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Abstract

Dependent Dirichlet processes provide a means of modelling a collection of random distributions as
related to, but not identical to, each other. A key point is that the realizations of these processes
are dependent. This article develops the processes through definition and results. It also describes
the basic tools for computations with the processes and suggests a number of applications in which
they will be useful. The extension of the Dirichlet process to the dependent Dirichlet process can be
paralleled for essentially any other nonparametric process which, for a single random distribution,
relies on a countable collection of random variables. A parallel development for two such processes

is indicated.
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1 Introduction

The primary focus of nonparametric Bayesian methods, as with all Bayesian methods, is modelling
the underlying phenomenon that has produced the data. To date, most Bayesian work in the area
has relied on modelling concepts whose value has long since been established in a classical framework.
The translation of the modelling concepts into Bayesian terms often provides a clarity of perspective
that directly suggests a particular formalization of the concept and that leads to models that are both
theoretically attractive and that have been shown to perform well in an empirical sense.

The familiar conceptual division of the effects in a model into fixed effects and random effects
provides one example of the benefits that a Bayesian perspective brings to a modelling strategy. In the
context of randomized block designs, Smith (1973) takes a Bayesian view, demonstrating how to recover
the traditional classical estimates with Lindley and Smith’s (1972) hierarchical model. One merely
models the fixed effects with improper prior distributions, but must go through some rather contrived
gynmastics to first model the random effects as independent draws from a normal distribution and to
then obtain estimates conditional on a particular estimated value of the variance of the random effects
distribution. More recently, Bush and MacEachern (1996) reexamine this modelling concept. They
suggest that the natural form of a Bayesian model follows from the qualitative form of information that
one is likely to have about the effects. For the fixed effects, where interest focuses on the individual effect,
and where information is likely to be about each individual effect, create a prior distribution for these
effects. This prior distribution is typically of low dimension, and will often assume a parametric form.
For random effects, where interest focuses on the distribution of the effects, and where prior information
is expressed about this distribution, create a prior distribution for this unknown distribution, say F'.
In a desire to have full support for the prior distribution, the natural modelling strategy is to place
a nonparametric prior distribution on F. For problems that would be classically approached with
a best linear unbiased predictor, the distribution of the random effects is naturally modelled with a

nonparametric prior distribution, with inference still made about the individual effects. This Bayesian



random effects modelling strategy has proven to be successful not only in the context of randomized
block analyses, but also in such areas as repeated measures designs, random effects regression problems,
and longitudinal and time-series analyses. Dey, Miiller and Sinha (1998) contains several examples of
such work.

The Bayesian modelling perspective and current computational methods allow us to divide large
problems into more manageable components, to design a prior distribution for each component of the
problem, and to link the components in a hierarchical fashion. This decomposition of a model into
pieces that are linked together provides an easy approach to model building for multi-center clinical
trials. In these trials, a therapy or therapies are examined at a number, say d, of locations. At each
location, patients are recruited to the study, assigned to a therapy, and the results observed. A number
of measurements are made on each patient. The model will contain two main components: One for
the therapies, and one for the patient effects. The model for therapies expresses prior information
about the therapies under study. The patient effects are naturally modelled as random effects, and the
Bayesian random effects modelling strategy suggests that a nonparametric prior distribution be placed
on the patient effects distribution. A standard semiparametric Bayesian model would pursue one of
two courses. Either a single distribution would be presumed for all patient effects, and a nonparametric
prior placed on this distribution, or, to account for differences in patient populations at different centers,
nonparametric prior distributions would be placed on the d separate patient effect distributions. These
two extremes of modelling would then take, with a foreshadowing of notation introduced in the next
section to allow for covariates, F;, = ... = F, or it would take F , ..., F;, to be mutually independent.
A substantial limitation of current nonparametric Bayesian techniques is that they allow only modest
improvements on these two extremes. In the first case, the distributions may be allowed to differ
by a small number of parameters, perhaps locations and scales, but the distributions are identical in
many ways; in the second case, the distributions may be linked together through hyperparameters

that control the d nonparametric prior distributions. But, conditional on these hyperparameters, the



realized distributions are independent. What is needed is a modelling strategy that allows the set of
random effects distributions to be similar, but not identical, to each other. Tomlinson and Escobar
(1998) provide an approach that they term analysis of densities. Miiller, Quintana and Rosner (1999)
discuss multi-center trials and provide one means of incorporating dependence among the random F;.
The focus of this paper is on the definition and development of a class of nonparametric processes that
achieves this goal in a natural, extensible fashion.

Once described, the processes lend themselves to an enormous variety of uses. An immediate use,
and the one illustrated in Section 4, is to create a more general version of the normal theory linear model.
In this use, the covariates enter the model in the traditional fashion. The error distribution which can
assume an arbitrary form, is allowed to evolve with the covariate, typically changing in a smooth fashion.
By varying the parameters of the prior process, the error distribtuions range from a single normal
distribution to a single nonparametric distribution through slowly varying nonparametric distributions
to independent nonparametric distributions. Modest changes to this nonparametric Bayesian version of
the basic linear model allow us to incorporate changes of scale and so to provide a competitor to weighted
least squares. The generalized linear model is the next natural target. A means to this extension should
be clear from the development of the processes and the work on the linear model.

Dependent nonparametric processes provide the solution to the modelling problem. The development
of the processes will keep in mind slightly altered properties akin to the two desireable properties
described by Ferguson (1973) as important for any nonparametric Bayesian procedure to have, and two

additional properties that are generally desireable in this more complex setting.

1. The support of the prior distribution on Fy,, ..., F;,, for any distinct x1,..., 4, should be large.

2. The prior distribution, when used as a component in a Bayesian hierarchical model, should be

amenable to updating in a reasonably painless fashion, either analytically or computationally.

3. The marginal distribution of F, should follow a familiar distribution at any given level of the



covariate, .
4. The realized distributions, F);, should converge to the realized Fy, as z — z.

The development of these dependent nonparametric processes will be general enough to allow great
flexibility in their use as a prior distribution, rendering them useful in a wide variety of Bayesian
problems. Simplifications that enhance property 2 will be described, and some commentary is given on
how to generalize the processes at the expense of properties 2, 3 and 4.

The remainder of this paper is organized as follows. Section 2 contains notation and a definition
of the processes. Section 3 presents theoretical results, establishing that the processes have the desired
properties. Section 4 presents an analysis of a set of “regression” data. Section 5 demonstrates the ease
with which these new processes can be used to construct a prior that assigns probability one to the
set of continuous distribution functions, providing an alternative to the Polya tree distribution. The
concluding section describes a number of other examples where these prior distributions will find use.
It also indicates how the strategy described herein can be used to extend other nonparametric processes
that produce a random distribution function to processes that produce a collection of smoothly evolving

random distribution functions. For additional motivation, see MacEachern (1999).

2 Notation and motivating ideas

The Dirichlet process enjoys a central role in nonparametric Bayesian analysis when a prior distribution
is placed on the space of distribution functions. One of the biggest reasons for this central role is that
there are many representations of the Dirichlet process, each of which provides insight into the structure
of the prior distribution and several of which are useful when computing the posterior distribution of
the process. For the purposes of this paper, the two most useful representations are Sethuraman’s
representation (1994) and the Polya urn scheme (Blackwell and MacQueen, 1973). A well-known fact

is that a Dirichlet process with a sufficiently complex base measure (i.e., one supported at more than a



finite number of points) assigns probability one to the set of countable, discrete distributions (Blackwell,
1973). See Ferguson (1973) for a definition of and fundamental results on the Dirichlet process.

