from prior

measure and observations to the posterior: We call a measurable mapping
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T : X×Y → Ŷ, where Ŷ is a Polish space, a posterior index if there exists
a probability kernel u : Ŷ →M(T) such that

(2.10) q̂( . , x, y) =a.s. u( . , T (x, y)) .

Clearly, IdX×Y is a trivial posterior index for any model. The model is called
parametrically conjugate if there is a posterior index T for which

(2.11) Ŷ ⊂ Y and u =a.s. q .

In the next result, Y is again embedded into
〈
YI, hJI

〉
Γ

by
〈
HI

〉
Γ
, and the

kernels qI are of the form YI →M(TI).

Theorem 2.7. Require that the spaces X, T, Y and S are Polish. Let〈
pI ◦GI

〉
Γ

and
〈
qI ◦HI

〉
Γ

be conditional promeasures which are tight on X
and T, respectively, and denote their limits by p and q.

(i) Let
〈
SI

〉
Γ

be a family of measurable mappings XI → SI with limit

S : X→ S in the sense of (2.9), and let
〈
vI

〉
Γ

be a conditional promeasure
of kernels vI : SI →M(XI). Then

(2.12) pI( . ,TI) ⊂MSI,vI for all I ∈ Γ ⇐⇒ p( . ,T) ⊂MS,v ,

for v := F# lim
〈
SI

〉
Γ
. The left-hand side implies

〈
vI

〉
Γ

is tight on X.

(ii) Let
〈
q̂I

〉
Γ

be a conditional promeasure. A mapping T is a posterior
index of (p,q) if there is a posterior index TI for each (pI,qI) with

(2.13) T = (F⊗H,H)# lim
〈
TI

〉
Γ

Conversely, if T is a posterior index for (p,q) and if Ŷ is embedded into a
projective system

〈
ŶI, ĥJI

〉
Γ

by mappings
〈
ĤI

〉
Γ
, there are posterior indices

TI for each induced model (pI = FI#p,qI = GI#q) which satisfy (2.13). In
particular, the model (p,q) is parametrically conjugate if and only if each
model (pI,qI) is parametrically conjugate.

Thus, parametric conjugacy of a nonparametric Bayesian model can be
guaranteed by an appropriate choice of conjugate marginal models (pI,qI).

2.4. Exponential family marginals. In the parametric case, the most im-
portant class of conjugate Bayesian models are those defined by exponential
family models and their canonical conjugate priors [45, Chapter 2]. For these
models, the conditional densities of pI and qI with respect to suitable carrier
measures are given by

(2.14) pI(xI|θI) =
e〈SI(xI),θI〉

ZI(θI)
and qI(θI|λ, yI) =

e〈θI,γI〉−λ logZI(θI)

Z ′I(λ, γI)
,
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where ZI and Z ′I are normalization functions. Each function SI : XI → SI is
a sufficient statistic for pI. Its range is a Polish vector space SI with inner
product 〈 . , . 〉 and contains the parameter space TI as a subspace. The prior
is parameterized by a concentration λ ∈ R+ and by an expectation γI in the
convex hull of SI(XI).

If pI is given by (2.14) and the dimension of TI increases along sequences
I1 � I2 � . . . , the limit model is nonparametric with infinite-dimensional
parameter space T. With Theorem 2.7, we obtain the nonparametric pos-
terior, which is reminiscent of the characterization of conjugate parametric
posteriors due to Diaconis and Ylvisaker [21, Chapter 1.3]:

Corollary 2.8. If pI and qI in Theorem 2.7 are of the form (2.14),
and if the family

〈
SI

〉
Γ

admits a limit S = (F,E)# lim
〈
SI

〉
Γ

in the sense of
(2.9), the model (p,q) is parametrically conjugate with

(2.15) T (X,λ, γ) =
(
λ+ 1, γ + S(X)

)
.

A specific example of (2.15) is the Dirichlet process with concentration α
and base measure µ, for which T is given by

(2.16) (x(1), . . . , x(n), α · µ) 7→ 1

n+ α

(
αµ+

n∑
k=1

δx(k)

)
.

Due to the parameterization of the Dirichlet distribution, the choice of λ does
not affect the form of the model, and γ = αµ. Gaussian process models, and
in fact most models in the nonparametric Bayesian literature, can also be
interpreted in this manner. Section 3 provides further illustration.

2.5. Ergodic decomposition and conditional independence. Suppose ob-
servational data is expressed by random variables Xy, each with law r( . , y)
governed by some configuration y ∈ Y. From an abstract point of view, a
Bayesian model that accounts for the data is a family of random measures
Πy : Ω→M(X) satisfying

(2.17) r( . , y) =

∫
Ω

Πy(ω)P(dω) = E[Πy] .

To construct such a model, we have to identify a suitable parameter space
T and a decomposition Πy = p ◦ Θy. If the variables Xy are exchangeable
random sequences, de Finetti’s theorem can be invoked for guidance, but
not if the observations aggregate into another type of structure—e.g. a large
graph or permutation, as in Sec. 3. This problem naturally leads to ergodic
decompositions and to the work of Lauritzen [36] on extremal families.
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Suppose S : X→ S is a statistic with values in a Polish space, and de-
fine the image measures ρy := S#r( . , y). Standard results guarantee each
measure r( . , y) has a (S, ρy)-disintegration, i.e. there is a probability ker-
nel νy : S→M(X) such that r( . , y) =

∫
S ν

y( . , s)ρy(ds). Thus, the random
measures defined by Π̃y := νy ◦ (S ◦Xy) satisfy (2.17), but the result is triv-
ial: The kernels νy depend on y. Theorem 2.9 below shows that a much
stronger result holds if the statistic is sufficient and has ergodic measures:
In this case, ρy concentrates on a subset T of S, independent of y, and all
disintegrations νy coincide.

Let v : S→M(X) be a kernel and MS,v defined as in (2.8). We will find
that this set is convex and denote its set of extreme points by ex(MS,v). Let
S := S−1B(S) be the sufficient σ-algebra in B(X) and

(2.18) ES,v :=
{
η ∈MS,v | ∀A ∈ S : η(A) ∈ {0, 1}

}
.

Measures in ES,v are called S-ergodic. Let further ∆S,v be the set of all
distributions in MS,v under which the distribution of S is degenerate,

(2.19) ∆S,v := {η ∈MS,v | ∃sη ∈ S : S#η = δsη} .

The definition induces a mapping τ : ∆S,v → S given by η 7→ sη. Its image
is denoted T := τ(∆S,v). The next result is an ergodic decomposition in
the spirit of [36, 15], adapted to be applicable to nonparametric Bayesian
models defined on embedded spaces. It shows how sufficient statistics can
be used to identify a suitable decomposition of the model.

Theorem 2.9. Let X and S be Polish and S a sufficient statistic for r,
with sufficient kernel v. Then MS,v is convex and

(2.20) ex(MS,v) = ES,v = ∆S,v .

If MS,v is weakly closed, the set T := τ(∆S,v) is a standard Borel space.
There is a unique kernel q : Y →M(T) such that the restriction p := v|T
is a (S,q( . , y))-disintegration of r( . , y) for all y ∈ Y. The map τ is a
parameterization of ES,v, i.e. a Borel isomorphism of ES,v and T.

The “Bayesian” interpretation of Theorem 2.9 is that T = τ(ES,v) is a
parameter space, Y is a set of hyperparameters, and there is a uniquely
defined family of priors q( . , y) such that

(2.21) r( . , y) =a.s.

∫
T
p( . , θ)q(dθ, y) .
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η1

η2 η3

r( . , y)

M(V )

MS

η1

η2 η3

r( . , y) ν1

ν2
ν3

Mr

MS

Fig 1. Finite analogue of Theorem 2.9 for a probability space with three disjoint events.
Left: The space M(V ) of probability measures contains MS,v as a convex subset. The er-
godic measures are ηj = v( . , θ = j). Right: Each measure p( . , y) is a convex combination
with coefficients νj = q({ηj}, y). By Theorem 2.7, the set Mr := {r( . , y)|y ∈ Y} is con-
tained in MS,v. Even if Mr (MS,v, q( . , y) may assign non-zero mass to ergodic measures
η /∈Mr.

The choice of S determines by what type of mathematical objects—functions,
measures, etc—the model is parameterized. Since ES,v ⊂ MS,v, the family
ES,v (and hence the kernel p) inherits S as a sufficient statistic from MS,v.

The integral decomposition (2.21) does not quite imply that MS,v is a
Choquet simplex, since the set need not be compact. Rather, existence of
q in Theorem 2.9 follows from a non-compact generalization of Choqet’s
theorem, but uniqueness holds only given the specific choice of v.

2.6. Extremal families in Bayesian nonparametrics. We have not yet
considered how to define the sufficient statistic S and the sufficient ker-
nel v in Theorem 2.9. Lauritzen [36] proposed to obtain v as a projective
limit, and S as an associated limit of sufficient statistics. His ideas are of
direct relevance to the construction of nonparametric priors.

