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PARAMETERS AND PATTERNS

Parameters

P(X|θ) = Probability[data|pattern]

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

20 Regression
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Figure 2.5: (a) Data is generated from a GP with hyperparameters (�,σf ,σn) =
(1, 1, 0.1), as shown by the + symbols. Using Gaussian process prediction with these
hyperparameters we obtain a 95% confidence region for the underlying function f
(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this
time for hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.

The covariance is denoted ky as it is for the noisy targets y rather than for the
underlying function f . Observe that the length-scale �, the signal variance σ2

f

and the noise variance σ2
n can be varied. In general we call the free parametershyperparameters

hyperparameters.11

In chapter 5 we will consider various methods for determining the hyperpa-
rameters from training data. However, in this section our aim is more simply to
explore the effects of varying the hyperparameters on GP prediction. Consider
the data shown by + signs in Figure 2.5(a). This was generated from a GP
with the SE kernel with (�,σf ,σn) = (1, 1, 0.1). The figure also shows the 2
standard-deviation error bars for the predictions obtained using these values of
the hyperparameters, as per eq. (2.24). Notice how the error bars get larger
for input values that are distant from any training points. Indeed if the x-axis

11We refer to the parameters of the covariance function as hyperparameters to emphasize
that they are parameters of a non-parametric model; in accordance with the weight-space
view, section 2.1, the parameters (weights) of the underlying parametric model have been
integrated out.

Inference idea

data = underlying pattern + independent noise
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TERMINOLOGY

Parametric model
I Number of parameters fixed (or constantly bounded) w.r.t. sample size

Nonparametric model

I Number of parameters grows with sample size

I ∞-dimensional parameter space

Example: Density estimation
20 CHAPTER 2. BAYESIAN DECISION THEORY
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Figure 2.9: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on
the mean µ. The red ellipses show lines of equal probability density of the Gaussian.

being merely σ2 times the identity matrix I. Geometrically, this corresponds to the
situation in which the samples fall in equal-size hyperspherical clusters, the cluster
for the ith class being centered about the mean vector µi. The computation of the
determinant and the inverse of Σi is particularly easy: |Σi| = σ2d and Σ−1

i = (1/σ2)I.
Since both |Σi| and the (d/2) ln 2π term in Eq. 47 are independent of i, they are
unimportant additive constants that can be ignored. Thus we obtain the simple
discriminant functions

gi(x) = −‖x − µi‖2

2σ2
+ ln P (ωi), (48)

where ‖ · ‖ is the Euclidean norm, that is,Euclidean
norm

‖x − µi‖2 = (x − µi)
t(x − µi). (49)

If the prior probabilities are not equal, then Eq. 48 shows that the squared distance
‖x − µ‖2 must be normalized by the variance σ2 and offset by adding ln P (ωi); thus,
if x is equally near two different mean vectors, the optimal decision will favor the a
priori more likely category.

Regardless of whether the prior probabilities are equal or not, it is not actually
necessary to compute distances. Expansion of the quadratic form (x − µi)

t(x − µi)
yields

gi(x) = − 1

2σ2
[xtx − 2µt

ix + µt
iµi] + ln P (ωi), (50)

which appears to be a quadratic function of x. However, the quadratic term xtx is
the same for all i, making it an ignorable additive constant. Thus, we obtain the
equivalent linear discriminant functionslinear

discriminant

gi(x) = wt
ix + wi0, (51)

where

Parametric

8 CHAPTER 4. NONPARAMETRIC TECHNIQUES
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Figure 4.3: Examples of two-dimensional circularly symmetric normal Parzen windows
ϕ(x/h) for three different values of h. Note that because the δk(·) are normalized,
different vertical scales must be used to show their structure.

p(x)
p(x) p(x)

Figure 4.4: Three Parzen-window density estimates based on the same set of five
samples, using the window functions in Fig. 4.3. As before, the vertical axes have
been scaled to show the structure of each function.

and

lim
n→∞

σ2
n(x) = 0. (18)

To prove convergence we must place conditions on the unknown density p(x), on
the window function ϕ(u), and on the window width hn. In general, continuity of
p(·) at x is required, and the conditions imposed by Eqs. 12 & 13 are customarily
invoked. With care, it can be shown that the following additional conditions assure
convergence (Problem 1):

sup
u

ϕ(u) < ∞ (19)

lim
‖u‖→∞

ϕ(u)

d∏

i=1

ui = 0 (20)

Nonparametric
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NONPARAMETRIC BAYESIAN MODEL

Definition

A nonparametric Bayesian model is a Bayesian model on an∞-dimensional
parameter space.