With Sethuraman’s representation of the Dirichlet process, a focus is placed on the description of
a discrete distribution as a collection of locations and the mass associated with each location. The
Dirichlet process has, as its parameter, a positive measure « that can be represented in terms of its
mass, M > 0, and its shape, Fy. The parameter Fj is a distribution function.

The end result of the Dirichlet process is to define a random distribution from which values of
0 = (61,...,0p) are drawn. Hence, the focus is on a space appropriate for ©. The Borel sets over RP
provide a workable space for all of the examples presented here, and so the processes will be defined
in this setting. Generically, A will represent a measureable set, F' will denote the random distribution
function, and P will denote the probability measure corresponding to F'. For the dependent Dirichlet
process, a subscript = will refer to the value of a covariate in the space X'. X may be finite, countable,
an interval of the real line, or a more general space. It will serve as the index space for a collection of

stochastic processes.

Theorem 2.1 The Dirichlet process (Sethuraman). Let 01,0s,... be a sequence of draws from Fy,
and let V1, Vs, ... be a sequence of draws from the Beta(1,M) random wvariable. Assume that all random
variables in the sequences 01,04, ... and V1, Vs, ... are mutually independent. Definep; = V; Hj<i(1—Vj),
fori=1,2,.... For every measureable set A, take
P (A) = Z Di-
i|6seA

Then F', corresponding to P, follows a Dirichlet process with base measure o determined by M - Fy.

The 6; are referred to as the locations and p; is referred to as the mass assigned to location 7. Note that
the 6; are merely possible values that the random variable # may assume. They need not be location

parameters for a further portion of a model. The relationship between «, Py and Fy is a« = M - Py, with



Fpy the distribution function corresponding to Py. When © = RP, mention of P, is often avoided, and
one relies on the relation a((—o0,8]) = M - Fy(6).

Dependent Dirichlet processes generalize the Dirichlet process to allow for a collection of nonpara-
metric distributions, the realizations of which are dependent, with the level of the covariate, z, governing
the degree of dependence. The idea that drives the dependence for one-dimensional § is that, in the
presence of a covariate, the location, 8, of the Dirichlet process can be replaced by the sample path of a
stochastic process, denoted #y. This sample path provides the location at each value of the covariate.
Similarly, the beta random variable, V', which, through Sethuraman’s trick, produces the mass assigned
to a value of 8, can be replaced by a process, denoted Vy. This process produces the mass assigned
to the value of 8, for each value of the covariate. In higher dimensional settings, the same idea is ex-
tended to multivariate locations, either through multivariate stochastic processes or through collections
of stochastic processes that yield 6, = (04,1, -.,05,). This collection of stochastic processes is itself a
multivariate stochastic process.

A stochastic process Zy def (Zz,xeX), is defined by its index set, X, its state space, S, and the
dependence relations among the Z,. For the sequel, it is presumed that the state space for each Z, is RP.
In order to facilitate implementation of dependent Dirichlet processes, the definition of the processes
introduces notation with some redundancy. The redundant notation makes a link between the stochastic
process Zy and a corresponding stochastic process 8y and a similar link between stochastic processes
Uy and Vy. The process Uy is real valued.

In the following definition, Fly represents the collection of p-dimensional random distribution func-
tions. The mass parameter is My. This parameter is finite and positive for all values of zeX, but
may vary with z. The set of base c.d.f.s is F x. Each of these c.d.f.s is a p-dimensional distribution
function. Should need arise, Py x represents the collection of probability measures corresponding to
Fy x, and the collection of base measures is ay def My - Py x. The stochastic processes Zy and Uy

provide draws that are turned into locations and probabilities, respectively. The transformations T’z g.x



specify a mapping of Z; into 8, for each zeX'. The transformations Ty, x specify a mapping of U, into
V; for each zeX. The transformations must be such that if Z, has some distribution, say G, Tz 6.,
has the distribution Fp ; for each zeX. Similarly, if U, has some distribution, say G, then Ty ., must

have the Beta(1, M) distribution. All of these transformations are assumed to be measureable.

Definition 2.2 Dependent Dirichlet processes are defined by the relation
Fx ~ DDir(Mx,Fox,Zx,Ux,Tz0.x,Tv,v;x),

where the parameters follow the restrictions described in the previous two paragraphs. Z; and U;, for
1=1,2,..., are mutually independent realizations of the stochastic processes Zy and Uy. The processes
0; and V; are determined by the transformations of Z; and U;, respectively. At each xeX, the distribution

F, is defined to be the discrete distribution characterized by Py(A) = 2i|0s,¢A Pizs 0T, equivalently, by

Fy(0) = Zuaiw,jgoj Diz-

The next section presents a set of sufficient conditions which ensure the existence of the process. The
conditions also ensure that property 4 of the introduction is satisfied. Before turning to theoretical

results, a simplification of notation is in order.

Definition 2.3 The standard transformation from Zx to Oy is defined by a pointwise, coordinatewise
transformation based on the c.d.f.:

O = Foi 3 (Gia(Zia)
fori=1,...,p, and for each x € X, where Gy is the marginal c.d.f. of the i coordinate of Z,, where

G is assumed to be a continuous distribution, and where Fy; . is the it" coordinate of the base c.d.f. for

0. Similarly, the standard transformation from Uy to Vy is

for each xzeX, where G, assumed to be a continuous distribution, is the marginal c.d.f. of U, and

where Fpy is the Beta(l, M) distribution.



When describing dependent Dirichlet processes, if the standard transformation for either Z or U is
used, it will be dropped from the definition of the process. Similarly, the X subscript will be dropped

if the parameter does not vary as x varies. This convention is illustrated in Section 4.

3 Theoretical Results

The basic theoretical results for dependent Dirichlet processes ensure first that the processes exist, and
then guarantee that the properties described in the introduction are satisfied. We first turn to the

existence result.

Theorem 3.1 Assume that Fx ~ DDir(Mx,Fox,Zx,Ux,Tz0,x,Tuv;x). Let Zx be a separable
stochastic process with state space RP, and let Uy be a separable real valued stochastic processes with
X either a countable set or an open set in RX. Then, the dependent Dirichlet process exists and the

distribution of (Fy,, ..., Fy,) is uniquely defined for each d-tuple (z1,...,zq)eX1 X ... XXg.

Proof. To ensure that the dependent Dirichlet process exists, we must show that it is well defined. First
consider the case of a countable space X. The countable collection of distributions, Fly, is determined
by a countable collection of random variables, U;, and Z;;, i = 1,2,... and zeX. This collection of
variables has a well-defined distribution since the U;x and Z;y are mutually independent and since the
stochastic processes Uy and Zy are, by definition, well-defined. Measureability of the transformations,
T, ensures that the distribution of (0;x, V; x) is well-defined.

Next, consider the case where X is an interval of R!. A separable stochastic process has its entire
sample path determined by its value at a dense set of points, and the rationals are dense in any open
set in R*. From the preceeding paragraph, the distribution of (Ujx, Zix), i = 1,2,... is well-defined
when X is restricted to the rationals in X. Since Zy and Uy are assumed to be separable, the entire

joint distribution of U;y and Z;y is well-defined.



The first property for the dependent Dirichlet process is that, for any distinct z1,...,z4eX, the
distribution of (Fy,,..., Fy,) should have large support. Ideally, the support of the distribution would
be full with respect to every sensible metric on the space of distributions. However, the nonparametric
nature of the problem precludes such statements. See Diaconis and Freedman (1986) and its discussion
for viewpoints on the variety of relevant metrics in the case of a single nonparametric distribution.
Instead, one must focus on a particular metric-here, a metric which induces the weak topology on the
space of distribution functions for each component distribution. The following lemma describes the
distribution of F, at a single z. The lemma justifies the name dependent Dirichlet processes, and it

leads the way to establishing the support result. It also establishes property 3 of the introduction.

