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Homework 5

Due: 25 March 2015

Homework submission: We will collect your homework at the beginning of class on the due date. If you
cannot attend class that day, you can leave your solution in my postbox in the Department of Statistics, 10th
floor SSW, at any time before then.

Problem 1
For each n, define the o-algebra
i—1 1
= _ < g < on
Fn U([ 2n’2n”1—l—2) (1)
and a random variable
2" fw <27
X, = - . 2
() {0 otherwise (2)

1. Show that (X, F,) is a martingale with sup,, E[X,,] < cc.

2. Show that (X,,) does not converge in L;.

Problem 2 (Conditional probabilities define measures)

Let Y be a random variable on a probability space (£2,.4,P), with values in a measurable space (), Ay). Recall
that we define the conditional probability of a given set A € A as

P(AlY = y) :==E[l4|Y =y] . (3)

Question (a): Show that, for any A € A and C € Ay,
PANY €C)) = [ BAY =y)Pr(dy) *)
c

where Py denotes the law of Y.

Question (b): Show that, for any fixed value y € Y, the function A — P(A|Y = y) is Py-almost surely a prob-
ability measure on (£2,.4).

Problem 3 (Independence)
Let (2,.4,P) be a probability space, and B,C C A two sub-o-algebras. We again use the definition

P(A|C)(w) = E[L4|C](w) (5)
for the conditional probability of A given C. Show that the g-algebras B and C are independent if and only if
VB e B: P(B|C) =P(B) . (6)

Note: Recall the definition of independent o-algebras from [Probability I, Chapter 10].



Problem 4 (Conditional densities)

Let X and Y be random variables with values R, with joint law P, and let A denote Lebesgue measure on R. Let
p be a version of the conditional distribution of X given Y, that is, p(4,y) = P(X € A|Y = y) almost surely.
Suppose f(x,y) is a density of the joint distribution P with respect to A® A, and f(y) := [, f(x,y)\(dx).

Question: Show that, if f(y) > 0 for all y € R,

f(=ly) = W)

is a density of p(e,y) with respect to A for all y.