Remark 2.10. Specifically, Lauritzen [36] addresses the following case:
Require X = XΓ. Given is a set M ⊂ M(XΓ). Suppose there is a continu-
ous statistic SI : XI → SI for each I ∈ Γ, such that (i) each SI is sufficient
for the set fI#M ⊂ M(XI), (ii) each of the associated sufficient kernels
vI : SI →M(XI) is continuous, and (iii) the family

〈
vI

〉
Γ

is projective. Then
the tail σ-algebra ST := lim supI∈Γ σ(SI) is sufficient for M . The perhaps
more widely known work of Diaconis and Freedman [14, 15] addresses the
sequential special case XΓ = X∞0 , where X0 is Polish. In Lauritzen’s nomen-
clature, a conditional promeasure of continuous kernels is called a projective
statistical field, and the set E of ergodic measures an extremal family.
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The approach requires only minor modifications for application to Bayesian
nonparametrics: Theorems 2.3 and 2.9 permit us to discard the continu-
ity assumptions and the requirement X = XΓ. Suppose r is given as r =
F# lim

〈
rI

〉
Γ

and there is a sufficient statistic SI for each rI. If the sufficient

kernels vI form a tight conditional promeasure
〈
vI

〉
Γ

on X, the limit ker-
nel v is by Theorem 2.3 a conditional probability given the tail σ-algebra
ST := lim supI∈Γ σ(SI). If the limit statistic S generates ST, it is hence a
sufficient statistic for r, and the pair (S,v) can be substituted into Theorem
2.9. We focus on a specific form of limit statistic:

Corollary 2.11. Let
〈
rI

〉
Γ

be a tight conditional promeasure on X. Let

S be a Polish space and
〈
SI : XI → S

〉
Γ

a family of measurable mappings
which converge point-wise along a cofinal sequence I1 � I2 � . . . in Γ,

(2.22) S(x) = lim
n→∞

SIn(FInx) for all x ∈ X .

If each SI is sufficient for rI, and if the sufficient kernels vI : S→M(XI)
form a tight conditional promeasure on X, then the limits S, r = F# lim

〈
rI

〉
Γ

and v = F# lim
〈
vI

〉
Γ

satisfy Theorem 2.9.

De Finetti’s theorem [28, Theorem 11.10] provides an illustrative example:
Choose X =

∏∞
n=1 X0 and S(x) as the empirical measure of a sequence x ∈

X. The latter implies permutation invariance of random sequences. Thus,
MS,v contains the exchangeable distributions, ES,v the factorial measures,
(2.21) is the de Finetti mixture representation and (2.20) is the Hewitt-
Savage zero-one law [29, Theorem 3.15].

If the data does not have the structure of an exchangeable sequence,
another sufficient statistic can be substituted for the empirical measure to
determine conditional independence in form of the decomposition (2.21).
The limit statistic permits the ergodic measures to be identified conveniently
as the degenerate measures ∆S,v. See Corollaries 3.8 and 3.5 for examples.

Although we cannot generally assume continuity of the kernels, Lau-
ritzen’s continuity assumption does, where applicable, simplify Theorem 2.9:

Proposition 2.12. Suppose v = F#
〈
vI

〉
Γ

in Theorem 2.9. If all map-
pings vI : SI →M(XI) and the limit statistic S are continuous, MS,v is a
weakly closed set.

The following parametric example of an ergodic decomposition is due to
[35] and [16]. Suppose Γ consists of the sets I = [n], where n ∈ N denotes
sample size. Let XI be product space XI = (Rd)n and let SI = S = Rk
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for some fixed, finite dimensions d, k ∈ N. Since X = (Rd)∞ coincides with
the projective limit space XΓ, tightness conditions are not required. Under
suitable regularity conditions, exponential families can be obtained ergodic
measures in Theorem 2.9 by defining SI as

(2.23) S[n](x1, . . . , xn) :=
∑
i∈[n]

S0(xi)

for a function S0 : X0 → Rk [35, 16]. The conditional density of the kernel
p in (2.21) is then of the form (2.14), where θ[n] = θ ∈ Rk. See also [15].

Thus, exponential families can arise in two distinct ways in our results: (1)
As finite-dimensional marginals in Theorem 2.7, in which case the dimension
of SI (and hence of TI) increases with sample size. Hence, the limit model is
nonparametric. (2) As ergodic measures in Theorem 2.9. Here, S = SI has
constant finite dimension, and the limit model is parametric.

3. Applications and examples. We apply our results to several prob-
lems of interest to Bayesian nonparametrics: Random measures, which illus-
trate the construction by a well-known problem; random permutations and
virtual permutations; random infinite graphs; and the widely used Gaussian
process regression model on random functions.

3.1. Random Probability Measures. Let V be a Polish space with Borel
sets BV . Our objective is to construct a family of random measures Θy,
each with distribution q( . , y), as frequently used as nonparametric priors.
Let T = M(V ). A suitable embedding into a projective system

〈
TI, gJI

〉
Γ

by means of mappings GI be constructed as follows [41]: Fix a countable
dense subset V ′ ⊂ V and a metric d compatible with the topology on V .
Let Q ⊂ BV be the countable algebra generated by the open d-balls with
rational radii and centers in V . This algebra is a countable generator of BV .
Let Γ be the set of all partitions of V which consist of a finite number of sets
in Q. For any two partitions I, J ∈ Γ, define I � J if and only if I ∩ J = J .
Then (Γ,�) is a partially ordered, directed, countable set. For each partition
I = (A1, . . . , An) in Γ, let TI := M(I) be the set of all probability measures
on the finite σ-algebra generated by the sets in partition I, that is, TI is the
unit simplex in RI.

Choose GI : M(V ) → M(I) as the evaluation µ 7→ (µ(A1), . . . , µ(An)).
The σ-algebra σ(GI; I ∈ Γ) which the evaluations generate on M(V ) coin-
cides with the Borel σ-algebra of the weak∗ topology on M(V ). For each pair
I � J of partitions, define gJI as the unique mapping satisfying GI = gJI◦GJ.
Then

〈
TI, gJI

〉
Γ

is a projective system and TΓ = lim
〈
TI

〉
Γ

is the set of prob-
ability charges (finitely additive probabilities) on Q. The projective limit
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M(V )

C(Q)

M(J) M(I)

µ 7→ µ|Q

µ 7→ µ(J) µ 7→ µ(I)

gJ gI

gJI

B2

B3

B1

M(J)

µ(J)

B1 ∪B2

B3

M(I)

gJIµ(J)

gJI

Fig 2. Left: Spaces in the random measure construction. M(V ) denotes the space of
probability measures on V , C(Q) the set of probability charges on the countable algebra
Q ⊂ B(V ), and 4I the standard simplex in RI. Middle: The simplex 4J for a partition
J = (B1, B2, B3). Right: A new simplex 4I = gJI4J is obtained by merging the sets B1

and B2 to produce I = (B1 ∪B2, B3).

mapping G = lim
〈
GI

〉
Γ

restricts measures on BV to the subsystem Q, and
embeds M(V ) into TΓ as a measurable subset [41, Proposition 3.1].

To construct a conditional promeasure, choose a hyperparameter space Y
and define kernels qI : YI →M(TI) such that they satisfy the following two
conditions: Require that, for all y ∈ Y, there exists µy ∈M(V ) such that

(3.1) gJI#qJ( . ,HJy) =a.s. qI( . ,HIy) and

∫
TI

θIqI(dθI, y) = FI#µ
y .

The first condition makes
〈
qI

〉
Γ

a conditional promeasure. The second con-
dition ensures that the projective limit qΓ assigns outer measure 1 to the
subset of those charges in TΓ which are countable additive [41, Proposition
4.1]. Hence, by Lemma A.2, q is tight on M(V ). A consequence of the sec-
ond condition is that the constructed random measures have expectations
E[Θy] = µy. To ensure the condition holds, qI( . , y) can be parameterized in
terms of µy, as the example of the Dirichlet process shows.

Example 3.1 (Dirichlet process). Let Y := R+ ×M(V ) and define〈
qI

〉
Γ

as follows: For any (α, µ) ∈ Y, choose qI( . , (α, µ)) as the Dirichlet
distribution on the simplex TI ⊂ RI, with concentration α and expectation
FI#µ. Then

〈
qI

〉
Γ

satisfies the conditions (3.1). Let q = G# lim
〈
qI

〉
Γ
. For any

given α and µ, the measure q( . , αµ) is the Dirichlet process of Ferguson [19],
with concentration α and “base measure” µ. By Theorem 2.7, the posterior
is updated under observations according to (2.16).

3.2. Random Permutations. A prominent infinite random permutation
is the Chinese Restaurant Process (CRP), defined by Dubins and Pitman
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[43] as the law given by uniform marginals on the finite symmetric groups Sn.
Its distribution induces a distribution on partitions which is now a mainstay
of Bayesian nonparametric statistics. More recently, infinite random permu-
tations have been considered heuristically in the computer science literature
[40] for nonparametric approaches to preference data analysis: Preference
lists are represented as permutations, and a nonparametric approach re-
quires a coherent extension to an infinite number of items or choices. This
problem motivates Example 3.2 below.