Lemma 3.2 Assume that Fx ~ DDir(Mx, Fo x,Zx,Ux,Tz0,x,Tv,v;x). Let Zx be a stochastic pro-
cess with state space RP, and let Ux be a real valued stochastic process with X either a countable set or

an open set in RE. Then, for every xeX, Fy ~ Dir(Mgy, Fo z).

Proof. Fix some zeX. The definition of dependent Dirichlet processes ensures that (i) the Z;; are i.i.d.
draws from some distribution, say G, and hence that the 6;; are i.i.d. draws from Fj,, that (ii) the
Ui, are i.i.d. draws from some distribution, say G,, and hence that the Vj; are i.i.d. draws from the
Beta(1, M) distribution, and that (iii) the entire collection of 6;; and V;; are mutually independent.
These are exactly the features that Sethuraman uses to describe the Dirichlet process. Matching the

parameter values yields the result.

The next theorem provides conditions that guarantee full support under metrics inducing the weak
topology. The essential condition is that the process Zy must be rich enough to ensure full support
of the joint distribution at (xi,...,z4). The process Uy only needs a surprisingly limited amount of
flexibility. The transformations from Z to § and U to V must not be too bad. Since interest is in a

collection of d distributions, the result relies on d(F,G) = 2;121 dr(F;, G;), with dp, representing the



Levy distance. It is easily verified that d is a distance.

Theorem 3.3 Assume that Fx ~ DDir(Mx, Fo x, Zx,Ux,Tz9.x,Tv,v;x), with X either a countable
set or an open set in R¥. Take z1,...,zq to be a set of distinct points in X. Define Zyq = (Z% ... 25 )
and Uy g = (Ugy,---,Ug,)t. Then, (Fyy,...,Fy,) ~ DDir(Mx, Fy x, Zx,Ux,T7 0.3, Tu,v:x). Assume
that Zy 4 induces a distribution on 0, 4 which is mutually absolutely continuous with (Foz,,...,Fo.z,),
and assume that Uy q induces a distribution on Vi q which, for some v > 0 and every 0 < 61, < 0y <7y
assigns positive probability to the event that é;, < Vy; < 6y fori=1,...,d. Consider any (Fi,...,Fy)

which is absolutely continuous with respect to (Foz,,-..,Foz,). For every e > 0, under the metric d,

the e-ball about (F1,..., Fy) is assigned positive probability by the dependent Dirichlet process.

Proof. See Appendix A.

Corollary 3.4 Under the assumptions of Theorem 3.3, consider any (Fy,...,Fy) in the closure (under
the metric d) of the set of distributions that are absolutely continuous with respect to (Fog,,...,Foq,)-
Then, for each € > 0, the e-ball about (F1,...,Fy) is assigned positive probability by the dependent

Dirichlet process.

Proof. Fix (Fy,. .., Fy) and e. There exists some distribution (G1, ..., G4) which is absolutely continuous
with respect to (Fy z,, - - ., Fo,z,) and which is within €/2 of (F1, ..., Fy). The ¢/2-ball about (G, ..., Gq)

is assigned positive probability, and it is contained in the e-ball about (F1,..., Fy).

Corollary 3.5 Assume that Fx ~ DDir(Mx,Fox,Zx,Ux,Tz9.x,Tv,v;x), with X either a countable

set or an open set in R*. Take x1,...,xzq to be a set of distinct points in X. Define Zypd = (Z;l, .

..,Zid)t
and Uy q = (Uml,...,Umd)t. Then, (Fy,,...,Fy,) ~ DDir(My, Fo x, Zx,Ux, Tz 0,x, Tu,v;x). Assume

that the distribution of Z; 4 is mutually absolutely continuous with respect to the product of the distri-

10



butions on (Z!

tise-oy ZE ). Also assume that the distribution of Uy g is mutually absolutely continuous

with respect to the product of d uniform (0,1) distributions. Consider any (F1,...,Fy) which is abso-
lutely continuous with respect to (Fo z,,--.,Foz,). For every € > 0, under the metric d, the e-ball about
(Fi,...,Fy) is assigned positive probability by the dependent Dirichlet process. Furthermore, for any
(Fy,...,Fy) in the closure (under the metric d) of the set of distributions that are absolutely continu-
ous with respect to (Fog,,...,Foz,), for each € > 0, the e-ball about (Fi,...,Fy) is assigned positive

probability by the dependent Dirichlet process.

Proof. Verify the conditions of Theorem 3.3 and Corollary 3.4.

Theorem 3.6 Assume that Fx ~ DDir(Mx, Fox, Zx,Ux,Tz9.x,Tv,v;x), with X either a countable
set or an open set in RF. Let Zxy and Tz, be a stochastic process and collection of transformations
such that the induced paths of Ox are continuous. Let Ux and Tyy.,x be a stochastic process and

collection of transformations such that the induced paths of Vx are continuous. Then, for any zoeX,

limy_sgo P(d(Fy, Fg,) > €) = 0.

Proof. Since the Vy have continuous paths, the induced py also have continuous paths for s =1,2,....
Each of the following probabilities can be made arbitrarily large: (i) the probability that the distance
from Fy, to a finite approximation given by dg, ., (1 — SN i)+ XN 89,pi is less than ¢/3, by choosing
N sufficiently large, (ii) the probability that |0; 5, — 0; 2| < €/3, by considering only = near enough to
xo, and (iii) the probability that >, ¢ |piz, — Pie| < €/3, for every subset of indices, S, of 1,..., N +1,
by considering only z near enough to z¢. If each of these three events occurs, d(Fy, Fy,) < €. Since the

probability of any one of the events not occurring can be made arbitrarily small, the result follows.

Corollary 3.7 Assume that Fx ~ DDir(Mx,Fyo x,Zx,Ux,Tz9.x,Tuv;x), with X either a countable

11



set or an open set in R¥. Further suppose that Zxy and Uy have continuous sample paths and that

Tz0.x and Tyyv,x are continuous transformations. Then, for any xoeX, limg_, 50 P(d(Fy, Fyy) > €) = 0.

Proof. Continuity of the two stochastic processes and the related transformations ensure that the

conditions of Theorem 3.6 are met.

The posterior distribution of Fy, given 61,...,0,,, for i« = 1,...,d, observed at covariate values
z1,...,Tq, 18 not typically a dependent Dirichlet process. However, for some particular distributions
with modest sample sizes, the posterior distribution is amenable to numerical integration; for larger
sample sizes, the posterior distribution may be described by means of a simulation method. The
essential analytical result for many modern simulation methods for high-dimensional problems, such
as the Gibbs sampler, the Metropolis-Hastings algorithm, or the sequential importance sampler, is the
joint distribution of a collection of parameters which implies a set of conditional distributions. In the
nonparametric context, one must take care to describe the distribution over the uncountable set of
parameters by means of finite dimensional distributions. The next result describes the essentials of
relevant joint distributions. For clarity, the result is expressed in terms of a density rather than a
distribution.

