Probability Theory II (G6106) Spring 2016 http://stat.columbia.edu/~porbanz/G6106S16.html Peter Orbanz porbanz@stat.columbia.edu Florian Stebegg florian@stat.columbia.edu

Homework 4

Due: 24 February 2014

Problem 1 (Warm-up)

Question: Show that every metrizable topological space is a Hausdorff space.

Problem 2 (Metric topologies)

Let \mathcal{X} be a set and d a metric on \mathcal{X} . We had defined the metric topology on \mathcal{X} as

 $\tau := \{ A \subset \mathcal{X} \, | \, \overline{A} \text{ closed with respect to } d \} \, .$

Question: Show that the set system τ above satisfies the properties of a topology, as required in Definition 2.1.

Problem 3 (Distance functions of sets are continuous)

For any subset A of a metric space (\mathbf{X}, d) , define the distance function of A as

$$d(x,A) := \inf_{y \in A} d(x,y) \; .$$

Question: Show that $x \mapsto d(x, A)$ is Lipschitz continuous with Lipschitz constant 1.

Problem 4 (Measures on the Borel sets are determined by open sets)

Lemma 2.7 states: If two measures defined on the Borel σ -algebra of X coincide on all open sets, or if they coincide on all closed sets, then they are identical.

Question: Please prove this result *without* assuming the result that ∩-stable generators determine measures; instead, use the monotone class theorem.

Problem 5 (Weak convergence of point masses)

Let P be a probability measure on a metrizable space X, and (x_n) a sequence in X such that $\delta_{x_n} \xrightarrow{w} P$.

Question: Show that $P = \delta_x$ for some x.

Problem 6 (Tightness and countable additivity)

Let μ be a non-negative, finitely additive set function on a measurable space $(\mathcal{X}, \mathcal{A})$, and finite (i.e. $\mu(\mathcal{X}) < \infty$).

Question (a): Show that μ is a measure (i.e. that it is countably additive) if and only if $\mu(A_n) \searrow 0$ whenever $A_n \searrow \emptyset$.

A family of sets $C \subset A$ is called a called a **compact class** if every sequence (C_n) of sets in C has the following property:

every finite subset of sets C_n in (C_n) has non-empty intersection \Rightarrow (C_n) has non-empty intersection

The set function μ is **tight** with respect to a compact class C if

$$\mu(A) = \sup\{\mu(C) | C \in \mathcal{C} \text{ and } C \subset A\}.$$

You will notice the similarity to the definition of inner regularity. Inner regularity is not a form of tightness, however, since the closed sets do not form a compact class. The prototypical compact class are the compact subsets of a Hausdorff space, and the term "tight measure", without further qualification, is usually used to refer to measures which are tight with respect to the compact sets.

Question (b): Show that, if μ is tight with respect to some compact class $C \subset A$, then it is countably additive on A.

Note: Question (b) is a bit more difficult than the other problems in this homework.