Bayesian Nonparametrics
Part I

Peter Orbanz



Today

1. Basic terminology
2. Clustering

3. Latent feature models

Tomorrow

5. Constructing nonparametric Bayesian models
6. Exchangeability
7. Asymptotics
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Parameters
P(X|6) = Probability[data|pattern]
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Inference idea
data = underlying pattern + independent noise
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Parametric model

» Number of parameters fixed (or constantly bounded) w.r.t. sample size

Nonparametric model

» Number of parameters grows with sample size

» oo-dimensional parameter space

Example: Density estimation

Nonparametric
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Definition

A nonparametric Bayesian model is a Bayesian model on an co-dimensional
parameter space.

Interpretation
Parameter space T = set of possible patterns, for example:
Problem | T
Density estimation | Probability distributions
Regression Smooth functions
Clustering Partitions

Solution to Bayesian problem = posterior distribution on patterns
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Can we justify our assumptions?
Recall:

data = pattern + noise

In Bayes’ theorem:

. 0
MQ(dg) -
p(xi, ... %

Q(d0|X1, N ,xn) =
Definition
X1,X>, ... are exchangeable if P(X,Xa, . ..) is invariant under any permutation o

P(X] = xl,Xz = X2,.. ) = P(Xl = xg(l),Xz = x,,(z), .. )

In words:
Order of observations does not matter.
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De Finetti’s Theorem

oo

P(X) = x1,X2 = 12, .. /M(X) (He ) (d0)
(3

X1,X>, ... exchangeable

where:
» M(.X) is the set of probability measures on X

» 6 are values of a random probability measure © with distribution Q

Implications

» Exchangeable data decomposes into pattern and noise
» More general than i.i.d.-assumption

» Caution: 6 is in general an co-dimensional quantity
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CLUSTERING



CLUSTERING

» Observations Xi, X2, . . .
» Each observation belongs to exactly one cluster

» Unknown pattern = partition of {1,...,n} or N
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Mixture models

plaim) = [ plaloymat)
Qp
m is called the mixing measure

Two-stage sampling
Sample X ~ p(. |m) as:

1. ©~m

2. X ~p(.10)

Finite mixture model

(8, ¢) = / pOmdo)  with  m(.) = o)
Q2 k=1
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Random mixing measure

)= Cide,(.)

Conjugate priors
A Bayesian model is conjugate if the posterior is an element of the same class of
distributions as the prior ("closure under sampling").

p(x|0) conjugate prior
Zay (%) exp((S(x), ) ¥y exp((0,y) — Aog Z(6))
Gaussian Gaussian/inverse Wishart
multinomial Dirichlet
Choice of priors in BMM

» Choose conjugate prior for each parameter
» In particular: Dirichlet prior on (Ci, ..., Ck)
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Dirichlet process
A Dirichlet process is a distribution on random probability measures of the form

M(.) =) Cide,(.) where Y Ga=1
k=1

k=1
Constructive definition of DP («a, Gy)

Ok ~iu Go
Vk ~iid Beta(l, a)
Compute Cy as

k—1
Cr:=Vi H(l — V,)
i=1

"Stick-breaking construction”
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DP Posterior
Brsr|61, .0 Li(s(a )+~ G
n+1|V1,...,Un n+Olj=1 Gj n+1 1+a 0\Un+1
Mixture Posterior
&oon «
k *
Platrlxr, .y x) = ; n+ap(x”+1|0k) + H_a/l’(xwl@)GO(G)d@

Conjugacy
» The posterior of DP («, Go) is DP (a + n, H#a(zk nider + aGo))

» Hence: The Dirichlet process is conjugate.
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Latent variables

Ky

p(xn+1|x17' "7xn) = Z

k=1
We do not actually observe the ©; (they are latent). We observe X;.

n % 07
a6+ 2 [ planal0)Go(0)as

Assignment probabilities

q0 g ... qik, Where:
S : > gk o< nep(x56;)
qn0  qnt ... 4k, > gjo X « fp(xj|0)G0(0)d0
Gibbs Sampling

Uses an assignment variable ¢; for each observation X;.
> Assignment step: Sample ¢; ~ Multinomial(gjo, . . . , gjx, )

> Parameter sampling: 0 ~ Go(6;) [T, ¢ ciuwers P(5105)
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E[K.] = O(log(n)) %
MOdellng assumption 0 2000 4000 6000 8000 10000

n (observations)

» Parametric clustering: K is finite (possibly unknown, but fixed).

» Nonparametric clustering: Ko is infinite

Rephrasing the question

> Estimate of K, is controlled by distribution of the cluster sizes C¢ in ), Cide,.

