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CHAPTER 1

Martingales

The basic limit theorems of probability, such as the elementary laws of large
numbers and central limit theorems, establish that certain averages of independent
variables converge to their expected values. A sequence of such averages is a random
sequence, but it completely derandomizes in the limit, and this is usually a direct
consequence of independence. For more complicated processes—typically, if the
variables are stochastically dependent—the limit is not a constant, but is itself
random. In general, random limits are very hard to handle mathematically, since
we have to precisely quantify the effect of dependencies and control the aggregating
randomness as we get further into the sequence.

It turns out that it is possible to control dependencies and randomness if a
process (Xn)n∈N has the simple property

E[Xn|Xm] =a.s. Xm for all m ≤ n ,
which is called the martingale property. From this innocuous identity, we can
derive a number of results which are so powerful, and so widely applicable, that
they make martingales one of the fundamental tools of probability theory. Many
of these results still hold if we use another index set than N, condition on more
general events than the value of Xm, or weaken the equality above to ≤ or ≥. We
will see all this in detail in this chapter, but for now, I would like you to absorb
that

martingales provide tools for working with random limits.

They are not the only such tools, but there are few others.

Notation. We assume throughout that all random variables are defined on a
single abstract probability space (Ω,A,P). Any random variable X is a measurable
map X : Ω→ X into some measurable space (X ,Ax). Elements of Ω are always
denoted ω. Think of any ω as a possible “state of the universe”; a random variable
X picks out some limited aspect X(ω) of ω (the outcome of a coin flip, say, or
the path a stochastic process takes). The law of X is the image measure of P
under X, and generically denoted X(P) =: L(X). The σ-algebra generated by X
is denoted σ(X) := X−1Ax ⊂ A. Keep in mind that these conventions imply the
conditional expectation of a real-valued random variable X : Ω→ R is a random
variable E[X|C] : Ω→ R, for any σ-algebra C ⊂ A.

1.1. Martingales indexed by partially ordered sets

The most common types of martingales are processes indexed by values in N (so-
called “discrete-time martingales”) and in R+ (“continuous-time martingales”).
However, martingales can much more generally be defined for index sets that need
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2 1. MARTINGALES

not be totally ordered, and we will later on prove the fundamental martingale
convergence results for such general index sets.

Partially ordered index sets. Let T be a set. Recall that a binary relation
� on T is called a partial order if it is

(1) reflexive: s � s for every s ∈ T.
(2) antisymmetric: If s � t and t � s, then s = t.
(3) transitive: If s � t and t � u, then s � u.

In general, a partially ordered set may contain elements that are not comparable,
i.e. some s, t for which neither s � t nor t � s (hence “partial”). If all pairs of
elements are comparable, the partial order is called a total order.

We need partially ordered index sets in various contexts, including martingales
and the construction of stochastic processes. We have to be careful, though: Us-
ing arbitrary partially ordered sets can lead to all kinds of pathologies. Roughly
speaking, the problem is that a partially ordered set can decompose into subsets be-
tween which elements cannot be compared at all, as if we were indexing arbitrarily
by picking indices from completely unrelated index sets. For instance, a partially
ordered set could contain two sequences s1 � s2 � s3 � . . . and t1 � t2 � t3 � . . .
of elements which both grow larger and larger in terms of the partial order, but
whose elements are completely incomparable between the sequences. To avoid such
pathologies, we impose an extra condition:

If s, t ∈ T, there exists u ∈ T such that s � u and t � u . (1.1)

A partially ordered set (T,�) which satisfies (1.1) is called a directed set.

1.1 Example. Some directed sets:

(a) The set of subsets of an arbitrary set, ordered by inclusion.
(b) The set of finite subsets of an infinite set, ordered by inclusion.
(c) The set of positive definite n× n matrices over R, in the Löwner partial order.
(d) Obviously, any totally ordered set (such as N or R in the standard order). /

Just as we can index a family of variables by N and obtain a sequence, we
can more generally index it by a directed set; the generalization of a sequence so
obtained is called a net. To make this notion precise, let X be a set. Recall that,
formally, an (infinite) sequence in X is a mapping N→ X , that is, each index
s is mapped to the sequence element xi. We usually denote such a sequence as
(xi)i∈N, or more concisely as (xi).