Interpretation
Parameter space T = set of possible patterns, for example:

Problem T
Density estimation Probability distributions

Regression Smooth functions
Clustering Partitions

Solution to Bayesian problem = posterior distribution on patterns

[Sch95]Peter Orbanz 5 / 27



EXCHANGEABILITY

Can we justify our assumptions?
Recall:

data = pattern + noise

In Bayes’ theorem:

Q(dθ|x1, . . . , xn) =

∏n
j=1 p(xj|θ)

p(x1, . . . , xn)
Q(dθ)

Definition
X1,X2, . . . are exchangeable if P(X1,X2, . . . ) is invariant under any permutation σ:

P(X1 = x1,X2 = x2, . . . ) = P(X1 = xσ(1),X2 = xσ(2), . . . )

In words:
Order of observations does not matter.

[Sch95]Peter Orbanz 6 / 27



EXCHANGEABILITY AND CONDITIONAL INDEPENDENCE

De Finetti’s Theorem

P(X1 = x1,X2 = x2, . . .) =

∫
M(X )

( ∞∏
j=1

θ(Xj = xj)
)

Q(dθ)

m

X1,X2, . . . exchangeable

where:

I M(X ) is the set of probability measures on X
I θ are values of a random probability measure Θ with distribution Q

Implications

I Exchangeable data decomposes into pattern and noise

I More general than i.i.d.-assumption

I Caution: θ is in general an∞-dimensional quantity

[Sch95, Kal05]Peter Orbanz 7 / 27



CLUSTERING



CLUSTERING

I Observations X1,X2, . . .

I Each observation belongs to exactly one cluster

I Unknown pattern = partition of {1, . . . , n} or N

Peter Orbanz 9 / 27



MIXTURE MODELS

Mixture models

p(x|m) =

∫
Ωθ

p(x|θ)m(dθ)

m is called the mixing measure

Two-stage sampling
Sample X ∼ p( . |m) as:

1. Θ ∼ m

2. X ∼ p( . |θ)

Finite mixture model

p(x|θθθ, c) =

∫
Ωθ

p(x|θ)m(dθ) with m( . ) =
K∑

k=1

ckδθk ( . )

Peter Orbanz 10 / 27



BAYESIAN MM

Random mixing measure

M( . ) =
K∑

k=1

CkδΘk ( . )

Conjugate priors
A Bayesian model is conjugate if the posterior is an element of the same class of
distributions as the prior ("closure under sampling").

p(x|θ) conjugate prior
1

Z(θ)
h(x) exp(〈S(x), θ〉) 1

K(λ,y) exp(〈θ, y〉 − λ log Z(θ))

Gaussian Gaussian/inverse Wishart
multinomial Dirichlet

. . . . . .

Choice of priors in BMM

I Choose conjugate prior for each parameter

I In particular: Dirichlet prior on (C1, . . . ,Ck)

[Rob95]Peter Orbanz 11 / 27



DIRICHLET PROCESS MIXTURES

Dirichlet process
A Dirichlet process is a distribution on random probability measures of the form

M( . ) =
∞∑

k=1

CkδΘk ( . ) where
∞∑

k=1

Ck = 1

Constructive definition of DP (α,G0)

Θk ∼iid G0

Vk ∼iid Beta(1, α)

Compute Ck as

Ck := Vk

k−1∏
i=1

(1− Vi)

"Stick-breaking construction"

Peter Orbanz 12 / 27



POSTERIOR DISTRIBUTION

DP Posterior

θn+1|θ1, . . . , θn ∼
1

n + α

n∑
j=1

δθj (θn+1) +
α

n + α
G0(θn+1)

Mixture Posterior

p(xn+1|x1, . . . , xn) =

Kn∑
k=1

nk

n + α
p(xn+1|θ∗k ) +

α

n + α

∫
p(xn+1|θ)G0(θ)dθ

Conjugacy

I The posterior of DP (α,G0) is DP
(
α+ n, 1

n+α (
∑

k nkδθ∗k + αG0)
)

I Hence: The Dirichlet process is conjugate.

Peter Orbanz 13 / 27



INFERENCE

Latent variables

p(xn+1|x1, . . . , xn) =

Kn∑
k=1

nk

n + α
p(xn+1|θ∗k ) +

α

n + α

∫
p(xn+1|θ)G0(θ)dθ

We do not actually observe the Θj (they are latent). We observe Xj.

Assignment probabilitiesq10 q11 . . . q1Kn

...
...