As a common setting for both these cases, we use a beautiful projec-
tive limit construction due to Kerov, Olshanski, and Vershik [33]. Denote
by S∞ the infinite symmetric group, i.e. the group of all permutations
on N under which all but a finite number of elements remain invariant.
Choose Γ = {[n]|n ∈ N}, ordered by inclusion, and X[n] := Sn. A projector
f[n+1][n] : Sn+1 → Sn must consistently remove the entry n + 1 from an ele-
ment of Sn+1, for instance, delete 4 from both rows of

(
1 2 3 4
3 1 4 2

)
. Kerov

et al. [33] define f[n+1][n] as deletion of n+ 1 from its cycle: Any permutation
π ∈ Sn admits a unique representation of the form

(3.2) π = σk1(1)σk2(2) · · ·σkn(n) ,

where ki are natural numbers with ki ≤ i, and σi(j) denotes the trans-
position of i and j. The map ψn : π[n] 7→ (k1, . . . , kn) is thus a bijection
Sn →

∏
m≤n[m], and a homeomorphism of the discrete topologies on Sn

and the product space. Hence, the pull-back (ψn+1, ψn)#pr[n+1][n] =: f[n+1][n]

of the product space projector pr[n+1][n] exists, and the diagram

(3.3)

Sn+1
∏
m≤n+1[m]

Sn
∏
m≤n[m]

ψn+1

f[n+1][n]

ψn

pr[n+1][n]

commutes. Since application of σk1(1), . . . , σkn+1(n+ 1) from the left consec-
utively constructs the cycles of π[n + 1], deletion of the final step by pr[n+1][n]

indeed amounts to removal of n+ 1 from its cycle. The definition of f[n+1][n]

is consistent with the CRP: The image measure of the CRP marginal dis-
tribution on Sn+1 under f[n+1][n] is the CRP marginal on Sn.

Elements of the projective limit space S := XΓ = lim
〈
Sn, f[n+1][n]

〉
Γ

are
infinite sequences π = σk1(1)σk2(2) · · · . These are mappings which itera-
tively permute pairs of elements ad infinitum, and are called virtual per-
mutations in [33]. The space S compactifies S∞: In the projective limit
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S∞

S

Sn+1 Sn

fn+1

∣∣
S∞

fn
∣∣
S∞

fn+1 fn

f[n+1][n]

s1 s2

Uj Ui

Fig 3. Left: Embedding diagram for the permutation example. Since S∞ is a subset of
S, the mapping F is the canonical inclusion S∞ ↪→ S. Right: Construction of a random
virtual permutation π ∼ p( . , s) given a mass partition s.

topology, S is a compact space and contains S∞ as a dense subset [33,
§1.2]. The embedding F in (2.2) is thus the canonical inclusion S∞ ↪→ S.
Fig. 3 shows the corresponding diagram. As a projective limit of homeomor-
phisms, ψ := lim

〈
ψ[n]

〉
Γ

is a homeomorphism of S and
∏
m∈N[m]. If and only

if π ∈ S∞, the sequence of transpositions σk1(1)σk2(2) · · · becomes trivial
after a finite number n of steps, and ψ(π) = (k1, . . . , kn, n+ 1, n+ 2, . . . ).
The space S is not a group: If ψ(π) = (1, 1, 2, 3, . . . ), for example, π is not
invertible.

Example 3.2 (A nonparametric Bayesian model on S∞). Let T[n] = Rn.
We define kernels p[n] : Rn →M(Sn) as the conditional probabilities whose
densities with respect to counting measure on Sn are

(3.4) p[n](π[n]|θ[n]) :=
1

Z[n](θ[n])
exp

(
−

n∑
j=1

θ(j)

[n]W
(j)(π[n])

)
θ[n] ∈ Rn ,

where W (j)(π[n]) := 1− {kj = j}. Hence, W (j) = 0 if and only if j is the
smallest element on its cycle, and therefore

∑
jW

(j) =n−#cycles. Clearly,

S[n] := (−W (1), . . . ,−W (j)) is a sufficient statistic for (3.4). This parametric
model was introduced as the generalized Cayley model by Fligner and Ver-
ducci [20]. To embed T, define a projective system by choosing g[n+1][n] :=
pr[n+1][n], which implies TΓ = RN.

The choice of T itself requires some further consideration to ensure tight-
ness of

〈
p[n]

〉
Γ
: If π[n] is distributed according to (3.4), the random vari-

ables W (j)(πn) are independent [20, §2]. The partition function Z[n] thus
factorizes as Z[n](θ) =

∏
j Z

(j)(θ(j)) =
∏
jM

(j)(−θ(j)), where M (j) is the
moment-generating function of the variable W (j)(π[n]). Hence, for each j ∈ N,
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Law(W (j)) depends only on θ(j). We define

(3.5) Gj(θ
(j)) := Pr{W (j)(π) = 1} =

(j − 1)e−θ
(j)

1 + (j − 1)e−θ
(j)

for each j, and similarly G(θ) := (Gj(θ
(j)))j∈N for sequences θ ∈ RN. Define

hyperparameter spaces Y[n] := R+×Rn and a projective system
〈
Y[n], h[n+1][n]

〉
Γ

with h[n+1][n] := IdR+ ⊗ pr[n+1][n]. Each prior q[n] is now chosen as the natural
conjugate prior of p[n] with hyperparameter space Y[n]. Application of our
results yields:

Proposition 3.3. The families
〈
p[n]

〉
Γ

and
〈
q[n]

〉
Γ

defined above are

conditional promeasures, and
〈
p[n]

〉
Γ

is tight on S∞ ⊂ S if and only if

G(θ) ∈ `1(0, 1). Similarly,
〈
q[n]

〉
Γ

is tight on T := G−1`1(0, 1) if and only if

Y = R+ × G−1`1(0, 1). In this case, the Bayesian model on S∞ defined by
p = F# lim

〈
p[n]

〉
Γ

and q = G# lim
〈
q[n]

〉
Γ

is conjugate with posterior index

(3.6) T (π, (λ, γ)) =
(
λ+ 1, γ + S(π)

)
and the posterior concentrates on T.

The next example is an applies Theorem 2.9 to random permutations
whose laws are invariant under relabeling of the permuted items. This is not
a useful assumption for preference data, but rather concerns the relation
between random permutations and random partitions: A virtual permuta-
tion π ∈ S decomposes N into disjoint cycles C1, C2, .... The corresponding
unordered sets B1, B2, . . . form a partition of N, which we denote part(π). If
and only if π ∈ S∞, all blocks of part(π) are finite. Let bj = limn

1
n |Bj ∩ [n]|

denote the limiting relative block sizes, called the asymptotic frequencies [7].
For a partition Ψ of N, let |Ψ |↓ be the vector of asymptotic frequencies, or-
dered by decreasing size. Then |Ψ |↓ is a sequence of non-negative numbers
which sum to 1. Denote the set of such sequences by Pm. Using the sequence
| part(π) |↓ as a sufficient statistic in Theorem 2.9 yields a “pull-back” of
Kingman’s paint-box theorem [7, Theorem 2.1] to virtual permutations:

Example 3.4 (Ergodic decomposition of virtual permutations). Define
a kernel p : Pm →M(S) as follows: A sequence s = (s1, s2, . . . ) ∈ Pm par-
titions the unit interval into intervals [

∑j
i=1 si,

∑j+1
i=1 si). A random draw

π from p( . , s) is obtained by drawing U1, U2, . . . ∼iid Uniform[0, 1]. Then
i, j ∈ N are in the same cycle of π if Ui, Uj are in the same interval of the
partition defined by s. If so, i precedes j on the cycle if Ui < Uj (Fig. 3).
For σ ∈ S∞, denote by λσ the conjugate action λσπ := σπσ−1 of σ on S.
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Corollary 3.5. Let Λ be the group of conjugations of S∞ and Y a Pol-
ish space. Let r : Y → M(S) be a probability kernel satisfying λσ#r =a.s. r
for all λσ ∈ Λ. Then r admits a unique decomposition

(3.7) r( . , y) =

∫
Pm

p( . , s)q(ds, y) ,

where p is defined as above and q = (| . |↓ ◦ part)
#
p.

If part( . ) is applied to both sides of (3.7), part#p is a paint-box kernel in
the sense of Kingman and part#r( . , y) the law of an exchangeable partition.
See [32] for related results stated in the language of harmonic functions.

3.3. Random Dense Graphs. We consider modeling problems where mea-
surements are finite graphs. An observed graph is assumed to be a partial
observation of an underlying, larger random graph of possibly infinite size.
This random graph is assumed exchangeable, i.e. its distribution is invariant
under relabeling of vertices. A suitable parameter space and the requisite
Polish topology on this space are obtained by the method of graph limits
[38, 39]; see also [5, 17].

Example 3.6 (Graphs as projective limits). Let L[n] be the set of la-
beled, undirected, simple graphs with vertex set [n]. Denote by ([n]

2 ) the
set of unordered pairs of elements in [n]. A graph x

[n]
∈ L[n] is a pair

x[n] = ([n], E(x[n])), where E(x[n]) ⊂ ([n]
2 ) is a set of edges. A random graph

X[n] is a graph-valued random variable X[n] : Ω→ L[n] with fixed vertex set
[n] and random edge set E(X[n]). We choose the index set Γ = {[n] |n ∈ N},
ordered by inclusion, and X[n] = L[n]. Define a projector L[n + 1] → L[n] as

(3.8) f[n+1][n](x[n + 1]) := ([n], E(x[n + 1]) ∩ ([n]
2 )) ,

which deletes vertex (n+ 1) and all associated edges from the graph x[n + 1].
A graph x[n] ∈ L[n] can be interpreted as a mapping x[n] : ([n]

2 )→ {0, 1}. Since
the spaces L[n] are product spaces, the projective limit is again a product
space, specifically,

(3.9) L[n]
∼= {0, 1}(

[n]
2 ) and XΓ = lim

〈
X[n]

〉
Γ

= {0, 1}(
N
2) = LN .