1.2 Definition. Let (T,�) be a directed set. A net in a set X is a function
x : T→ X , and we write xt := x(t) and denote the net as (xt)t∈T. /

Clearly, the net is a sequence if (T,�) is specifically the totally ordered set
(N,≤). Just like sequences, nets may converge to a limit:

1.3 Definition. A net (xt)t∈T is said to converge to a point x if, for every open
neighborhood U of x, there exists an index t0 ∈ T such that

xt ∈ U whenever t0 � t . (1.2)

/

Nets play an important role in real and functional analysis: To establish certain
properties in spaces more general than Rd, we may have to demand that every
net satisfying certain properties converges (not just every sequence). Sequences
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have stronger properties than nets; for example, in any topological space, the set
consisting of all elements of a convergent sequence and its limit is a compact set.
The same need not be true for a net.

Filtrations and martingales. Let (T,�) be a directed set. A filtration is
a family F = (Ft)t∈T of σ-algebras Fi, indexed by the elements of T, that satisfy

s � t =⇒ Fs ⊂ Ft . (1.3)

The index set T = N is often referred to as discrete time; similarly, T = R+ is called
continuous time. The filtration property states that each σ-algebra Fs contains all
preceding ones. For a filtration, there is also a uniquely determined, smallest σ-
algebra which contains all σ-algebras in F , namely

F∞ := σ
(⋃

s∈TFs
)
. (1.4)

Now, let (T,�) be a partially ordered set and F = (Fs)s∈T a filtration. We
call a family (Xs)s∈T of random variables adapted to F if Xs is Fs-measurable for
every s. Clearly, every random sequence or random net (Xs)s∈T is adapted to the
filtration defined by

Ft := σ
(⋃

s�tσ(Xs)
)
, (1.5)

which is called the canonical filtration of (Xs).
An adapted family (Xs,Fs)s∈T is called a martingale if (i) each variable Xs

is real-valued and integrable and (ii) it satisfies

Xs =a.s. E[Xt|Fs] whenever s � t . (1.6)

Note (1.6) can be expressed equivalently as

∀A ∈ Fs :

∫
A

XsdP =

∫
A

XtdP whenever s � t . (1.7)

If (Xs,Fs)s∈T satisfies (1.6) only with equality weakened to ≤ (i.e. Xs ≤ E(Xt|Fs)),
it is called a submartingale; for ≥, it is called a supermartingale.

Intuitively, the martingale property (1.6) says the following: Think of the in-
dices s and t as times. Suppose we know all information contained in the filtration
F up to and including time s—that is, for a random ω ∈ Ω, we know for every set
A ∈ Fs whether or not ω ∈ A (although we do not generally know the exact value
of ω—the σ-algebra Fs determines the level of resolution up to which we can deter-
mine ω). Since Xs is Fs-measurable, that means we know the value of Xs(ω). The
value Xt of the process at some future time t > s is typically not Fs-measurable,
and hence not determined by the information in Fs. If the process is a martingale,
however, (1.8) says that the expected value of Xt, to the best of our knowledge at
time s, is precisely the (known) current value Xs. Similarly for a supermartingale
(or submartingale), the expected value of Xt is at least (or at most) Xs.

Our objective in the following. The main result of this chapter will be a
martingale convergence theorem, which shows that for any martingale (Xs,Fs) sat-
isfying a certain condition, there exists a limit random variable X∞ which satisfies

Xs =a.s. E[X∞|Fs] for all s ∈ T . (1.8)

A result of this form is more than just a convergence result; it is a representation
theorem. We will see that the required condition is a uniform integrability property.
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1.2. Martingales from adapted processes

This section assumes T = N.

When martingale results are used as tools, the first step is typically to look at
the random quantities involved in the given problem and somehow turn them into a
martingale. The next result provides a tool that lets us turn very general stochastic
processes into martingales, by splitting off excess randomness. The result can also
be used to translate results proven for martingales into similar results valid for
submartingales.

1.4 Theorem [Doob’s decomposition]. Choose T = N ∪ {0}, and let (Xs,Fs)T
be an adapted sequence of integrable variables. Then there is a martingale (Ys,Fs)T
and a process (Zs)N with Z0 = 0 such that

Xs =a.s. Ys + Zs for all s . (1.9)

Both (Ys) and (Zs) are uniquely determined outside a null set, and (Zs) can even
be chosen such that Zs is Fs−1-measurable for all s ≥ 1. If and only if Zs is non-
decreasing almost surely, Xs is a submartingale. /

A process (Zs) with the property that Zs is Fs−1-measurable as above is called
a F-predictable or F-previsible process. Note predictability implies (Zs) is
adapted to F .