...
qn0 qn1 . . . qnKn


Where:

I qjk ∝ nkp(xj|θ∗k )

I qj0 ∝ α
∫

p(xj|θ)G0(θ)dθ

Gibbs Sampling
Uses an assignment variable φj for each observation Xj.

I Assignment step: Sample φj ∼ Multinomial(qj0, . . . , qjKn )

I Parameter sampling: θ∗k ∼ G0(θ
∗
k )
∏

xj∈ Cluster k p(xj|θ∗k )

[Nea00]Peter Orbanz 14 / 27



NUMBER OF CLUSTERS

Dirichlet process

Kn = # clusters in sample of size n

E[Kn] = O(log(n))
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Modeling assumption

I Parametric clustering: K∞ is finite (possibly unknown, but fixed).

I Nonparametric clustering: K∞ is infinite

Rephrasing the question

I Estimate of Kn is controlled by distribution of the cluster sizes Ck in
∑

k CkδΘk .

I Ask instead: What should we assume about the distribution of Ck?

Peter Orbanz 15 / 27



GENERALIZING THE DP

Pitman-Yor process

p(xn+1|x1, . . . , xn) =

Kn∑
k=1

nk−d
n + α

p(xn+1|θ∗k ) +
α+ Kn · d

n + α

∫
p(xn+1|θ)G0(θ)dθ

Discount parameter d ∈ [0, 1].

Cluster sizes
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POWER LAWS

The distribution of cluster sizes is called a power law if

Cj ∼ γ(β) · j−β for some β ∈ [0, 1] .

Examples of power laws

I Word frequencies

I Popularity (number of friends) in social networks

Pitman-Yor language model

[GHP07, Pem07]Peter Orbanz 17 / 27



RANDOM PARTITIONS

Discrete measures and partitions
Sampling from a discrete measure determines a partition of N into blocks bk:

Θn ∼iid

∞∑
k=1

ckδθ∗k and set n ∈ bk ⇔ Θn = θ∗k

As n −→∞, the block proportions converge: |bk|
n −→ ck

Induced random partition
The distribution of a random discrete measure M =

∑∞
k=1 CkδΘk induces the

distribution of a random partition Π = (B1,B2, . . . ).

Exchangeable random partitions

I Π is called exchangeable if its distribution depends only on the sizes of its
blocks.

I All exchangeable random parititions, and only those, can be represented by a
random discrete distribution as above (Kingman’s theorem).

Peter Orbanz 18 / 27



CHINESE RESTAURANT PROCESS

Chinese Restaurant Process
The distribution of the random partition induced by the Dirichlet process is called the
Chinese Restaurant Process.

"Customers and tables" analogy

9
1

2
3

4 5
6 7

8

Customers = observations (indices in N)
Tables = clusters (blocks)

Historical remark
I Originally introduced by Dubins & Pitman as a distribution on infinite

permutations

I A permutation of n items defines a partition of {1, . . . , n} (regard cycles of
permutation as blocks of partition)

I The induced distribution on partitions is the CRP we use in clustering
Peter Orbanz 19 / 27



FAMILIES OF EXCHANGEABLE RANDOM PARTITIONS

Poisson-
Kingman

Normalized
Completely Random

Measure

Gibbs-type
Measures

Normalized
Generalized

Gamma
Pitman-Yor

Mixtures of
Finite Dirichlets

Dirichlet
Normalized

Inverse
Gaussian

Normalized
Stable

[Kin75, Pit03, LMP05a, GP06a, JLP09]Peter Orbanz 20 / 27



RANDOM DISCRETE MEASURES

Classification (due to Prünster)

class probability of new cluster prior class

I P{Θn+1 ∈ new cluster|Θ(n)} = f (n) Dirichlet processes
II P{Θn+1 ∈ new cluster|Θ(n)} = f (n,Kn) Gibbs-type measures
III P{Θn+1 ∈ new cluster|Θ(n)} = f (n,Kn, n)

General partition priors

I Gibbs-type measures are completely classified [GP06b]

I Properties of some cases well-studied, e.g.:
I Dirichlet process
I Pitman-Yor process
I Normalized inverse Gaussian process [LMP05b]

I In the future: We will have a range of models which express different prior
assumptions on the distribution of cluster sizes.

[FLP12, LP10]Peter Orbanz 21 / 27



SUMMARY: CLUSTERING

Nonparametric Bayesian clustering

I Infinite number of clusters, Kn ≤ n of which are observed.

I If partition exchangeable, it can be represented by a random discrete
distribution.