We endow LN with the product topology and the corresponding Borel sets
BΓ, and assume X = XΓ and F = IdLN in (2.2). Graphs obtained as pro-
jective limits are called dense (resp. sparse) if the number of edges scales
quadratically (resp. linearly) with the number of nodes as n increases.
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LetW be the set of all measurable, symmetric functions w : [0, 1]2 → [0, 1].
Any finite graph x[n] ∈ L can be represented by a function wx[n]

∈ W as
follows: Decompose the unit square into n intervals Ani := ((i − 1)/n, i/n],
and represent the graph by the indicator function

(3.10) wx[n]
(t, t′) :=

∑
(i,j)∈E(x[n])

IAni ×Anj (t, t′) .

Thus, each edge (i, j) corresponds to a patch Ani × Anj of the unit square,
and the function is non-zero on this patch iff (i, j) is present in the graph.
Since W ⊂ L1[0, 1]2 and step functions are dense in L1[0, 1]2, the space
(W, ‖ . ‖L1) can be regarded as the closure of all representations of graphs
in LN by functions of the form (3.10). Elements of W are called graphons in
the literature [17].

Any graphon w parameterizes a random graph Xw with values in LN.
The random set of edges (i, j) of Xw is generated by

(3.11) U1, U2, · · · ∼iid Uniform[0, 1] and (i, j) ∼ Bernoulli(w(Ui, Uj)) .

The graph Xw is dense unless w =a.s. 0. The parameterization by w is not
unique: Different functions w can determine the same random graph Xw

[38]. Define an equivalence relation ≡ on W by w ≡ w′ if Xw d
= Xw′ . We

consider the quotient space W :=W/ ≡ and write [w]≡ for the equivalence
class of w inW. The space W is compact and metrizable [39, Theorem 5.1].
The random graphs Xw can now be re-parameterized on W as Xw with
w := [w]≡ .

Example 3.7 (Exchangeable graph models). By means of (3.10), define
graph functionals wx[n]

:= [wx[n]
]≡ . The functionals are invariant under per-

mutations π ∈ Sn acting on the vertex labels of a graph and hence play a
role similar to that of the empirical measure for sequence data, preserving
all information bar label order. A random graph X with values in X = LN
is exchangeable if its law P = X#P satisfies π#P = P for every permutation
π ∈ S∞ acting on the set N of node labels. Clearly, wx[n]

is a sufficient statis-
tic for the set of exchangeable random graph distributions on L[n]. Denote
by v[n] the corresponding sufficient kernel. In the limit, application of The-
orem 2.9 yields a sufficient statistic formulation of a well-known result of
Aldous and Hoover [29, Theorem 7.22], which recently has received renewed
attention in the context of graph limits [38, 17].

Corollary 3.8. Define statistics S[n] : L[n] → W as x[n] 7→ [wx[n]
]≡,

and let v[n] be a sufficient kernel for the exchangeable laws on L[n] and S[n].
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The family
〈
S[n]

〉
Γ

admits a limit in the sense of (2.22), given by

(3.12) S : LN →W with x 7→ [wx]≡ .

The set MS,v, where v := lim
〈
v[n]

〉
Γ
, is the set of exchangeable random

graph distributions on LN. Its ergodic measures are characterized by (3.11),

(3.13) ES,v =
{
p( . ,w) := Law(Xw)

∣∣w ∈W
}
.

Let
〈
r[n] : Y →M(L[n])

〉
Γ

be a tight conditional promeasure with limit r. If
the kernels satisfy π#r[n] = r[n] for all permutations π[n] ∈ Sn, there exists
an a.s.-unique probability kernel q : Y →M(W) such that

(3.14) r( . , y) =

∫
W

p( . ,w)q(dw, y) .

One may now proceed to define nonparametric Bayesian models for graph-
valued data, in particular using conditional promeasures

〈
pI

〉
Γ

and
〈
qI

〉
Γ

defined in terms of exponential family models and their natural conjugate
priors. Theorem 2.7 then guarantees conjugate posteriors with updates of
the form (2.15). Several caveats are worth noting: (1) The evaluation of
many interesting graph statistics (e.g., is the graph 3-colorable?) is a com-
putationally hard problem; (2) the partition functions of parametric random
graph models can be computationally prohibitive; (3) seemingly meaningful
graph statistics can behave in an unexpected manner as the graph grows
large [11]; and (4) for many statistical problems, graphs should be sparse
not dense, but the analogous analytic theory of sparse graphs is still in its
early stages.

3.4. Random Functions. As a counter point to the discrete flavor of the
previous examples, we consider the estimation of a random function on a
continuous domain [e.g. 47, 50]. Suppose measurements xi ∈ R are recorded
at distinct covariate locations si ∈ [0, 1]. Each measurement

(3.15) xi = θi + εi

consists of a value θi corrupted by additive white noise εi with variance σ2.
We choose T = L2[0, 1] and the projective system

〈
TI, gJI

〉
Γ

=
〈
RI, prI

〉
Γ
.

Hence, TΓ = RN. For the embedding G, choose an orthonormal basis (ei)i∈N
of L2[0, 1], and define G : θ 7→ (

〈
θ, ei

〉
)i∈N. Each ei can be interpreted as a

sensor, recording measurement
〈
θ, ei

〉
. Specifically, for (3.15), we choose the

Dirac system ei = δsi . The mapping G is an isomorphism of the separable
Hilbert spaces L2[0, 1] and G(T) = `2. Equation (3.15) also implies XI = RI,
where I is a finite set of indices of covariate locations, and X = RN.
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Example 3.9 (Gaussian process prior). Denote by TC([0, 1]) the set of
all positive definite Hermitian operators of “trace class” on L2[0, 1], i.e. with
finite trace tr(Σ) < ∞. As in Example 2.6, fix Σ ∈ TC([0, 1]) and define
each kernel qI : RI →M(RI) as the location family of multivariate Gaussian
measures with covariance ΣI = (HI⊗HI)Σ, where HI = GI = prI◦G. To define
a white-noise observation model, let Σε be the diagonal positive definite
operator satisfying (pr{i} ⊗ pr{i})Σ

ε = σ2 for all si. Hence, Σε /∈ TC([0, 1])
for any σ > 0. Each kernel pI is now defined as the Gaussian location family
on RI with fixed covariance (prI ⊗ prI)(Σ

ε) and random mean ΘI.
An application of Lemma A.1(ii) shows

〈
pI

〉
Γ

and
〈
qI

〉
Γ

are conditional
promeasures. According to a well-known result on Gaussian processes on
Hilbert spaces [e.g. 50, Theorem 3.1], the space `2 has outer measure 1 un-
der Gaussian process measure on RN with mean m and covariance operator
Σ if m ∈ `2 and Σ ∈ TC([0, 1]). Thus, by Lemma A.2,

〈
qI

〉
Γ

is tight on
L2[0, 1]. By Theorem 2.5, the posterior under a finite number n of obser-
vations again concentrates on L2[0, 1]. As a projective limit of conjugate
exponential families, the model is conjugate by Theorem 2.7 and admits a
posterior update of the form (2.15). The marginal posterior indices TI which
define T in (2.15) correspond to the exponential family parameterization of
the multivariate Gaussian. If they are transformed to the standard parame-
terization, the resulting posterior index T of the limit model transforms into
the more commonly used update equation for Gaussian process posteriors
[e.g. 50, Eq. (3.2)].

4. Related work. We focus on work specifically related to our results
and refer to Hjort et al. [26] for references on Bayesian nonparametrics.

4.1. Projective limits in statistics. Projective limits are used throughout
mathematics to construct infinite-dimensional objects [8, 9]. In probability,
they are a standard tool in the construction of stochastic processes [12] and
large deviation theory [13]. In Bayesian nonparametrics, projective limits are
used implicitly in Gaussian process models, based on the classic work of Kol-
mogorov and Wiener [47, 1]. Various authors [e.g. 23, 25] have pointed out
technical problems arising in the application of projective limit constructions
in other settings, for example in the original construction of the Dirichlet
process Ferguson [19]. These problems are, in our terminology, caused by
neglect of tightness conditions. See [41] for a detailed discussion.

Projective limits of conditional probabilities and their applications in
statistics were pioneered by Lauritzen in his work on extremal families and
ergodic decompositions [36]. The questions considered by Lauritzen do not
require regularity of paths, and hence no notion of tightness; see Remark 2.10
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for details on his setting. Although Lauritzen’s framework is not Bayesian,
both the projective limit representation and Theorem 2.9 should be regarded
as a generalization of his ideas to nonparametric priors. By Lemma A.2, a
probability kernel p on X can be regarded as a pull-back of a kernel pΓ on
XΓ. In the classic terminology of Doob, certain special cases of such pull-
backs are called modifications [12, Chapter IV.24]. From this perspective,
and neglecting minor technicalities, the limit of a tight conditional promea-
sure can be interpreted as a modification (with paths in X) of the limit of
a projective statistical field.