The theorem shows that we can start with an arbitrary discrete-time process
(Xt)t∈N, and turn it into a martingale by splitting off Z. The point here is that Z
is predictable: If each Zt was constant, we could simply subtract the fixed sequence
Z from X to obtain a “centered” process that is a martingale. That does not quite
work, since Z is random, but since it is predictable, the respective next value Zt+1

at each step t is completely determined by the information in Ft, so by drawing on
this information, we can in principle center X consecutively, a step at a time.

Proof. Define ∆Xt := Xt −Xt−1, and ∆Yt and ∆Zt similarly. Suppose X is
given. Define Z as

Zt =a.s.

∑
s≤t

E[∆Xs|Fs−1] for all t ∈ N ∪ {0} , (1.10)

and Y by Yt := Xt − Zt. Then Z is clearly adapted, and Y is a martingale, since

Yt − E[Yt−1|Ft−1] = E[∆Yt|Ft−1] = E[∆Xt|Ft−1]− E[∆Zt|Ft−1]︸ ︷︷ ︸
=∆Zt

(1.10)
= 0 (1.11)

Conversely, if (1.9) holds, then almost surely

∆Zt = E[∆Zt|Ft−1] = E[Xt −Xt−1|Ft−1]− E[Yt − Yt−1|Ft−1] = E[∆Xt|Ft−1] ,

which implies (1.10), so Y and Z are unique almost surely. Moreover, (1.2) shows
X is a submartingale iff ∆Zt ≥ 0 for all t, and hence iff Z is non-decreasing a.s. �

1.3. Stopping times and optional sampling

This section assumes T = N.
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Recall my previous attempt at intuition, below (1.7). The assumption that s
and t be fixed values in T is quite restrictive; consider the following examples:

• Suppose Xt is a stock prize at time t. What is the value of XT a the first time
T some other stock exceeds a certain prize?

• Suppose Xt is the estimate of a function obtained at the tth step of an MCMC
sampling algorithm. What is the estimated value XT at the first time T at
which the empirical autocorrelation between XT and XT−100 falls below a given
threshold value?

We are not claiming that either of these processes is a martingale; but clearly,
in both cases, the time T is itself random, and you can no doubt think up other
examples where the time s, or t, or both, in (1.6) should be random. Can we
randomize s and t and still obtain a martingale? That is, if (Xs) is a martingale,
and S and T are random variables with values in T such that S ≤ T a.s., can we
hope that something like

XS =a.s. E[XT |FS ] (1.12)

still holds? That is a lot to ask, and indeed not true without further assumptions
on S and T ; one of the key results of martingale theory is, however, that the
assumptions required for (1.12) to hold are astonishingly mild.

If F = (Fs)s∈N is a filtration, a random variable T with values in N ∪ {∞} is
called a stopping time or optional time with respect to F if

{T ≤ s} ∈ Fs for all s ∈ N . (1.13)

Thus, at any time s ∈ N, Fs contains all information required to decide whether
the time T has arrived yet; if it has not, Fs need not determine when it will. For
(1.12) to make sense, we must specify what we mean by FT : We define

FT := {A ∈ A |A ∩ {T ≤ s} ∈ Fs for all s ∈ N} . (1.14)

1.5 Doob’s optional sampling theorem. Let (Xt,Ft)t∈N be a martingale, and
let S and T be stopping times such that T ≤a.s. u for some constant u ∈ N. Then
XT is integrable and

E[XT |FS ] =a.s. XS∧T . (1.15)

/

In particular, if we choose the two stopping times such that S ≤a.s. T , then
(1.15) indeed yields (1.12). There are other implications, though: Consider a fixed
time t and the process YS := XS∧t, which is also called the process stopped at
t. Since a fixed time t is in particular a stopping time (constant functions are
measurable!), the theorem still applies.

1.6 Remark. A result similar to Theorem 1.5 can be proven in the case T = R+,
but the conditions and proof become more subtle. We will not cover this result here,
just keep in mind that optional sampling morally still works in the continuous-time
case, but the details demand caution. /

Two prove Theorem 1.5, we will use two auxiliary results. The first one collects
some standard properties of stopping times:

1.7 Lemma. Let F = (Fn)n∈N be a filtration, and S, T stopping times. Then:

(1) FT is a σ-algebra.
(2) If S ≤ T almost surely, then FS ⊂ FT .
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(3) If (Xn)n∈N is a random sequence adapted to F , where each Xn takes values in a
measurable space (X, C), and T <∞ almost surely, then XT is FT -measurable.

