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NEW MODELS FROM OLD ONES



Apply Bayesian representation recursively P(X1,Xs,...)
Split parameter ©: /\
© — Vand OV P(X1,X,...10)  Q(©)
o(e[v) R(V)

Example: Hierarchical Gaussian process

» Sample ¥ ~ R
(large length-scale, mean 0)

> Sample ©|¥ ~ Q(. |¥)
(smaller length scale, mean V)
Decomposes underlying pattern:

» Low-frequency component ¥

» High-frequency component ©
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Sampling scheme

» Sample Gy ~ DP (v, H)
» Sample G, G, ... ~ DP (a, Go)
» Sample x; ~ G;

G1, G, . .. have common "vocabulary" of atoms

Application: Nonparametric LDA

Go=3 Cde; G =3 Dy
k=1 =1

> Oy = finite probability (="topic”)

» C; = occurence probability of topic k

» Document j drawn from weighted '
combination of topics, with proportions D),
(“admixture model”)
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Setting

» Solution (= pattern) depends on a covariate, e.g. time, space,. . .

» Example: Video segmentation

For each frame: Solution is a segmentation, i.e. a clustering

Covariate-dependent clustering

M(.,1) =" Cu()de, ()

k=1
for each covariate value 7.
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DEPENDENT DIRICHLET PROCESS

Dependent Dirichlet process
Model functions C : T — [0, 1] and © : T — €y with Gaussian processes.

1. Transform GP to have Beta(1, a(¢)) marginal distribution for each z.

2. Sample functions Vi(z), V2(t), ... from this process.
3. Cult) = Vi) [TIZ) (1 = Vi(0))

Properties

» Marginal at ¢ is DP («(7), G;) with Gaussian base measure G;.

» Clustering solutions vary smoothly in ?.

Covariate-dependent models: General theme

» Random object ¥ € €2, with distribution P, covariate space 7.

» Covariate-dependent P: Distribution of random mapping VR Qy.
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EXAMPLES

Applications Pattern Bayesian nonparametric model
Classification & regression | Function Gaussian process

Clustering Partition Chinese restaurant process
Density estimation Density Dirichlet process mixture

Hierarchical clustering

Latent variable modelling
Survival analysis
Power-law behaviour
Dictionary learning
Dimensionality reduction
Deep learning

Topic models

Time series

Sequence prediction
Reinforcement learning
Spatial modelling

Relational modelling

Peter Orbanz

Hierarchical partition

Features
Hazard

Dictionary
Manifold

Features

Atomic distribution

Conditional probs
Conditional probs
Functions

Dirichlet/Pitman-Yor diffusion tree,
Kingman’s coalescent, Nested CRP
Beta process/Indian buffet process

Beta process, Neutral-to-the-right process
Pitman-Yor process, Stable-beta process
Beta process/Indian buffet process
Gaussian process latent variable model
Cascading/nested Indian buffet process
Hierarchical Dirichlet process

Infinite HMM

Sequence memoizer

infinite POMDP

Gaussian process,

dependent Dirichlet process

Infinite relational model, infinite hidden
relational model, Mondrian process



REPRESENTATIONS



Densities

P@) =pN@) )= [ por@)
A
We call A the carrier measure and p the density of P w.r.t. .

Useful carrier measures

» )\ should be translation-invariant.

» Such measures exist only on certain spaces, roughly speaking:
On finite-dimensional spaces.

Consequence: Representation problem 1

» Nonparametric models: No useful carrier measure on parameter space.

» We have to find alternatives to density representation.
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Bayesian model: General case
Prior distribution Q, likelihood P[X € . |O], posterior Q[O € .|X = x|
Bayes’ Theorem

If the posterior has a density w.r.t. the prior for each x, then

ouoix =x — 0L o)

The “Bayes equation” is a density of the posterior with respect to the prior.

dP[X € .|0]
dP(X € .)

(x)Q(d0)
Representation Problem 2

» For many nonparametric models, this density cannot exist for all x.
» Such models are called undominated.

» Random discrete measure models are generally undominated.

In other words:

NPB models do not generally satisfy Bayes’ theorem.
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Nonparametric regression

Patterns = continuous functions, say on [a, b]:

0:la,b] = R T = Cla,b]

Recall definition a )

O ~ GP & (©(s1),...,0(sqa)) is d-dimensional Gaussian
for any finite set S C [a, b].

Construction: Intuition

» The marginal of the GP for any finite S C [a, b] is a Gaussian.
> All these Gaussians are marginals of each other.

» Conversely: If we start with such Gaussians for all S, do they define a GP?

They do. The theorems which guarantee this are called extension theorems or
projective limit theorems.
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Idea

» GP: We have constructed a random function ©.

> If © is a random measure, can we construct it in a similar way?

Extension theorem

» For a finite partition I = (A, ...,Aq) of V, suppose ™
we know the distribution P; of (©(A1),. .., O(As)). A
A
» If the P, for all partitions / are projective (= are . A A
marginals of each other), they define a unique random

measure © on V.

Example: DP

Choose P; as Dirichlet distribution with parameters « and (Go(A1), . . ., Go(Aq)).
Then © ~ DP (o, Go).
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Stick-breaking

» Simple; most widely used where applicable.

» Constructive.

» Available only for few models (DP, Pitman-Yor process, normalized inverse
Gaussian process, beta process).
Projective limits

» Generally applicable.

» Mathematically more challenging, many open problems.

Representations by known stochastic processes

» E.g. Lévy process and Poisson process representations.