4.2. Ergodic decompositions. Research on ergodic decompositions was
initiated by de Finetti’s theorem [28, Theorem 11.10]. Varadarajan showed
that the result generalizes from invariance under permutations to invariance
under any locally compact, second countable group [e.g. 29, Theorem A1.4].
Hence, ergodic decompositions are induced by symmetries; see [29] for a
probabilist’s account. From a statistical point of view, invariance under a
transformation group and sufficiency of a statistic both express similar con-
cepts, namely which aspects of data do not distinguish between different
measures and hence are irrelevant to the estimation process. A number of
authors established that ergodic decompositions can indeed be induced by
sufficient statistics rather than a group, see [14, 36, 15] for references. Lau-
ritzen’s formulation [36] is arguably the most powerful; our Theorem 2.9 is
an adaptation of Lauritzen’s ergodic decomposition to Bayesian nonpara-
metric models on embedded spaces. Under a natural regularity condition,
parametric exponential family models emerge as a special case [35, 16]. Re-
cent results in descriptive set theory further clarify the relationship between
symmetry and sufficiency: Both the orbits of a group or the fibers of a suf-
ficient statistic partition X into equivalence classes, and it is this partition
which induces the integral decomposition [31, Theorem 3.3]. If in particular
each fiber of S is a countable set, there exists a countable group with the
fibers as its orbits [31, Theorem 1.3].

4.3. Posterior properties and conjugacy. Conjugacy has long been used
in parametric Bayesian statistics, where it is also known as closure under
sampling. The distinction between conjugacy and parametric conjugacy is
recent [37]—perhaps surprisingly so, considering its importance in Bayesian
nonparametrics. The late emergence of this nomenclature is arguably due to
the fact that closure under sampling and parametric conjugacy coincide for
parametric models, up to pathological cases. Not so in the nonparametric
case, where neutral-to-the-right priors [26], for instance, provide a non-trivial
example of a model class which is closed under sampling but not paramet-
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rically conjugate. However, no systematic study of conjugacy seems to be
available in the Bayesian nonparametric literature to date, notwithstanding
its widely acknowledged importance [49, 26].

Kim [34] elegantly used conjugacy to derive convergence properties of the
posterior. More generally, asymptotic properties of a range of nonparamet-
ric posteriors have been clarified in recent years. Examples include Dirich-
let process mixtures [24] and Gaussian process models for nonparametric
problems [47] and semiparametric problems [10]. See [26, Chapter 2] for
an introduction. The weak convergence property (2.6), which is obtained
by a Cramér-Wold device for projective limits due to Pollard [44], cannot
substitute for such results, because it neglects a null set of the prior.

4.4. Applications. The space S of virtual permutations in Sec. 3.2 was
introduced by Kerov et al. [33], motivated by asymptotic representation
theory problems. We refer to Arratia et al. [4, Chapter 1] for a clear intro-
duction to random permutations and their properties and to Bertoin [7] and
Schweinsberg [46] for background on exchangeable random partitions.

The random dense graphs in Sec. 3.3 are based on the construction of
Lovász and Szegedy [38, 39]. Austin and Tao [6] develop similar construc-
tions for hypergraphs. In each, versions of a result of Aldous and of Hoover
on exchangeable arrays [e.g. 29, Chapter 7] play a key role, although they
appear in various shapes and guises. Corollary 3.8 can be regarded as a sta-
tistical formulation of this result. Equivalences between [38] and the Aldous-
Hoover theorem are established by Diaconis and Janson [17] and Austin [5].
Since all these results can ultimately be traced back to de Finetti’s theo-
rem, it is interesting to note how closely the “recipes” formulated in [5, 6]
resemble a Bayesian sampling scheme. See [2, 5] for further references.

The construction of random probability measures in Sec. 3.1 follows [41],
but is in essence due to Ferguson’s construction of the Dirichlet process [19].
The approach is mostly of interest in the context of random measures which,
unlike the Dirichlet process, do not admit a stick-breaking construction; see
[41] for further examples. Two distinct constructions can be considered for
the Gaussian process, depending on whether the limit measure is meant to
concentrate on a space of continuous or a space of square-integrable func-
tions. Both constructions are due to the classic work of Kolmogorov, Doob
and Wiener; the L2 construction in Sec. 3.4 follows Zhao [50].

APPENDIX A: PROOFS

We first state some auxiliary results to simplify the work with conditional
promeasures; their proofs are deferred until the end of this section. The first
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lemma helps determine whether a family
〈
pI

〉
Γ

is a conditional promeasure.

Lemma A.1. Let
〈
pI : Ω→M(XI)

〉
Γ

be a family of probability kernels

on a projective system
〈
XI, fJI

〉
Γ
, and let XI : Ω→ XI be random variables.

(i) Let
〈
CI

〉
Γ

be a filtration, i.e. CI ⊂ CJ if I � J . If pI =a.s. P[XI ∈ . |CI] for

all I ∈ Γ, then
〈
pI

〉
Γ

is a conditional promeasure iff

(A.1) fJI ◦XJ

d
= XI and XI⊥⊥CICJ for all I � J .

(ii) Let I be a countable set. For each i ∈ I, let X{i} be Polish and ν{i} a σ-
finite measure on X{i}. For each finite I ⊂ I, let pI be a probability kernel on
XI :=

∏
{i}∈I X{i}. If each pI has a conditional density pI(xI|θI) with respect

to νI := ⊗{i}∈Iν{i}, the family
〈
pI

〉
Γ

is a conditional promeasure iff

(A.2)

∫
XJrI

pJ(xJ|θJ)dνJrI(xJrI) =a.s. pI(xI|fJIθJ)

for νI-almost all xI ∈ XI and whenever I � J .

Tightness can be restated as an outer measure condition. In the next
lemma, p∗Γ( . , ω) denotes the outer measure defined by the measure pΓ( . , ω).
Recall that the pull-back F#pΓ( . , ω) exists if pΓ(FX, ω) = 1.

Lemma A.2. (i) A conditional promeasure
〈
pI

〉
Γ

is tight on a Hausdorff
space X if and only if

(A.3) p∗Γ(FX, ω) = 1 P-a.s.

In this case, the restriction of p to the sub-σ-algebra F−1B(XΓ) of B(X)
coincides with the pull-back F#pΓ. Conversely, F#pΓ determines p uniquely.
(ii) If X is Polish, FX is measurable in XΓ, and p∗Γ reduces to pΓ in (A.3).

It can therefore be convenient to construct p in two stages, by first con-
structing pΓ on XΓ, followed by a pull-back to X.

Several proofs are considerably simplified by working with parameterized
families of random variables, rather than with kernels:

Lemma A.3. Let X and T be Polish embedded spaces and p : T→M(X)
a probability kernel.
(i) For any probability measure νI on XI, there exists a random variable
ξF

I : XI → X for which ξF
I (xI) ∈ F−1

I (xI) holds νI-a.s.
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(ii) There exists a measurable mapping X̃ : Ω × T → X which defines a
family of random variables

(A.4) Xθ(ω) := X̃(ω, θ) with Law(Xθ) = p( . , θ) for all θ ∈ T .

This result is valid for any measurable space T.
(iii) Let X : Ω → X and XI : Ω → XI be random variables. If FIX

d
= XI,

there is a random variable X ′I : Ω→ XI such that

(A.5) FIX =a.s. X
′
I and X ′I

d
= XI .

The same holds mutatis mutandis for XJ : Ω→ XJ if fJIXJ

d
= XI.

(iv) Let p = F# lim
〈
pI ◦GI

〉
Γ

for kernels pI : TI →M(XI). Then the corre-

sponding mappings X̃ and X̃I in (A.4) can be chosen such that

(A.6) FI ◦Xθ =a.s. X̃I( . ,GIθ) for all I ∈ Γ .

A.1. Proof of Theorem 2.3. Condition (2.4) holds for all ε > 0 if
and only if it holds for a dense sequence εi ↘ 0 in R+. For each εi, let N i

ε

be the null set of exceptions. Similarly, for each pair I � J in the countable
index set Γ, let NJI be the null set of exceptions up to which fJI#pJ =a.s. pI

in (2.3) holds. Denote the aggregate null set by N :=
⋃
iN

i
ε ∪

⋃
I�J NJI.

(1) Construction of p. Prokhorov’s theorem on projective limits of mea-
sures [9, IX.4.2, Theorem 1] is applicable point-wise in ω ∈ Ω′rN . Hence,
there exists for fixed ω a unique Radon measure p( . , ω) on X satisfying
FI#p( . , ω) = pI( . , ω) for all I, i.e. a measure-valued function p : Ω′rN →
M(X) satisfying (2.5). We must extend p to Ω′. Prokhorov’s theorem addi-
tionally guarantees

(A.7) p(K,ω) = inf
I∈Γ

pI(FIK,ω) ω ∈ Ω′rN ,

for any fixed compact set K ⊂ X (see [9, IX.4.2, Theorem 1] and [9, IX.1.2,
Corollary 2 of Proposition 7], and note that FIK is compact and hence
measurable). To extend the function p(K, . ) from Ω′rN to Ω′, define
p(K,ω) := inf I pI(FIK,ω) for each ω ∈ N if K is compact. On a Haus-
dorff space, a probability measure is completely determined by its values
on compact sets [9, IX.1.2, Corollary of Proposition 7], which completes the
construction.
(2) Measurability. Since each pI : Ω′ →M(XI) is CI-measurable, (2.3) im-
plies fJI#pJ is measurable with respect to the P-completion CI [28, Lemma
1.25]. Hence, again by (2.3), the family (CI)I is a filtration indexed by Γ.
Since further CT = lim supI CI [21, Proposition 7.2.4] and CΓ = σ(CI; I ∈ Γ),
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all pI are measurable with respect to CΓ = CT. Therefore, the infimum
ω 7→ p∗(FIK,ω) in (A.7) is CΓ-measurable for each compact K. Since the
compact sets determine p( . , ω) unambiguously, p is a CΓ-measurable prob-
ability kernel Ω′ → M(X) satisfying (2.5), and unique outside the null set
N . Hence, it has both a CΓ-measurable and a CT-measurable version [28,
Lemma 1.25].
(3) Radon values. For ω 6∈ N , the measure p( . , ω) is a Radon measure by
Prokhorov’s theorem [see 22, 418M].