In the result itself, fp, represents the density of the vector (0;,,...,60;,) induced by Zx and Tz 4. x,
and fy, represents the density of the vector (Vy,,...,Vs,) induced by Ux and Ty, x. The parameter m
is the number of components of the mixture that are explicitly described, Y ;€(1,...,m) is the component
to which the I*" observation at covariate level = belongs, and W,; is the value of the {"* observation at
covariate level z. Hence Wy = 6y,,,, provided Yy < m. The joint distribution of {Wy|Yy > m} is
denoted by gs(-). It is usually a density with respect to an unusual dominating measure, though this is
of no concern for the straightforward uses of the result. This form facilitates calculation of conditional

densities and/or ratios of densities.
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The joint density of (6,5, v, Y;i=1,...,m) is

} iz, via, Yasi = 1,...,m) - = [ﬁfom(9im)][ﬁfvm(‘/§m)][ T (Ve IO~ V) =)

z€(T1,..,3q) 1=1 j<i

J=n

I«

z€(T1,0sg J

(1= Vi) 210> N (V) P(s|Yar > m)] (1)

where this last expression depends only on the components of Y which are attached to components of
the mixture beyond the first m. The W,; associated with components among the first m are defined to
equal the corresponding 6,;.

The result allows us to consider two cases when writing expressions for the conditional distribution of
Y. The first case is for small values of Y;;, where an observation is joining one of the first 7 components
of the mixture. The expression for the conditional density (up to a constant of proportionality) is found
for these components by considering the ratio of such expressions. The density for terms beyond the
first m components cancel from these ratios. The second case corresponds to Y,; joining a component
beyond the first m. In this case, as the result will be used, there are no observations attached to
components beyond the first m. Consequently, the conditional distribution of (Viz, 8;z, ¢ > m, will not
depend on 4, and the conditioning event will contain no information about which component (beyond
the first m) will be joined. This leads to a simple algorithm for implementing conditional simulation

techniques such as the Gibbs sampler.

3.1 A computational strategy

The distribution just presented is at the heart of a basic computational strategy. This strategy is a
minor variant on Gelfand and Smith’s (1990) Gibbs sampler. First, the algorithm, presented without

data or hyperparameters.

Algorithm 3.1. At any given time, a collection of values of 6;z, Viz, W, and Y, are stored for
l=1,...,n4 for x = z1,..., 24, and for some 7 = 1,...,m. The value of m fluctuates throughout a

simulation. In the sequel, rest refers to all parameters not appearing to the left of the conditioning bar.
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0. Initialize the 0;;, Viy, Wy, and Yy, in some state that is consistent with the data.

1. Generate (0;5, Wyy)|rest for x = z1,...,z4and [ = 1,...,n;. Update each coordinate immediately
upon its generation.

2. Generate (Wy,Yy)|rest for z = z1,...,z4 and | = 1,...,n;. Update each pair immediately upon
its generation. If Y;; > m for the current m, generate new components up to m.

3. Generate Vjg|rest for il =1,...,m.

Repeat steps 1 through 3 a large number of times. Discard the early parameter vectors as burn-in

and retain the rest for estimation.

Inclusion of data and hyperparameters follows in the usual fashion for Gibbs sampling methods for
models based on the Dirichlet process. Details of the conditional densities from which observations are
generated are provided in Appendix B.

There are many other useful sets of conditional distributions that can be written down, and that
prove useful for computations, particularly when the model exhibits a great degree of conditional con-
jugacy. These simplifications of the model allow one to appeal to computational strategies designed to
improve simulation for models based on a single Dirichlet process. In particular, the following “single
p” model allows one both to use single Dirichlet process tricks for computation, and, as importantly, it

allows one to often use code written for the models based on a single Dirichlet process.

3.2 The single p model

An important class of models is the “single p” dependent Dirichlet process. This class of models retains
the great flexibility of the dependent Dirichlet process, yet leads to computational simplifications that
render it attractive. The idea behind the model is that the mass, p;;, associated with the location
0;; does not vary with . The implication of this restriction is that the overall model may be viewed
as a countable mixture of stochastic processes, with the mixing weights matching those from a single

Dirichlet process model. When X is finite, the distribution is, in fact, a single Dirichlet process. This

14



match with a known process leads to an eventual simplification of computational strategies. But first,

a definition and result for the single p model.

Definition 3.8 The single p dependent Dirichlet process is defined by
Fy ~DDir(Mx,Fox,Zx,Ux,Tz0.x,Tu,v;x), where Ujx = Usy,, and where Ty y,x = Tu,va, for some

zo. These restrictions force My = My, .

The formal specification of the single p model ensures that the masses do not vary with z. Since the
Uy process does not vary with  and the transformations are all the same, the V;, will not vary with z,
and hence neither will the p;». A natural concern with this restriction is whether the resulting model
has full support or whether the restriction has in some way reduced the support of the distribution.

The next theorem provides conditions that ensure full support for the prior distribution.

Theorem 3.9 Assume that Fx ~ DDir(Mx, Fo x, Zx,Ux,Tz9.x,Tv,v.x), with X either a countable
set or an open set in RE. Also assume that the process Ux and the transformation Ty,v.x are such that

Vo = Vi, for all zeX. Take 1, ...,z4 to be a set of distinct points in X. Define Zy q = (Z

17"

7L
and Voa = (Vay, ..., Vay)t. Then, (Fy,,...,Fy,) ~ DDir(Mx,Fo x,Zx,Ux, Tz 0.x,Tuyv:x). Assume
that Zy q induces a distribution on 6y 4 which is mutually absolutely continuous with (Fo 4, ..., Foz,)-
Consider any (Fi,...,Fy) which is absolutely continuous with respect to (Foz,,...,Fog,). For every
€ > 0, under the metric d, the e-ball about (F1,...,Fy) is assigned positive probability by the dependent
Dirichlet process. Furthermore, for any (Fi,...,Fy) in the closure (under the metric d) of the set of
distributions that are absolutely continuous with respect to (Foz,,-.-,Foz,), for each € > 0, the e-ball

about (F1,..., Fy) is assigned positive probability by the single p dependent Dirichlet process.

Proof. Follow the construction for Theorem 3.3 given in Appendix A. Since the V;; do not vary with z,
the parameter M, cannot vary with z. The condition of Theorem 3.3 on the support of the V;, is, by

definition, satisfied since the V;, are i.i.d. Beta(1, M) variates.
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The single p models do provide a restriction on the dependent Dirichlet process, preventing one from
obtaining independent F; at distinct levels of the covariate. To see this, merely note that the p; are the
same for all levels of the covariate. Hence if F; contains a large lump of mass at a point, all of the F
contain the same large lump of mass.

Computations for the single p model follow from those for the Dirichlet process. With these strate-
gies, one need only track which observations are tied to which component process, dispensing with labels
for the component processes and avoiding explicit generation of the p;. This results in algorithms with
superior performance, and it also simplifies the task of programming the algorithms. The computations

for the single p models are based on the following result.

Theorem 3.10 Assume that Fx follows a single p dependent Dirichlet process with parameters
(M,Fo,x,Zx,U,Tz9.x,Tu,v). Restrict consideration to a finite set of distinct values for x, say (z1,...,zq).
Define 6 = (Oz15---,0z,), and let Fy represent the distribution of 6, induced by Fox,Zx, and Tz g.x.
Then the joint distribution of (Fy, ..., Fy) follows a Dirichlet process with mass M and base distribution

Fy.

The theorem enables one to perform simulations based on a single Dirichlet process model. The
computational strategies for these models are now well developed. See Escobar (1994), Escobar and West
(1995), MacEachern (1994), Bush and MacEachern (1996), MacEachern and Miiller (1998), MacEachern
(1998), Neal (1998), and Green and Richardson (1997) for computational techniques and tips on how
to tailor the computational strategy to the problem at hand.