» Often come with a useful set of theoretical tools.
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COMPUTING POSTERIORS

Conjugate models
» How can we compute a posterior without a Bayes equation?
» Virtually all NPB models (DP, GP, etc) are conjugate.
Functional vs structural conjugacy
Functional conjugacy: There is a mapping
prior hyperparameter x data — posterior hyperparameter

Structural conjugacy: Closure under sampling, but no functional conjugacy.

Example

Neutral-to-the-right processes are structurally but not functionally conjugate.

Constructing conjugate models

» In hierarchical models: Use conjugate components.

» Roughly: Projective limits of fct. conjugate marginals are fct. conjugate.
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EXCHANGEABILITY



Can we justify our assumptions?
Recall:

data = pattern + noise

In Bayes’ theorem:

[T p(x16)

dO|xi, ..., xy) = do

0o, - x0) = LTS 0(dh)

Exchangeability

X1, X, ... are exchangeable if P(X;,X>, ... ) is invariant under any permutation o

P(X] =JC1,X2 = X2,.. ) = P(Xl =x(,(1),X2 =x0(2), . )

In words:
Order of observations does not matter.

Peter Orbanz [Sch95] 17729



De Finetti’s Theorem

oo

PXi =0, Xo=x,..) = /M . (TToex; = ) 0(as)

=1
()
X1,X>, ... exchangeable

where:
> M(X) is the set of probability measures on X

» 6 are values of a random probability measure © with distribution Q

Implications

» Exchangeable data decomposes into pattern and noise
» More general than i.i.d.-assumption

» Caution: 6 is in general an co-dimensional quantity
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Paint-box distribution Us U U>
> Weights 51,52, > 0with Y s; < 1 : i :
» Uy, Us, -+ ~ Uniform[0, 1] 1 5 ?
1— Zj S

Random partition of N:

i,j € Ninsame block <& U, Ujin same interval

{i} separate block < U;ininterval 1 — Z s

Kingman’s Theorem

Random partition 7 of N exchangeable

0

Mixture of paint-boxes 3(.|s): P(w) = /,8(7r|s)Q(ds)
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Random graph with independent

edges 0
Given: 0:[0,1]* = [0,1] symmetric Pr{edge 1,2}
function

» Uy, U, ...~ Uniform|0, 1]
» Edge (i,j) present:

(i,j) ~ Bernoulli(8(U;, U;))
Call this distribution P(G|0).

Aldous-Hoover Theorem

Random graph G exchangeable

0
P(G) = [r P(G10)0(db)
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GENERAL THEME: SYMMETRY

Other types of exchangeable data

Data Theorem Mixture of... Applications

Points de Finetti Li.d. point sequences “Standard” models
Sequences  Diaconis-Freedman  Markov chains Time series

Partition Kingman "Paint-box" partitions Clustering

Graphs Aldous-Hoover Graphs with independent edges ~ Networks

Arrays Aldous-Hoover Arrays with independent entries  Collaborative filtering

Ergodic decomposition theorems
= o = v
u(x) = | i = aluo)

» Symmetry (group invariance) on lhs — Integral decomposition on rhs

» Permutation invariance on lhs —— Independence on rhs
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ASYMPTOTICS



Model

Py outside model:
misspecified

Py = Py,

Peter Orbanz [Ghol0, KvdV06] 23/29



SUPPORT OF NONPARAMETRIC PRIORS

Large support
> Support of nonparametric priors is larger (co-dimensional) than of parametric
priors (finite-dimensional).

» However: No uniform prior (or even “neutral” improper prior) exists on M(X).

Interpretation of nonparametric prior assumptions

Concentration of nonparametric prior on subset of M(X) typically represents
structural prior assumption.

» GP regression with unknown bandwidth:

> Any continuous function possible
> Prior can express e.g. “very smooth functions are more probable”

» Clustering: Expected number of clusters is...

» ..small — CRP prior
» ..powerlaw — two-parameter CRP
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Definition 1 (weak consistency of Bayesian models)

Suppose we sample Py = Py, from the prior and generate data from Po. If the
posterior converges to dg, for n — oo with probability one under the prior, the model
is called consistent.

Doob’s Theorem
Under very mild conditions, Bayesian models are
consistent in the weak sense.

Problem

» Definition holds up to a set of probability
zero under the prior.

» This set can be huge and is a prior
assumption.

Definition 2 (frequentist consistency of Bayesian models)

A Bayesian model is consistent at Py if the posterior converges to ép, with growing
sample size.

Peter Orbanz [Ghol0] 25/29



Peter Orbanz

Objective

How quickly does posterior concentrate at 8y as n — co?

Measure: Convergence rate

» Find smallest balls B., (6) for which

n— o0
1

Q(Bs,, (00)|X1, . ,Xn) —_—

» Rate = sequence €1, &2, . . .

The best we can hope for

» Optimal rate is €, n~!/?

» Given by optimal convergence of estimators

» Achieved in smooth parametric models

Technical tools

Sieves, covering number, metric entropies... —  familiar from learning theory!
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Consistency

» DP mixtures: Consistent in many cases. No blanket statements.

» Range of consistency results for GP regression

Convergence rates: Example
Bandwidth adaptation with GPs:

» True parameter 0y € C*[0, 1], smoothness  unknown
» With gamma prior on GP bandwidth:

Convergence rate is n~*/*+9

Bernstein-von Mises Theorems
» Class of theorems establishing that posterior is asymptotically normal.

> Available for Gaussian processes and various regression settings.
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