A.2. Proof of Theorem 2.5. Part (i). We first observe there are ran-
dom variables X : Ω→ X and Θ : Ω→ T such that

(A.8) p =a.s. P[X ∈ . |Θ] and q =a.s. P[Θ ∈ . |Y ] .

To verify (A.8), denote the mappings guaranteed by Lemma A.3(ii) as
Θ̃ : Ω×Y →M(T) for q and as X̃ for p, and choose

(A.9) X(ω) := X̃(ω, Θ̃(ω, y)) and Θ(ω) := Θ̃(ω, y) for y ∈ Y .

Part (i). Fix any y ∈ Y. Let X and Θ be random variables corresponding
to the kernels p and q( . , y) as in (A.9), and define µy := Law(X,Θ). Thus,
q̂y is a version of µy[Θ ∈ . |X]. Now

(A.10) GI#µ
y[Θ ∈ . |X] = µy[Θ ∈ G−1

I . |FIX,X] = P[ΘI ∈ . |XI, X] ,

where the last identity holds since (FIX,GIΘ)
d
= (XI,ΘI) by construction.

By Lemma A.1(i), P[ΘI ∈ . |XI, X] = P[ΘI ∈ . |XI], and hence

(A.11) P[GIΘ ∈ . |FIX = xI] =a.s. q̂( . , xI, y) .

Therefore, q̂y(G−1
I . , x) =a.s. q̂I( . ,FIx, y), which by Theorem 2.3 implies that〈

q̂I

〉
Γ

is tight on T. By a.s.-uniqueness of the limit, q̂y( . , x) =a.s. q̂( . , x, y).

Part (ii). Abbreviate µn := q̂y( . , X(n)) and µ := q̂y( . , X). We have to show
weak convergence µn

w−−→ µ holds almost surely under the law of X. A result
of Pollard [44, Theorem 1] shows that weak convergence GI#µn

w−−→ GI#µ
of the marginal sequences on all space TI, I ∈ Γ, implies weak convergence
on T. The hypotheses of Pollard’s results—mild topological properties and
τ -additivity of the limit measure—are satisfied since T is Polish.

Since
〈
q̂I

〉
Γ

is a conditional promeasure, GI#(q̂y( . , x)) =a.s. (GI#q̂
y)( . ,FIx).

Therefore, FInX
(n) =a.s.xIn =a.s. FInX implies

(A.12) ∀m ≤ n : GIm#
µn = GIm#

µ P-a.s.
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Since (In) is cofinal, there exists for each I a sufficiently large m such that
I � Im, and hence a sufficiently large n such that GI#µn =a.s. GI#µ. In

particular, GI#µn
w−−→ GI#µ weakly in M(TI) a.s. for all I ∈ Γ, and almost

sure weak convergence µn
w−−→ µ follows by [44, Theorem 1].

A.3. Proof of Theorem 2.7. In the following, let Xθ and XθI
I denote

the variables (A.4) for p and pI. Hence, S is sufficient for p with sufficient
kernel v iff P[Xθ ∈ . |S = s] =a.s. v( . , s).

Part (i). Suppose first that (SI,vI) are sufficient for pI for each I ∈ Γ. Define
probability kernels p′I and q′ as

(A.13) p′I( . , x) := P[SI ∈ . |XI = xI] = δSI(xI)( . ) and q′I := pI .

Then (2.9) implies that
〈
p′I
〉

Γ
is a conditional promeasure and tight on S,

with limit p′( . , x) = δS(x)( . ). Now regard (p′I,q
′) as a Bayesian model and

apply Theorem 2.5, with (p′I,q
′
I) substituted for (pI,qI): The posterior q̂′I is

(A.14) q̂′I( . , sI, θI) =a.s. P[XI ∈ . |SI = sI,ΘI = θI] =a.s. vI( . , sI) .

Since
〈
vI ◦ EI

〉
Γ

is a conditional promeasure by hypothesis, it is tight on X

by Theorem 2.5(i). Hence, v := F# lim
〈
vI ◦ EI

〉
Γ

is a conditional probability
of X given S. Since v( . , s) =a.s. q̂( . , s, θ) by a.s.-uniqueness in Theorem 2.3,
S is sufficient for p with sufficient kernel v.

Conversely, suppose (S,v) is sufficient for the limit model p. We must
construct a sufficient kernel vI for each pI and SI. By Lemma A.3(i), there
are measurable mappings ξE

I : SI → S and ξG
I : TI → T with ξE

I (xI) ∈ F−1
I {xI}

and ξG
I (θI) ∈ G−1

I {θI}. Define vI( . , sI) := v(F−1
I . , ξE

I (sI)). Then vI is a
measurable mapping SI → M(XI) and satisfies vI( . ,EIs) = FI#v( . , s) as

required. Now condition pI on the limit S. Since XθI
I (ω) =a.s. FIX̃(ω, ξG

I (θI))
by Lemma A.3(iv), we have

P[XθI
I ∈ AI|S = s] =a.s. P[X̃( . , ξG

I (θI)) ∈ F−1
I AI|S = s] =a.s. v(F−1

I AI, s) .

Therefore, since SI = EI ◦ S,

(A.15) P[X̃( . , ξG
I (θI)) ∈ F−1

I AI|EI ◦ S = sI] =a.s. vI(AI, sI) .

Hence, SI is sufficient for pI with sufficient kernel vI.

Part (ii). Suppose first posterior indices TI are given, hence q̂I = uI ◦ TI for
each I. Therefore,

〈
uI

〉
Γ

is a conditional promeasure of kernels ŶI →M(TI)
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and tight on T. Hence, u := G# lim
〈
uI

〉
Γ

satisfies, for any cylinder set G−1AI

in T,

q̂(G−1
I AI, x, y) =a.s. q̂I(AI,FIx,HIy) =a.s.uI(AI, TI(FIx,HIy))

=a.s.u(G−1
I AI, x, y) .

(A.16)

Since the cylinder sets determine u by Lemma A.2, we have q̂ =a.s. u ◦ T .
Conversely, let T be a posterior index. Let ξĤ

I be the mapping guaran-
teed by Lemma A.3(i) for ĤI. Then the kernels uI : ŶI →M(TI) defined
by uI(AI, ŷI) := u(G−1

I AI, ξ
Ĥ
I ŷI) satisfy q̂I =a.s. uI ◦ TI, hence TI is a posterior

index for the posterior q̂I.

A.4. Proof of Theorem 2.9. Lauritzen [36] and Diaconis and Freed-
man [14] give proofs for the cases X = XΓ and X = XN

0 , respectively. Rather
than adapting their derivations, which proceed from first principles, to the
case of embedded spaces, we obtain a concise proof by reduction to results
in functional analysis.

Recall a few definitions: Denote byBb(X) and Cb(X) the spaces of bounded
Borel measurable and bounded continuous functions on X. A probability ker-
nel v : S→M(X) defines a Markov operator P : Bb(X)→ Bb(S) by means
of (Pf)(s) =

∫
f(x)v(dx, s). Its norm adjoint P′ : M(S)→M(X) acts on

ν ∈ M(S) by means of (P′ν)(A) =
∫
S v(A, s)ν(ds), for A ∈ B(X). If

µ ∈M(X) is a probability measure, a measurable set A is called µ-invariant
if v(A, . ) = IA( . ) µ-a.s. The measure µ is called P-invariant if P′µ = µ,
and P-ergodic if µ(A) ∈ {0, 1} whenever A is µ-invariant. See [3] for an
accessible exposition.

Measures in MS,v are invariant. A measure µ is in MS,v iff v is a version
of the conditional probability µ[ . |S], and hence iff µ =

∫
v( . , S(x))µ(dx).