The beauty of the single p models is that they preserve the essence of the problem, providing a full
nonparametric prior distribution at each level of the covariate while ensuring local dependence of the
realized distributions. Yet they retain great simplicity for prior specification and computation. They

thus provide a general framework that covers a vast territory.

16



3.3 Connections

Dependent Dirichlet processes form a very general class of models. They include a number of useful
subclasses, such as a single Dirichlet process or a collection of independent Dirichlet processes, either
explicitly or as limiting cases. This section describes a number of connections to other models. It also
indicates how the development of other dependent nonparametric processes can be accomplished.

The dependent Dirichlet process model can be used to obtain a single random distribution that
follows a Dirichlet process. To do so, one need only eliminate the dependence of the stochastic processes
on z. This is accomplished by taking Fx = Fy, and by choosing My = My, Fo x = Fo g, Zx = Zg,,
Ux = Uz, Tz 0.x = T70.2, and Tyy.x = Ty,v;z, for some zgeX.

Pursuing the notion of a single nonparametric distribution to drive an analysis, one sees that this
deterministic link lets us describe collections of distributions such as an arbitrary scale family. To
do this, the random F,, serves as the base distribution for the family. This distribution follows a
Dirichlet process, and the 6}, are i.i.d. draws from Fy.,. The 6, with scale s(x) are, deterministically,
07, = 05,,5(x)/s(wo). They are i.i.d. from Fp,. The masses are calculated from the draws Vi, with
Viz = Viz,- Together, these features imply that the family F is a scale family, with scale parameter
s(z). Such distributions are of use in problems where a classical statistician might use weighted least
squares instead of least squares. Alternatively, one can model the single nonparametric distribution as
a Dirichlet process and also model the scale parameter explicitly, yielding the identical model for the
data.

Extending this line of thought to problems where one would consider fitting a generalized linear
model is not as straightforward without the dependent Dirichlet process. In these settings, the single
nonparametric distribution becomes a collection of nonparametric distributions indexed by the covariate.
The baseline distributions change with the covariate, and so the realized distributions must change as
well. The change is not typically anything as simple as a scale change. For example, the distributions

may be Poisson distributions which change as their mean changes. To fit this type of model into the
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single distribution, dependent Dirichlet process framework, the deterministically linked set of Dirichlet
processes is obtained by allowing Fy x and T’z . x to vary with z while maintaining Zx = Z;,, Ux = Uy,,
T70.x = T76,2, and Tyy,x = Ty,v,z,- This approach allows one to pursue models similar to those in
Newton, Czado and Chappell (1996), Mukhopadhyay and Gelfand (1997), Kleinman and Ibrahim (1998),
Carota and Parmigiani (1997) and Dominici and Parmigiani (1998) but which allow some dependence
among the distributions at various levels of the covariate.

The parametric model corresponding to Fp x is most easily obtained by taking the limit of the
deterministically linked dependent Dirichlet processes as the mass parameter, M, tends to co. Since
this model is a limit of dependent Dirichlet processes, one typically obtains inferences that tend to those
of the parametric model as the limit of posteriors is taken.

The far extreme from complete dependence is independence. To obtain a collection of independent
Dirichlet processes, simply take (Ziz,, ..., Zig,, Uiz, - - - » Uiz, ) mutually independent for every distinct
k-tuple (z1,...,xr). The mutual independence of the variates used to construct Fi,..., Fj ensures that
the realized distributions are independent.

The great strength of the dependent Dirichlet process lies between the extremes of complete de-
pendence and independence. The strength of the dependence in the realized F; will be governed by
parameters of the model. If the driving stochastic processes exhibit strong dependence over the range
of covariate levels in use, then the realized F; will be strongly related to each other, and the realized
distributions will slowly evolve as the covariate changes. If the dependence of the stochastic processes
is weak, then the realized F; will be only weakly related to each other, and the realized distributions
will show substantial, quick changes as the covariate changes. The parameters that govern the strength
of this dependence are either specified as part of the prior distribution, or one may place a distribution
on the parameters.

More generally, the technique used to construct the dependent Dirichlet process can be used to

construct other dependent nonparametric distributions. The general approach to construction of a prior
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distribution with full support over the space of distribution functions is to take a countable collection
of mutually independent random variables, and to use these variates to describe a distribution function.
For conciseness, the distribution function is presumed to be on the unit interval, although the Dirichlet
process uses the 6; and V; to construct a discrete distribution (Sethuraman, 1994). Finite mixture
models with no upper bound on the number of support points are typically constructed via a variate
that determines the number of support points, and, conditional on that variate, a collection of ; and
p; that produce a discrete distribution. The e-Dirichlet process (Tardella and Muliere, 1998) provides
a means of approximating a Dirichlet process with a finite mixture model. The Polya tree first fixes a
partition of the unit interval, and then uses a collection of mutually independent beta random variates to
describe the random distribution (Ferguson, 1973; Lavine, 1992, 1994). The generalized Polya tree fixes
a partition of the unit interval and then uses a collection of mutually independent variates (that may
or may not be beta random variates) to describe the random distribution (Walker and Muliere, 1997).
Series expansions provide a representation of a density as the normalized sum of random coefficients
times basis functions, perhaps exponentiated. The prior distribution can usually be described by a
variate that determines the number of non-zero coefficients in the series and a variate that determines
the coefficient for each term in the series (for example, Petrone, 1999a, 1999b). These cases represent
but only a few of the approaches to placing a distribution on the space of distribution functions. Other
approaches that are computationally accessible include hybrid models. For example, a hybrid model
for a discrete distribution might rely on explicit description of the first few components, as per a finite
mixture model, followed by a tail of the remaining components determined by the Dirichlet process. In
each of these cases, and in many other settings, a collection of dependent nonparametric distributions
can be created by merely replacing each random variate by a stochastic process indexed by a covariate,
as has been done here for the dependent Dirichlet process. Computations for many of these models,

such as the finite mixture models or the hybrid models follow the general strategies provided herein.
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4 Regression Modelling

The dependent Dirichlet process (DDP) model provides an alternative to the usual normal theory
linear model, having the advantages of allowing non-normal error distributions and also of allowing
the error distribution to evolve as the level of the covariate changes. This section analyzes a set
of data from Weisberg (1985) which was provided to him by S.J. Gould. The data analyzed here
consist of measurements of perimeter and area of 24 Romanesque churches (Birkin has been removed
from the original data set). Of interest is the relationship between area and perimeter, as well as
the predictive distribution of area for Romanesque churches not included in the analysis. Following
Weisberg’s discussion, we examine the data after both perimeter and area have been subjected to log
transformations.

Consider a least squares analysis and the accompanying residual plots. The residuals from such an
analysis indicate a lack of fit of the normal theory linear model: plots of log area against log perimeter
and of residuals against fitted values show (to my eye) some lack of fit, particularly for the small
churches; a normal probability plot of the residuals shows a distinctly non-linear pattern; boxplots of
the residuals, splitting the churches evenly into two groups based on perimeter, show a change in the
skewness of the residual distribution. Figure 1 provides some of these plots. All three of these features
suggest that one use a DDP model when analyzing the data.

The structure of the DDP model follows, with = representing the centered log perimeter of a church

and y representing the log area of a church.

