Probability Theory II (G6106)

Spring 2016 http://stat.columbia.edu/~porbanz/G6106S16.html Peter Orbanz porbanz@stat.columbia.edu

Florian Stebegg florian@stat.columbia.edu

Homework 9

Due: 20 Apr 2016

Problem 1

Prove Lemma 4.8 (properties of outer measure) in the class notes.

Problem 2

Recall that the gamma distribution with parameters (α, λ) is the distribution on $(0, \infty)$ with Lebesgue density $p(x) = \Gamma(\lambda)^{-1} \alpha^{\lambda} x^{\lambda-1} e^{-\alpha x}$. Suppose X and Y are independent gamma variables with parameters (α, λ_y) and (α, λ_x) . Show that

$$\frac{X}{Y} \perp \!\!\!\perp X + Y$$
 and $\frac{X}{X+Y} \perp \!\!\!\perp X + Y$.

Problem 3

Many stochastic processes can be interpreted as distributions on functions, i.e. as random variables whose sample space is a space of functions. Suppose we are interested in functions $f : \mathbb{R}_+ \to \mathbb{R}$. The set of all such functions is the product space $\mathbb{R}^{\mathbb{R}_+}$. More generally, the set of all functions from \mathbb{T} to \mathbf{X} is the product set $\mathbf{X}^{\mathbb{T}}$. One of the main technical obstacles in the construction of stochastic processes is that \mathbb{T} is often uncountable (such as in the case $\mathbb{T} = \mathbb{R}_+$ above); if so, the product set $\mathbf{X}^{\mathbb{T}}$ is still well-defined, but the product σ -algebra and product topology are becoming too coarse. The purpose of this problem, and of problem 4 below, is to understand this phenomenon better.

Let X be a second-countable Hausdorff space with Borel σ -algebra $\mathcal{B}(X)$. Let \mathbb{T} be an arbitrary set, and consider the product space

$$\mathbf{X}^{\mathbb{T}} := \prod_{t \in \mathbb{T}} \mathbf{X}_t \; ,$$

in which each factor is a copy of $\mathbf{X}_t := \mathbf{X}$ of \mathbf{X} . For each t, denote by $\mathrm{pr}_t : \mathbf{X}^T \to \mathbf{X}_t$ the projection map (cf. Definition 2.4 in the class notes). We write $\mathcal{B}(\mathbf{X})^T$ for the product σ -algebra (the smallest σ -algebra on \mathbf{X}^T which makes all projections measurable), and $\mathcal{B}(\mathbf{X}^T)$ for the Borel σ -algebra generated by the product topology.

Question (a): Show that $\mathcal{B}(\mathbf{X})^{\mathbb{T}} \subset \mathcal{B}(\mathbf{X}^{\mathbb{T}})$.

Question (b): If \mathbb{T} is countable, show that equality holds, i.e. $\mathcal{B}(\mathbf{X})^{\mathbb{T}} = \mathcal{B}(\mathbf{X}^{\mathbb{T}})$.

Question (c): Show that $\mathcal{B}(\mathbf{X})^{\mathbb{T}} \neq \mathcal{B}(\mathbf{X}^{\mathbb{T}})$ can hold if \mathbb{T} is uncountable. In particular, show that, if \mathbf{X} contains more than one element, the singleton set $\{x\}$, for $x \in \mathbf{X}^{\mathbb{T}}$, are not in $\mathcal{B}(\mathbf{X})^{\mathbb{T}}$.

Problem 4

Let \mathbb{T} be an uncountable set. Let Ω be a set, and \mathcal{A}_t a σ -algebra on Ω for each $t \in \mathbb{T}$.

Question (a): Show that, for every $A \in \sigma(\bigcup_{t \in \mathbb{T}} \mathcal{A}_t)$, there exists a countable subset $I \in \mathbb{T}$ such that $A \in \sigma(\bigcup_{t \in I} \mathcal{A}_t)$.

Question (b): Let $\mathbf{X}^{\mathbb{T}}$ again be the product space in Problem 3. Show that an event A is measurable in the product σ -algebra $\mathcal{B}(\mathbf{X})^{\mathbb{T}}$ if and only if it depends only on a countable number of coordinates. That

is: Show that, whenever $A \in \mathcal{B}(\mathbf{X})^{\mathbb{T}}$, there exists a countable subset $I \subset \mathbb{T}$ and sets $A_t \in \mathcal{B}(\mathbf{X}_t)$, for $t \in I$, such that $x \in A$ iff $\operatorname{pr}_t x \in A_t$ for all $t \in A$.