If we therefore define a kernel vX : X→M(X) as vX( . , x) := v( . , S(x)),
and PX as its Markov operator, the measures µ ∈ MS,v are precisely the
PX-invariant measures µ = P′Xµ.
Convexity and extreme points. A standard ergodic result for metrizable
spaces [3, Theorem 19.25] states that the set of PX-invariant measures of
a Markov operator PX is convex with the PX-ergodic measures as its ex-
treme points. Thus, MS,v is convex and ex(MS,v) = ES,v. What remains to
be shown is ES,v = ∆S,v: Suppose first η ∈ ∆S,v with S#η = δsη . Then
η = v( . , sη), and as a conditional probability given S, v is 0-1 on S.
Conversely, let η ∈ ES,v and suppose η /∈ ∆S,v. Then S#η assigns positive
mass to all open neighborhoods of two distinct points s1, s2 ∈ S, therefore
v( . , s1) = η = v( . , s2), which contradicts η ∈ ex(MS,v). Hence, (2.20).
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τ is a Borel isomorphism. Let η1, η2 ∈ ES be distinct ergodic measures. The
set {η1, η2} inherits S as a sufficient statistic from MS,v. Consider random
variables X1 ∼ η1 and X2 ∼ η2. Since S× S has measurable diagonal,

(A.17) (η1 ⊗ η2){S(X1) 6= S(X2)} > 0 ,

so τE is injective. Both S and M(X) are Polish and v : S→M(X) is mea-
surable. If v is invertible on a subset A ∈ B(S), then by [30, Corollary 15.2],
the restriction v|A of v to A is a Borel isomorphism of A and its image
v(A) ⊂ M(X). By construction, v( . , τ(η)) = η( . ), so T is precisely the
preimage T = v−1(E) and measurable in S. The restriction v|T is injective
since v|T = τ−1, and τ is therefore a Borel isomorphism. This also implies
T is a standard Borel space [28, Theorem A1.2].
Existence of decomposition. Since MS,v is not generally compact, we appeal
to a non-compact generalization of Choquet’s theorem [48, Theorem 1]: The
integral decomposition (2.21) exists if (1) MS,v is convex and weakly closed
and (2) all measures in MS,v are Radon measures [48, Corollary 1]. Weak
closure holds by hypothesis and MS,v contains only Radon measures since
X is Polish. Hence, the representation (2.21) exists for almost all y.
Uniqueness of decomposition. Suppose q1 and q2 are two kernels satisfying
(2.21). Let Θy

1 and Θy
2 be the respective mappings with Law(Θy

i ) = qi( . , y)

as guaranteed by Lemma A.3. Then by (2.21), p ◦ Θy
1

d
= p ◦ Θy

2. Since p
is injective with inverse τ , we obtain q1 =a.s.q2. Let additionally Xy

r and
Xθ

p be variables with laws r( . , y) and p( . , θ) as in Lemma A.3. Then by

definition of T, we have S ◦Xθ
p(ω) = θ for all ω ∈ Ω, and hence

(A.18) Xy
r

d
= XΘy

p ⇒ S ◦Xy
r

d
= Θy ⇒ q = S#r .

A.5. Proof of Proposition 2.12. We first note that f ∈ Cb(X) im-
plies PXf ∈ Cb(X): Since S and all kernels pI are continuous, the projec-
tive limit v and hence vX are also continuous. Consequently, PX preserves
bounded continuity [3, Theorem 19.14]. We write 〈f, µ〉 :=

∫
fdµ. By defi-

nition, 〈Pf, µ〉 = 〈f,P′µ〉. Suppose a sequence µn ∈MS,v converges weakly

to µ ∈M(X), or equivalently, 〈f, µn〉
n→∞−−−→ 〈f, µ〉 for all f ∈ Cb(X). Then〈

f,P′Xµ
〉

= 〈PXf, µ〉 = lim
n
〈PXf, µn〉 = lim

n

〈
f,P′Xµn

〉
= lim

n
〈f, µn〉 = 〈f, µ〉 .

Since X is metrizable, 〈f,P′Xµ〉 = 〈f, µ〉 for all f ∈ Cb(X) implies P′Xµ = µ
[3, Theorem 15.1]. Hence, MS,v is closed under weak limits.
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A.6. Proof of Proposition 3.3. As a projective limit of finite and
hence Polish groups, S is Polish. Since X = S∞ is embedded by the inclusion
map, we need to know that S∞ is Polish in a topology which makes the
inclusion mapping continuous. The relative topology ensures continuity since
it is generated by the mapping. Since ψ : S →

∏
n∈N is a homeomorphism,

the relative topology is equivalently given by the relative topology of ψ(S∞)
in NN, which is just the usual Polish topology on S∞ [30, Sec. 9B]. Therefore,
Theorem 2.7 is applicable, and the form of the posterior follows immediately
if we can show that

〈
pn
〉

Γ
and

〈
qn
〉

Γ
are tight conditional promeasures.

Both families are conditional promeasures. We use Lemma A.1(ii). Let I := [n]
and J := [n+ 1]. For πI = σk1(1) · · ·σkn(n), the fiber f−1

JI πI consists of all
permutations σk1(1) · · ·σkn(n)σm(n + 1) with m ∈ J . Fix θJ ∈ TJ and set
θI := prJIθJ. Then

(A.19) pJ(f
−1
JI πI, θJ) = pI(πI, θI)

1 +
∑n
m=1 e

−θ(n+1)

1 + ne−θ
(n+1)

= pI(πI, θI) .

Under ψI, the previous equation becomes (prJI ◦ ψJ)#
pJ( . , θJ) = ψI#pI( . , θI),

which establishes (A.2). Since each ψI is a kernel on the product space∏
m∈I [m], Lemma A.1(ii) is applicable and shows

〈
ψI#pI

〉
Γ

is a conditional

promeasure. By (3.3), so is
〈
pI

〉
Γ

under fJI. For the priors qI, which live on
the product spaces Rn−1, application of Lemma A.1(ii) straightforward.
Tightness of

〈
pI

〉
Γ
. A virtual permutation π is in S∞ iff it permutes only

a finite number of elements, and hence iff
∑
jW

(j)(π) <∞. If the sum di-

verges, π contains an infinite cycle. The random variables W (j)(π) are in-
dependent under the model [20]. By the Borel-Cantelli lemma, the sum
converges iff the sum of probabilities Pr{W (j)(π) = 1} converges, and hence
iff θ ∈ G−1`1(0, 1).

Tightness of
〈
qI

〉
Γ
. It suffices to show θ(j) j→∞−−−→ +∞ holds almost surely;

then Gj(θ
(n)) → 0 at exponential rate by (3.5), and G(θ) ∈ `1. Since each

qI is a natural exponential family model, γ(j) = E[Θ(j)]. The assumption
γ ∈ G−1`1 hence implies E[Θ(j)

Γ ] > ε for any ε > 0 and a cofinite number
of indices j. The random variables Θ(j) are independent given (λ, γ). By
Kolmogorov’s zero-one law, P{(Θ(j))j diverges} ∈ {0, 1}. Since the expected
sequence diverges, the probability of divergence is non-zero, and G(θ) ∈ `1
almost surely.

A.7. Proof of Corollary 3.5. To derive the result from Theorem 2.9,
let M ⊂ M(S) be the set of all distributions on S which are invariant
under conjugation. The set M can trivially be regarded as a probability ker-
nel k : M →M(S), by choosing k as the canonical injection. Denote by fn
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the canonical mapping S→ Sn given by the projective system, and define
kn := fn#k. We first have to show that

〈
kn : fnM →M(Sn)

〉
Γ

is a condi-
tional promeasure: We use the cycle structure as a sufficient statistic. Let
C1, . . . , Cn be the (possibly empty) cycles of πn ∈ Sn, arranged by decreasing
size. We define Sn(πn) := 1

n(|C1|, . . . , |Cn|) on Sn, and S : π 7→ |part(π) |↓ on
S. Thus, Sn is sufficient for fnM and depends on πn only through the in-
duced partition. If Law(πn) = kn( . , sn), we therefore have πn⊥⊥SnSn+1, and〈
kn
〉

Γ
is a conditional promeasure by Lemma A.1(i).

Since the random partitions induced by elements of M are exchangeable,
their asymptotic frequencies limn

1
n |Bj ∩ [n]| exist by Kingman’s theorem [7,

Theorem 2.1]. In other words,
〈
Sn
〉

Γ
admits a limit limn→∞ Sn(fnπ)→ S(π)

in the sense of (2.22), and Theorem 2.9 is applicable. The distributions
v( . , s) are clearly invariant under conditioning on S, and S(π) = s almost
surely if π is distributed according to v( . , s). Since S is sufficient for M , the
set M can contain only one distribution with this property for each value of
s; since there is a distinct distribution p( . , s) in M for each s, the measures
p( . , s) are the only elements of M invariant under conditioning on S.

A.8. Proof of Corollary 3.8. The space S = W is Polish as required:
It is a compact metric space [39, Theorem 5.1], and therefore complete [3,
Theorem 3.28] and separable [3, Lemma 3.26].
The set MS,v consists of the exchangeable laws. The family

〈
S[n]

〉
Γ

admits a
limit since, by definition,

(A.20) lim
n→∞

S[n](wx[n]
) = lim

n→∞
wx[n]

= wx = S(x) .