Fy ~ DDir(M,N(0, 05), G(co,Ces @)y sy )

B~ N(/J‘ﬂazﬁ)

& ~ N(O, og)

Y = Po+ bz +0i+ e
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This specification of the model makes use of the convention that only non-standard components are
specified and that, when a subscript is omitted, the parameter does not vary with the subscript. Thus,
the DDP has a constant value of M, the stochastic process for Uy is constant in X and is just a
Beta(1l, M) variate, and the transformation from U to V is the identity transformation. The stochastic
process for Zy is a Gaussian process with an exponential variogram having parameters cg, c. and a., as
described in Cressie (1993). The identity transformation takes Z to 6. The prior distribution for £ is
normal with the specified mean and variance.

The prior for the DDP model was constructed in several stages. The prior for the regression coeffi-
cients, By and (1, was chosen to have a mean vector of (2.307,2). The second component of the prior
mean corresponds to the notion that the churches are similar in shape, with larger churches scaled up
versions of smaller churches. In the absence of any theory, the first component was chosen to match
the value of BO in the least squares analysis. The variance matrix for 5 was selected to provide little
information about the values of the parameters. The least squares analysis provides an information
matrix for the vector 5. To ensure that the prior on 8 would play a minimal role in the analysis, the
prior was chosen to have a ratio of prior precision to information of 1 : 100. This led to a prior variance
matrix for 8 of diag(0.0757,0.1439).

Relying on the least squares analysis, the mean square error was used to provide an estimate of o2.
This value, 0.01817, was then split into two components—o? and o7. In keeping with the arguments
used for kernel density estimation, o, was set to 1.06 - 0.1348 - 24=1/5 = 0.75675. The variance of an
observation, given 3, is 02 + ag. Setting this to 0.01817 yields o9 = 0.11155.

Several choices were tried for the DDP prior distribution. All relied on a mass parameter of 10 and
the Gaussian process with an exponential covariance function described above. The parameters of the
covariance function were chosen to enforce continuity of the sample paths of the stochastic processes for
0. Values of the correlation parameter were selected to produce a correlation between the 6;, values for

0. located at the quartiles of the data set of 0.5,0.8,0.9 and 0.99. The analyses based on these prior

21



distributions are contrasted below.

A Gibbs following the computational strategy of Bush and MacEachern (1996) sampler was used to
fit the single p DDP model. A burn-in period of 1,000 scans was used, followed by an estimation period
of 20,000 scans. The output of the estimation period was systematically subsampled at a rate of 1 in
10, to reduce the need for storage space. Table 1 provides a summary of least squares fits and DDP
fits of the model. Since the parameters Sy and 81 are not identifiable in the DDP model, the reported
values of By and ;1 have been computed by ordinary least squares so as to provide a linear inference
for the model. See discussion of the noise floor in the next subsection.

Figure 2 presents pairs of posterior predictive distributions for log areas of churches not included
in the data set. The predictive distributions are Rao-Blackwellized estimates obtained from the Gibbs
sampler run. The change in skewness of the predictive distributions, from a positive skewness for small
churches to a negative skewness for large churches is typical of predictive densities for other levels of the
covariate. This feature of the data is easily missed with a standard regression analysis. The predictive
distributions exhibit less variability as the correlation parameter grows. This is to be expected since the
greater the correlation, the more similar are values of 0;;, as z; varies. A greater similarity of these values
effectively implies a greater pooling of information about the unknown distribution, and will generally
result in tighter predictive distributions. Similarly, we might expect the reduction in the change in
skewness that we observe, as the greater correlation parameter expresses greater similarity between the
distributions F, for different values of x. In all cases, the distinctive, evolving nonparametric character

of the predictive distributions indicates the need for the DDP analysis.

4.1 The noise floor

The church data was examined, in part, to see whether a theory of shape developed for living organisms
would extend to other classes of objects. The theory, alluded to in Gould (1973), suggests that £;

should be smaller than 2. As with any theory of this sort which ignores “small order” terms, we would
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not expect the churches to obey a straight line law exactly, and would even be unlikely to believe that
the churches would obey a straight line plus mean zero error model. Instead, my actual belief would
encompass a richer class of models, where the simplification to a line plus mean zero error formulation
is used as a summary of the richer distribution. Walker and Gutierrez-Pena (1999) suggest a strategy
for problems that are fundamentally nonparametric in nature. They recommend that one model the
data in the larger, nonparametric space, but that inference be made in the restricted space. Applying
this approach to the regression setting, we fit the DDP regression model to the data. After fitting the
model to the data, we seek the best linear description of the fit of the model.

The core elements of the regression problem are the mean response given the covariate, the variability
of the response given the covariate, and also the marginal distribution of the covariate. This marginal
distribution is typically ignored in a regression analysis, for, when the linear model is presumed to hold
(i.e., when one works in the smaller space), the marginal distribution is irrelevant for the definition of j.
However, when the model is not linear in z, the marginal distribution on z affects the very definition of
B. With straightforward notation, a population version of the least squares fit minimizes the expression
S (iy)z — Bo — Brz)?m(x)dz over By and B;. Call the minimizing vector 3,,. Unless fy|e is linear in z,
Bm depends on m. Such dependence implies that, even asymptotically, there is no single best choice of
Bm: there is a noise floor below which one cannot pass.

To obtain a linear fit to the DDP model, a marginal distribution was chosen for z to match the

observed distribution of the covariate. At this point, a line was fit to the posterior predictive means,
fie; = E[Bo+ Bizi+ E[0|z]|(Y1,-..,Yy)]

with a weighted least squares technique. The weights were chosen to equal the posterior precision of
the predictive distribution for churches not appearing in the data set. The weighted fit is provided by
the first line of Table 2. Alternatively, ordinary or generalized least squares could have been used to
produce a linear fit to the DDP model.

A great benefit of recasting a traditional parametric analysis into a nonparametric modelling frame-
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work followed by a parametric inference is that one can assess limits on the precision of the parametric
fit. To illustrate this point, we consider a collection of linear inferences made on the basis of the DDP
regression model with a correlation of 0.99. A class of marginal distributions was created by assigning
weight 1/12 to each of a dozen successive cases in the ordered (by z) data. For each marginal distri-
bution, a line was fit with weighted least squares. Table 2 summarizes these fits. The largest fitted
slope was 1.69 while the smallest fitted slope was 1.46. Even if more data were available, we would be
unlikely to have the ability to distinguish between slopes in a range of roughly 0.23. This range gives
us an idea of the noise floor for the inference we intend to make.

It should be noted that further Bayesian formalization of this problem, not pursued here, can also
place a distribution on m(z). Adding a loss function and applying Bayesian reasoning creates a fully
Bayesian approach to making inference about the linear summary of a potentially non-linear model.
Loosely, for models that are nonlinear, where the distribution on m(z) does not change as more data is
collected, the posterior distribution on the optimal 3, remains nondegenerate, even as the sample size

tends to oo.

5 A prior for a continuous cdf

Bayesians often rely on qualitative judgements to simplify prior elicitation, demanding, for example,
that a distribution have tails that decay at a particular rate or that the posterior mean of a parameter
be a monotone function of some statistic. These qualitative judgements, though rarely a complete
representation of one’s prior beliefs, must be reflected in the prior distribution. In nonparametric
Bayesian analysis, a common qualitative judgement is that an unknown distribution is continuous. The
mathematical question then becomes how to construct a prior distribution that assigns probability one
to the set of continuous distributions. The practical question is how to solve the mathematical problem
within computational constraints and without introducing artificial or unappealing features to the prior.

Polya trees and their generalizations (Lavine, 1992, 1994; Walker and Muliere, 1997) provides one
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means of specifying a prior on the space of continuous distributions. Cleverly creating a family of Polya
trees can lead to computational improvements, as in Berger and Guglielmi (1999). The down-side of
the Polya tree solution is that one is forced to specify a tree structure as part of the prior distribution.
The tree structure introduces an element of artificiality into the problem.