» Ask instead: What should we assume about the distribution of Cy?
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Pitman-Yor process

K

n—d N a+K,-d
Pl o5 = 30 2 planlr) + ST [t [0)Gu(0)ao

k=1
Discount parameter d € [0, 1].

Cluster sizes

200

150

100

K, (clusters)

50

4000 6000 8000 10000
n (observations)

00 2000

Peter Orbanz

K, (clusters)

4000 6000 8000 10000

n (observations)

[¢] 2000

[1JO1, Teh06] 16/27



The distribution of cluster sizes is called a power law if

Ci~~(B)-j" for some 3 € [0,1] .

Examples of power laws

» Word frequencies

» Popularity (number of friends) in social networks

Pitman-Yor language model
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Rank (according to frequency)
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RANDOM PARTITIONS

Discrete measures and partitions

Sampling from a discrete measure determines a partition of N into blocks by:

oo
O ~iia Z Ck59;f and set neEby & ©,=0;
k=1

As n — o0, the block proportions converge: @ — Ck

Induced random partition
The distribution of a random discrete measure M = 3 ° | Cide, induces the
distribution of a random partition Il = (B1,Ba, . .. ).
Exchangeable random partitions
» Il is called exchangeable if its distribution depends only on the sizes of its
blocks.

> All exchangeable random parititions, and only those, can be represented by a
random discrete distribution as above (Kingman’s theorem).
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CHINESE RESTAURANT PROCESS

Chinese Restaurant Process
The distribution of the random partition induced by the Dirichlet process is called the
Chinese Restaurant Process.

"Customers and tables" analogy

2 4 5 8
3
1 Q Q 6@ 7@ 9@ Q
Customers = observations (indices in N)
Tables = clusters (blocks)

Historical remark

» Originally introduced by Dubins & Pitman as a distribution on infinite
permutations

» A permutation of n items defines a partition of {1, ..., n} (regard cycles of
permutation as blocks of partition)

» The induced distribution on partitions is the CRP we use in clustering
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Poisson-
Kingman
/ \
Normalized .
Gibbs-type
Completely Random Measures
Measure / \\
Normah.zed . Mixtures of
Generalized Pitman-Yor .. .
Finite Dirichlets
Gamma
Normalized Normalized ..
Inverse Dirichlet
. Stable
Gaussian
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RANDOM DISCRETE MEASURES

Classification (due to Priinster)

class  probability of new cluster prior class

I P{©,+1 € new cluster|©@™} = f(n) Dirichlet processes
I P{©,+1 € new cluster| @™} = f(n, K,) Gibbs-type measures
M P{O, € new cluster| @™} = f(n, K,,n)

General partition priors

> Gibbs-type measures are completely classified [GPO6b]
» Properties of some cases well-studied, e.g.:

» Dirichlet process
» Pitman-Yor process
» Normalized inverse Gaussian process [LMPO5b]

» In the future: We will have a range of models which express different prior
assumptions on the distribution of cluster sizes.
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Nonparametric Bayesian clustering

» Infinite number of clusters, K,, < n of which are observed.

» If partition exchangeable, it can be represented by a random discrete
distribution.

Inference
Latent variable algorithms, since assignments (= partition) not observed.

» Gibbs sampling
» Variational algorithms

Prior assumption

» Distribution of cluster sizes.

» Implies prior assumption on number K, of clusters.
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Latent feature models

» Grouping problem with overlapping clusters.
» Encode as binary matrix: Observation n in cluster k < Xy =1

> Alternatively: Item n possesses feature k. < Xy =1

Indian buffet process (IBP)

1. Customer 1 tries Poisson(«) dishes.

2. Subsequent customer n + 1:

> tries a previously tried dish k with probability —n’_z: T

. . « .
» tries Poisson new dishes.
n+1

Properties

» An exchangeable distribution over finite sets (of dishes).

> Intepretation:
Observation (= customer) 7 in cluster (= dish) k if customer “tries dish k”
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DE FINETTI REPRESENTATION

Alternative description Wi WK
X1 oo Xk

1. Sample wi, ..., wk ~iq Beta(l, a/K) : :
2. Sample X, . . . , Xuk ~ia Bernoulli(wy) X;v1 o Xz.vx

We need some form of limit object for Beta(1, «/K) for K — oo.

Beta Process (BP)

Distribution on objects of the form i

0="> widy, with wy € [0,1] .
k=1

» IBP matrix entries are sampled as X, ~iiq Bernoulli(wy).
> Beta process is the de Finetti measure of the IBP, that is, 0 = BP.

» 0 is a random measure (but not normalized)
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