Representations in W do not distinguish homomorphic graphs, and therefore
S ◦ π = S. On the other hand, representations are by definition unique up to
homomorphy, hence S(x) 6= S(x′) unless x and x′ are homomorphic. Hence,
MS,v consists of the exchangeable laws in M(LN).
The set MS,v is weakly closed. To apply Theorem 2.9, we must show MS,v

is closed. To this end, let P (n) ∈MS,v be a sequence of measures which
converges weakly to some P ∈ M(LN). We have to show that π#P = P .
Since the weak topology is generated by the evaluation functionals FA
for A ∈ B(LN), weak convergence P (n) ⇒ P is equivalent to convergence
FA#P

(n) → FA#P in [0, 1] for all A ∈ B(LN). Therefore,

(A.21) lim FA#(π#P
(n)) = lim FπA#P

(n) = FπA#P = FA#(π#P )

and hence P = limP (n) = lim(π#P
(n)) = π#P . The limit P is thus again ex-

changeable, and MS,v is closed.
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Ergodic measures and decomposition. By (2.20), a random graph X with
distribution P ∈MS,v is ergodic iff S(X) =a.s. w for some w ∈W. The ran-
dom graphs Xw satisfy S(Xw) =a.s. w by construction. Conversely, suppose
X is exchangeable and S(X) =a.s. w. Then the laws of X and Xw are iden-

tical up to homomorphy of samples. Since both are exchangeable, X
d
= Xw,

which shows all ergodic measures are of the form Law(Xw). The integral
decomposition (3.14) now follows from (2.21).

A.9. Proof of Lemma A.1. Part (i). Suppose first (A.1) holds. By
the properties of conditional independence [28, Proposition 6.6],

(A.22) XI⊥⊥CICJ ⇔ P[A|CI, CJ] =a.s. P[A|CI] for all A ∈ σ(XI) .

By Lemma A.3(iii), fJIXJ

d
= XI implies we can replace XJ by another vari-

able X ′J
d
= XJ satisfying fJIX

′
J =a.s. XI, and the assertion follows:

(A.23) pJ(f
−1
JI AI, ω) = P[X−1

I AI|CJ]
(A.22)

= pI(AI, ω) P-a.s.

Conversely, assume
〈
pI

〉
Γ

satisfies (2.3), hence pJ(f
−1
JI AI, ω) =a.s. pI(AI, ω)

for all AI ∈ B(XI). Since the kernels pI are conditional distributions of the
variables XI, integrating out ω under P yields P{fJIXI ∈ AI} = P{XI ∈ AI}
for all AI, and therefore fJIXJ

d
= XI.

Part (ii). By substitution into Corollary (2.4), the family
〈
pI

〉
Γ

is a condi-
tional promeasure iff the densities satisfy∫

pr−1
JI AI

pJ(xJ|θJ)dνJ(xJ) =

∫
AI

pI(xI|prJIθJ)dνJ(xJ) for AI ∈ BI ,(A.24)

and (A.2) follows by Fubini’s theorem.

A.10. Proof of Lemma A.2. Only (i) requires proof. Part (ii) then
follows immediately: As a countable projective limit of Polish spaces, XΓ is
Polish. F is hence an injective, measurable mapping between Polish spaces,
which implies its image FX is a Borel set in XΓ [42, Theorem I.3.9].

Equation (A.3) implies tightness. Suppose p∗Γ(FX, ω) = 1 holds for all ω up
to a null set N . For ω ∈ ΩrN , the measure pΓ( . , ω) has a uniquely defined
pull-back measure on F−1BΓ [22, 234F]. In general, F−1BΓ is only a sub-
σ-algebra of B(X). However, the proof of Prokhorov’s extension theorem
shows that, if the mappings FI satisfy the conditions (2.1), then any mea-
sure on F−1BΓ has a unique extension to a measure on B(X) (see e.g. parts
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(a) and (d) of the proof of Theorem 418M in [22]). Hence, F#pΓ( . , ω) de-
fines a unique probability measure p( . , ω) on B(X). Clearly, FI#p( . , ω) =
fI#pΓ( . , ω) = pI( . , ω). By Prokhorov’s theorem [9, IX.4.2, Theorem 1],
such a measure only exists if the family of measures

〈
pI( . , ω)

〉
Γ

satisfies

(2.4). Since this holds whenever ω 6∈ N , the conditional promeasure
〈
pI

〉
Γ

is
tight.
Tightness implies (A.3). Suppose

〈
pI

〉
Γ

is tight. The outer measure condition
p∗Γ(FX, ω) = 1 is equivalent to

(A.25) ∀A ∈ BΓ : p∗Γ(A,ω) = 0 whenever A ⊂ XΓrFX ,

see [22, 132E]. Fix ω ∈ Ω. Let K ⊂ FX be any compact set and write
CI := XIrFIK. Then A ⊂ XΓrFX implies A ⊂ ∪If

−1
I CI. We observe two

properties of the sets f−1
I CI: (1) They are open, since FI is continuous,

which makes FIK compact. (2) They satisfy f−1
I CI ⊂ f−1

J CJ whenever I �
J , because I � J implies f−1

J FJK ⊂ f−1
I FIK. On a family of sets with

properties (1) and (2), any outer measure P ∗ satisfies

(A.26) P ∗
(
∪If
−1
I CI

)
= sup

I

P ∗(f−1
I CI)

by [9, IX.1.6, Cor. of Prop. 5]. For any ε > 0, there is by hypothesis a
compact set K ⊂ X satisfying (2.4). By (A.26), for almost all ω,

p∗Γ(A,ω) ≤ p∗Γ(∪If
−1
I (XIrFIK), ω) = sup

I

p∗Γ(f−1
I (XIrFIK), ω)

= sup
I

p∗I (XIrFIK,ω) ≤ ε .
(A.27)

Hence, pΓ(A,ω) =a.s. 0 whenever A ∩ FX = ∅, and (A.3) holds.

A.11. Proof of Lemma A.3. (i) If the graph gr(FI) ⊂ XI ×X of FI

is measurable, then by [28, Theorem A1.4], ξF
I exists and is well-defined on

the image prIgr(FI) under projection onto XI. As a measurable mapping
between Polish spaces, FI has a BI ⊗ B(X)-measurable graph [3, Theorem
12.28]. Since FI is surjective, prIgr(FI) = XI, and hence ξF is well-defined on
the entire space XI.
(ii) is a result given by Kallenberg [28, Lemma 3.22].
(iii) is an application of [28, Corollary 6.11].

(iv) Since p = F# lim
〈
pI

〉
Γ
, the relations (2.5) imply FI ◦Xθ d

= X̃I( . ,GIθ),
and (A.6) follows from (ii).

APPENDIX B: PROJECTIVE LIMITS

Projective limits (or inverse limits) are widely used in pure mathematics
and probability. Standard references are [8, 9, 12].
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Index sets. Dimensions are indexed by a countably infinite, partially ordered,
directed index set (Γ,�). Here, directed means that, for any two I, J ∈ Γ
there is a K ∈ Γ for which I � K and J � K. A sequence I1, I2, · · · ∈ Γ is
cofinal if, for any J ∈ Γ, there is an n ∈ N with J � In. Since Γ is countable,
it contains a cofinal sequence.
Projective limits of spaces. Let

〈
XI

〉
Γ

be a system of topological spaces in-
dexed by Γ. Let fJI : XJ → XI, for I � J , be continuous, surjective mappings
satisfying fII = IdTI

and fKI = fJI ◦ fKJ whenever I � J � K. We call the
functions fJI generalized projections and the collection

〈
XI, fJI

〉
Γ

a projective

system. Directed sets generalize sequences (xn)n to nets
〈
xI

〉
Γ
, i.e. to map-

pings I 7→ xI ∈ XI from indices to points. The set of all nets is the product
set

∏
I∈Γ XI. The subset XΓ := lim

〈
XI, fJI

〉
Γ

of all nets satisfying fJIxJ = xI

whenever I � J is called the projective limit set. If xΓ :=
〈
xI

〉
Γ

is an element
of XΓ, the assignment fI : xΓ 7→ xI is a well-defined mapping XΓ → XI, called
a canonical mapping. If each space XI carries a topology TopI and a Borel
σ-algebra BI, the canonical mappings induce a projective limit topology TopΓ

and a projective limit σ-algebra BΓ on XΓ. These are the smallest topology
and σ-algebra which make all canonical mappings continuous and measur-
able, respectively. They satisfy BΓ = σ(TopΓ). The projective limit space is
the set XΓ endowed with TopΓ and BΓ [8, I.4.4]. The projective limit of a
sequence of Polish spaces—i.e. Γ is countable and totally ordered—is Polish
[30, §17D]. Since any countable directed set contains a cofinal sequence, a
countable projective limit of Polish spaces is also Polish.
Projective limits of mappings and measures. Let

〈
X′I, f

′
JI

〉
Γ

be a second pro-
jective system also indexed by Γ. If wI : XI → X′I is a family of measurable
mappings with wI ◦ fJI = f ′JI ◦ wJ whenever I � J , there is a unique and
measurable mapping wΓ : XΓ → X′Γ satisfying wI ◦ fI = f ′I ◦wΓ. Such a fam-
ily is called a projective family of mappings with projective limit wΓ. If each
wI is injective, or bijective, or continuous, then so is the projective limit wΓ

[8].Similarly, any family
〈
PI

〉
Γ

of probability measures satisfying the equa-
tions fJI(PJ) = PI is called a projective family, and has a unique projective
limit measure PΓ on (XΓ,B(XΓ)) satisfying fI(PΓ) = PI for all I [9, IX.4.3,
Theorem 2]. To emphasize the fact that the measures PI completely defines
PΓ, a projective family

〈
PI

〉
Γ

is also called the weak distribution of a random
variable XΓ ∼ PΓ, or a promeasure [9].
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