Dependent Dirichlet processes provide a second solution to the problem. An unobserved covariate
is introduced into the model. The distribution F, follows some dependent Dirichlet process, and a
continuous distribution, G, is placed on X. The end result is that, while F, may be discrete for
each z, the marginal Fy(y) def J Fz(y)dG(x) is a continuous distribution. In situations where the
unobserved distribution of X represents heterogeneity of experimental units, this model provides a
plausible mechanism for producing the distribution as well as a mathematical solution to the problem.
This approach easily extends to situations where covariates are measured with error, allowing a novel
Bayesian approach to errors in variables models wherein the conditional distributions of the response
variables are nonparametric and continuous for each measured value of the explanatory variables. The

following theorem provides a set of conditions that guarantee that the distribution of F', marginalized

over X, is continuous. The conditions are sufficient, but not necessary.

Theorem 5.1 Assume that Fx ~ DDir(Mx, Fox,Zx,Ux,Tz0.x,Tv,v,x), where X is an interval of

R, and where Fy 5 is a continuous distribution for each xeX. Further assume that the stochastic process

Zx and the transformation Tyzg.x are such that the distribution of 0;y|(0iz,,- - -, 6iz,) is continuous,
provided ' 3 (z1,...,2y,), for every z',xz1,...,0,eX. Assume that X1,Xo,... form a random sample
def

from a continuous distribution, say G, on X. Then, the distribution defined by Fy (y) = [ F;(y)dG(x)

18 continuous with probability 1.

Proof. To show that the distribution Fy is continuous, it suffices to show that P(Y,1€(Y1,...,Y,)) = 0.
n

P(Ypi1€e(Y1,...,Yn)) < D P(Ypn =Y
i=1
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n

= Y P(Ypi1 =YilXps1 = X1)P(Xnj16(X1,..., Xp))
=1
+P(Yni1 = Yi[Xnt1 # X1)P(Xpt1 D (X1, ..., Xn))

= O,
because P(X,+1€(X1,...,X,)) = 0 follows from the assumption that the X; form a random sample from
a continuous distribution and since, with X, 1 3 (X1, ..., X,), the distribution of 0; x,, ., |(0;,x,, - - -, 0;,x,

is continuous for each j.

6 Conclusions

Ferguson’s (1973) early paper on nonparametric Bayesian methods lays out the Dirichlet process, thus
describing a means of placing a distribution on the space of distribution functions. The value of being
able to work in a large space for distributions, rather than a tightly constrained parametric family is
immediately obvious: it enables one to model departures from, say, normality that are both routine (such
as a bit of skewness) and that are non-routine (such as multimodality). Ferguson’s paper indicates a
wide variety of uses for nonparametric Bayesian techniques and this portion of his paper is so convincing
that it has led to a large body of work both on theoretical properties of the models and on their practical
uses. The subsequent development of computational techniques for fitting complex models that involve
a nonparametric Bayesian component has extended their use to pieces of essentially any Bayesian model,
and the success of these methods is well documented across a range of applications (see, for example,
West, Miiller and Escobar, 1994, the papers in Dey, Miiller and Sinha, 1998, and Walker, Damien, Laud
and Smith, 1999). Typically, the additional flexibility of a nonparametric form allows one to better
model the data, and this superior modelling capability translates directly into better out of sample
predictions.

Dependent nonparametric processes provide the next logical step in the development of Bayesian

models. They allow us to move beyond a single unknown distribution, to enter the realm of dependent
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nonparametric distributions. The approach pursued here, with the development of the dependent
Dirichlet process, allows us to work with a continuous covariate space, where the covariate indexes the
random distribution. This covariate space can be of quite general form, with the results here proven for
open sets of R¥. As indicated briefly in Section 3.3, once the processes are defined, there is an abundance
of natural modelling strategies. To focus on the normal theory linear model, we have several immediate
generalizations: The first is to replace the normal distribution for errors with a nonparametric error
distribution, as can be done with a single mixture of Dirichlet processes model. Alternatively, the
normal error distribution can be replaced with an evolving error distribution through use of a mixture
of dependent Dirichlet processes, as illustrated in Section 4. The index through which dependence
among nearby error distributions is created in Section 4 is the covariate itself. In higher dimensional
problems, either the entire covariate space can index the dependence or a lower dimensional summary
of the covariate space (such as the mean for the response) can index the dependence. While it is
natural to write down models which allow some non-linearity in the relationship, one can also write
down mixture of dependent Dirichlet process models which retain linearity of the response’s mean in
the covariates. All of these generalizations allow for incorporation of a scale parameter in the error
distribution. Incorporation of such a parameter enables one to model heteroscedasticity of the errors.
Similar extensions allow one to generalize the generalized linear model.

The phenomenon of evolving error distributions is one which appears, to me, to be quite prevalent.
In order to create accurate predictive densities, it is essential to work with models that allow the error
distribution to evolve. The dependent Dirichlet process provides a simple, natural approach to modelling
evolving distributions. In many situations where the error distributions change shape as the covariate
(or as the mean of the response) changes, there also appear to be mild non-linearities in the regression.
These non-linearities may be mild enough, as they seem to be for the church data, that one still wishes
to work with a conceptual, linear summary of the regression. By modelling the data in a larger space

that allows for some non-linearity, but by making an inference in the smaller (linear) space, one is led
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to the notion of a noise floor and the need to acknowledge that one may never be able to distinguish
between some collections of parameter values. The notion of a noise floor applies in many situations,
and is just as applicable in classical as Bayesian settings. Further development of the concept of a noise
floor and its application should help to clarify the importance (or lack thereof) of retaining a linear
regression when fitting extensions of the linear model.

The applications of dependent nonparametric processes mentioned to this point are heavily used in
applied statistics, and these alone would justify study of the techniques. However, the impact of the pro-
cesses is not limited to these settings. Dependent Dirichlet processes (or other dependent nonparametric
processes) can be used as pieces of more complex Bayesian models in a relatively straightforward way.
The hierarchical modelling technique which drives the modern Bayesian models splits a large model
up into more manageable components and then links these components together in relatively simple
fashions. Dependent nonparametric processes provide potential replacements for components of the
hierarchical model, allowing the components to interact in a more complex manner while still retaining

the relatively simple links between components. The techniques will find wide use in the future.
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8 Appendix A

8.1 Proof of Theorem 3.3

The distance measure used in the proof is d(F,G) = "%, dr,(F;, G;), the sum of the d Levy distances
across the distributions. It is easily verified that this is still a distance measure. Since d(F,G) <
d-mazi<i<q(dr(F;, G;)), proximity under this distance measure implies proximity under Levy distance
for each of the distributions.

We first focus on the case of d = 1, with F' a p-dimensional distribution. The proof has two parts.
The first part shows that there exists a suitable discrete approximation, say G, of any F' in the set
described in the statement of the theorem. Such a G lies within €/2 of F. The second part shows that
the prior assigns positive probability to the €/2-ball about G. Finally, the triangle inequality is used to

show that the prior assigns positive probability to every e-ball about F'.

Part one. Suitable approximation of F.

Find some compact set C = [—c¢,c]P for which Pr(zeC) > 1 — €/4, and where ¢ is a multiple of
€/4. Partition this set into disjoint hypercubes of side €/4, with, say, the convention that the north and

east surfaces of a hypercube are included in it and the south and west surfaces are not. Define G to be
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the finite, discrete distribution that assigns the mass in each hypercube from F' to the midpoint of the
hypercube. Assign the mass from F that lies outside the set C to the point (—c —¢/8,..., —c — €/8).