Inference
Latent variable algorithms, since assignments (≡ partition) not observed.

I Gibbs sampling

I Variational algorithms

Prior assumption

I Distribution of cluster sizes.

I Implies prior assumption on number Kn of clusters.

Peter Orbanz 22 / 27



LATENT FEATURE MODELS



INDIAN BUFFET PROCESS

Latent feature models
I Grouping problem with overlapping clusters.

I Encode as binary matrix: Observation n in cluster k ⇔ Xnk = 1

I Alternatively: Item n possesses feature k ⇔ Xnk = 1

Indian buffet process (IBP)

1. Customer 1 tries Poisson(α) dishes.

2. Subsequent customer n + 1:

I tries a previously tried dish k with probability
nk

n + 1
,

I tries Poisson
(

α

n + 1

)
new dishes.

Properties

I An exchangeable distribution over finite sets (of dishes).

I Intepretation:
Observation (= customer) n in cluster (= dish) k if customer “tries dish k”

[GG06, GG11]Peter Orbanz 24 / 27



DE FINETTI REPRESENTATION

Alternative description

1. Sample w1, . . . ,wK ∼iid Beta(1, α/K)

2. Sample X1k, . . . ,Xnk ∼iid Bernoulli(wk)

w1 . . . wKX11 . . . X1K

...
...

XN1 . . . XNK


We need some form of limit object for Beta(1, α/K) for K →∞.

Beta Process (BP)
Distribution on objects of the form

θ =
∞∑

k=1

wkδφk with wk ∈ [0, 1] .

GRIFFITHS AND GHAHRAMANI

lof

Figure 5: Binary matrices and the left-ordered form. The binary matrix on the left is transformed
into the left-ordered binary matrix on the right by the function lo f (·). This left-ordered
matrix was generated from the exchangeable Indian buffet process with ! = 10. Empty
columns are omitted from both matrices.

4.2 Equivalence Classes

In order to find the limit of the distribution specified by Equation 10 as K → ", we need to define
equivalence classes of binary matrices—the analogue of partitions for assignment vectors. Identi-
fying these equivalence classes makes it easier to be precise about the objects over which we are
defining probability distributions, but the reader who is satisfied with the intuitive idea of taking the
limit as K → " can safely skip the technical details presented in this section.

Our equivalence classes will be defined with respect to a function on binary matrices, lo f (·).
This function maps binary matrices to left-ordered binary matrices. lo f (Z) is obtained by order-
ing the columns of the binary matrix Z from left to right by the magnitude of the binary number
expressed by that column, taking the first row as the most significant bit. The left-ordering of a
binary matrix is shown in Figure 5. In the first row of the left-ordered matrix, the columns for which
z1k = 1 are grouped at the left. In the second row, the columns for which z2k = 1 are grouped at the
left of the sets for which z1k = 1. This grouping structure persists throughout the matrix.

Considering the process of placing a binary matrix in left-ordered form motivates the defini-
tion of a further technical term. The history of feature k at object i is defined to be (z1k, . . . ,z(i−1)k).
Where no object is specified, we will use history to refer to the full history of feature k, (z1k, . . . ,zNk).
We will individuate the histories of features using the decimal equivalent of the binary numbers cor-
responding to the column entries. For example, at object 3, features can have one of four histories:
0, corresponding to a feature with no previous assignments, 1, being a feature for which z2k = 1
but z1k = 0, 2, being a feature for which z1k = 1 but z2k = 0, and 3, being a feature possessed by
both previous objects were assigned. Kh will denote the number of features possessing the history
h, with K0 being the number of features for which mk = 0 and K+ = #2

N−1
h=1 Kh being the number of

features for which mk > 0, so K = K0+K+. The function lo f thus places the columns of a matrix
in ascending order of their histories.

lo f (·) is a many-to-one function: many binary matrices reduce to the same left-ordered form,
and there is a unique left-ordered form for every binary matrix. We can thus use lo f (·) to define a
set of equivalence classes. Any two binary matricesY and Z are lo f -equivalent if lo f (Y) = lo f (Z),
that is, if Y and Z map to the same left-ordered form. The lo f -equivalence class of a binary matrix
Z, denoted [Z], is the set of binary matrices that are lo f -equivalent to Z. lo f -equivalence classes

1196

I IBP matrix entries are sampled as Xnk ∼iid Bernoulli(wk).

I Beta process is the de Finetti measure of the IBP, that is, Q = BP.

I θ is a random measure (but not normalized)

[GG06, TJ07, Hjo90]Peter Orbanz 25 / 27
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