Verification of the inequalities defining the Levy metric ensure that d(F,G) < €/2.

Part two. Prior probability near G.

The region C is comprised of N = (8¢/¢€)? hypercubes. Consider a distribution H which assigns to
each hypercube a mass within ¢/(4N) of what G assigns to that hypercube. Verification of the Levy
inequalities implies that d(G, H) < €/2. Consider the probability assigned to the set of such H, say H.
The next paragraph shows that this probability is positive.

By assumption, the distribution of F' is absolutely continuous with respect to Fy 4. The locations
are a sequence of i.i.d. draws from Fj 4, and so the distribution of each @] assigns positive probability
to each hypercube where F' assigns mass, and hence where GG assigns mass. Thus, each finite sequence
assigning 67,...,0; to the hypercubes where G has mass has positive probability. This part of the
argument is completed by focusing on the u;. The u; are transformed into v; and thence into p;. Define
pjm to be the mass assigned by some H to hypercube j. Let pom represent the mass of H that lies
outside of the set C. Define p;g in a similar fashion. It is sufficient to show that |p;z — pjc| < €/(4N)
for j =0,..., N. This is accomplished by ordering the hypercubes and then creating a finite set of small
lumps of mass that nearly sum to the desired p;g in each hypercube. These lumps of mass account
for nearly all of the mass of H. Formally, choose a collection of large enough n;, set n = Z;V:O nj,
and choose some d7, < dy sufficiently close together and sufficiently small that, provided d; < v; < oy
for i = 1,...,n, the induced |pjg — pjc| < €/(4N) for j = 0,...,N. The sequence of locations that
correspond to these first n lumps of mass in the distribution are independent of the u;, and are i.i.d.
draws from Fj 4, and so have positive probability of the first ng lying outside the set C, the next n;
lying in hypercube 1, and so on. Since the events of the p;z and 6 lying in the desired intervals and
region of RP are independent and each has positive probability, we have that P(d(H,G) < €/2) > 0.

Application of the triangle inequality yields d(F, G) + d(G, H) < d(F, H), implying the result.
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The case of d > 1 is made difficult by the fact that the u;, hence the v; and so eventually the p; may
vary from one distribution to another. This prevents us from stringing together the d distributions to
form a single distribution in pd dimensions. Instead, the proof parallels that of the case d = 1. For the
first part of the proof, a suitable approximation to F; is found such that di(F;,G;) < ¢/(2d). To do
this, a cube Cj is set up for each of the d distributions, and the previous part one argument is repeated.
For the second part of the proof, a repetition of the argument relies on the d locations (6;,...,0};)
simultaneously falling into appropriate hypercubes. The conditions of the theorem ensure that this can
happen with positive probability. The argument also relies on the existence of a large, finite collection
of v;; that enable the creation of masses for the hypercubes that lie very close to the hypercube masses
of the approximating discrete G;. Again, the conditions of the theorem ensure that we can find §;, and
0y small and sufficiently close together that the p;x; and the p;g, are uniformly close. Independence of
the Zx and the Ux ensure that each of the neigborhoods H; receive positive probability. To complete
the proof, d(F, H) = Y%, dr(F;, H;) < € for all HeH, ensuring that the e-ball about F is assigned

positive probability.

9 Appendix B

Generation of (0;, {Wy|Yy = i})|rest follows from the joint density in equation (1). Use the density
with a value of m > Y,; to obtain the density from which to generate. Since conditioning on Y,; = ¢
ensures that W, = 6;,, the density can be expressed in a form that does not explicitly involve W;. For

the basic model this means either a single 6;; is generated from
fo.. = fo,,(-|0iz), conditioning on all z’ # =z (2)
or the vector of 6;;, with ¢ fixed, are generated from

fo.. = Toi (Biz)-
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In the first case, the W,; for which Y,; = i are set to the new 6;,. In the latter case, the W,; for which
Y, =i are set to 0, where x ranges over z1,...,Z4.
Generation of (Y,;, Wy;)|rest follows from the joint density in equation (1). This is accomplished in

two stages, first generating Y,; and then generating W,;. In the first stage, generate s ~ U(0,1). Set
l
Yoi = min{| ijw > S},

where pjz = Vi [ <]~(1 — Viz). If > je1Pjz < S, then generate enough additional components as
Vintkz ek Beta(1, M,) variates until Y,; is defined, and change the value of m to this larger value.
Retain the newly generated Vj,. Supplement these by generating values for V;,/, 2’ # x, and values for
0;z, TETY,...,Tq. The Vi are generated from the density for V;,/|V;, and the 6;, are generated from
fo,,- In the second stage, set Wy; = Oy, ;.

Generation of Vjz|rest follows from the joint density in equation (1), with m taken to exceed i. The

density is proportional to

f’Uz Vzw|sz HVI(YM_J H(l - ij)l(yxl>j)'
=1

Dependent Dirichlet processes find use in more complex models. In these settings, the Wy; often
represent parameter vectors indexing parametric distributions from which data values are drawn. This
portion of the model impacts the distribution of 6,;. Multiply (x.x) by the likelihood of all observations
for which Y;; = ¢. It also impacts the distribution of Y;. Letting D,; represent the data attached to

Wi, and letting g(D,;) represent its density, the expressions become

for = [fo,. (010i)IITT2, 9(Datfis)" ==

and
k<j
for j=1,...,m, and
x LTI (@ = Vil [ 9(Dsil032) £ 03) 05
k<m

for the event that 5 > m,
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with the constraint that }°72, pj» = 1. As before, if j > m, generate enough additional components as
Vintk z gk Beta(1, M,) variates until Y,; is defined, update m, and generate values for the new 6;;.
The expression for the conditional density of V;; remains unchanged.

A further portion of the model often involves a distribution over the hyperparameters that control
the dependent Dirichlet process. In an MCMC simulation, these parameters would also be updated, con-

ditional on m and 6;,,% = 1,...,m. These updates are standard, with teh model passing a “likelihood”

of TTi%; fe;, (0iz) to the distribution of the hyperparameters.
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Residuals

Figure 1: Residual and normal probability plots from a least squares analysis of the church data.
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Figure 2: Predictive density plots for two churches, DDP model. From left to right, correlation param-

eters are 0.8, 0.9 and 0.99.
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Figure 3: Plot of fits from DDP model against fits from least squares analysis. The line appearing in

the figure corresponds to equal fits for the two models.
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Table 1: Estimated coefficients under several models. For the DDP models, the values of slope and
intercept are estimated by ordinary least squares with a marginal distribution on x equal to a discrete

uniform distribution on the 24 observed z values.

coefficient least squares DDP 0.5 DDP 0.8 DDP 0.9 DDP 0.99
intercept 2.299 2.283 2.282 2.282 2.281
slope 1.658 1.626 1.620 1.618 1.617
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Table 2: Estimated coefficients under several marginal distributions for z. The marginal distribution
is uniform on the set of observed z values indicated in the first column. All fits are based on the DDP

model with a correlation of 0.99.

data set intercept slope
all data 2.279 1.613

1:12 2.268 1.611
2:13 2.288 1.653
3:14 2.300 1.684

4:15 2.291 1.676
5:16 2.281 1.690
6:17 2277 1.678
7:18 2.278 1.684

8:19 2.293 1.651
9:20 2.284 1.685
10:21 2.294 1.656

11:22 2.287 1.664
12:23 2.366 1.498
13:24 2.387 1.455
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