/

Proof. Homework. �

The second lemma is a property of conditional expectations, which is elemen-
tary, but interesting in its own right: Consider two σ algebras C1, C2 and random
variables X,Y . Clearly, if X =a.s. Y and C1 = C2, then also E[X|C1] =a.s. E[Y |C2].
But what if the hypothesis holds only on some subset A; do the conditional expecta-
tions agree on A? They do indeed, provided that A is contained in both σ-algebras:

1.8 Lemma. Let C1, C2 ⊂ A be two σ-algebras, A ∈ C1 ∩ C2 a set, and X and Y
two integrable random variables. If

C1 ∩A = C2 ∩A and X(ω) =a.s. Y (ω) for ω ∈ A (1.16)

then E[X|C1](ω) =a.s. E[Y |C2](ω) for P-almost all ω ∈ A. /

Proof. Consider the event A> := A ∩ {E[X|C1] > E[Y |C2]}, and note that
A> ∈ C1 ∩ C2 (why?). Then

E[E[X|C1] · IA> ] =a.s. E[X · IA> ] =a.s. E[Y · IA> ] =a.s. E[E[Y |C2] · IA> ] . (1.17)

The first and last identity hold by the basic properties of conditional expectations,
the second one since X =a.s. Y on A. Thus, E[X|C1] ≤ E[Y |C2] almost surely on A.
A similar event A< yields the reverse inequality, and the result. �

1.9 Exercise. If the implication “(1.17) ⇒ E[X|C1] ≤a.s. E[Y |C2] on A” is not
obvious, convince yourself it is true (using the fact that E[Z] = 0 iff Z =a.s. 0 for
any non-negative random variable Z). /

Armed with Lemma 1.7 and Lemma 1.8, we can proof the optional sampling
theorem. We distinguish the cases S ≤ T and S > T :

Proof of Theorem 1.5. We first use T ≤a.s. u to show E[Xu|FT ] =a.s. XT :
For any index t ≤ u, we restrict to the event {T = t} and obtain

E[Xu|FT ]
Lemma 1.8

= E[Xu|Ft] martingale
= Xt = XT a.s. on {T = t} . (1.18)

Now consider the case S ≤ T ≤ u a.s. Then FS ⊂ FT by Lemma 1.7 above, and

E[XT |FS ]
(1.18)

= E[E[Xu|FT ]|FS ]
FS⊂FT= E[Xu|FS ] = XS a.s., (1.19)

so (1.15) holds on {S ≤ T}. That leaves the case S > T , in which XT is FS-
measurable by Lemma 1.7, hence E[XT |FS ] = XT = XS∧T a.s. on {S > T}. �
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1.4. Tail bounds for martingales

This section assumes T = N.

A tail bound for a real-valued random variable X is an inequality that upper-
bounds the probability for X to take values “very far from the mean”. Almost
all distributions—at least on unbounded sample spaces—concentrate most of their
probability mass in some region around the mean, even if they are not unimodal.
Sufficiently far from the mean, the distribution decays, and tail bounds quantify
how rapidly so. These bounds are often of the form

P{X ≥ λ} ≤ f(λ,E[X]) or P{|X − E[X]| ≥ λ} ≤ f(λ) , (1.20)

for some suitable function f . Of interest is typically the shape of f in the region
far away from the mean (in the “tails”). In particular, if there exists a bound of
the form f(λ) = ce−g(λ) for some positive polynomial g, the distribution is said to
exhibit exponential decay. If f(λ) ∼ λ−α for some α > 0, it is called heavy-
tailed.

An elementary tail bound for scalar random variables is the Markov inequality,

P{|X| > λ} ≤ E[|X|]
λ

for all λ > 0 . (1.21)

Now suppose we consider not a single variable, but a family (Xt)t∈T. We can then
ask whether a Markov-like inequality holds simultaneously for all variables in the
family, that is, something of the form

P{sup
t
|Xt| ≥ λ} ≤

const.

λ
sup
t

E[|Xt|] . (1.22)

Inequalities of this form are called maximal inequalities. They tend to be more
difficult to prove than the Markov inequality, since supt |Xt| is a function of the
entire family (Xt), and depends on the joint distribution; to be able to control
the supremum, we must typically make assumptions on how the variables depend
on each other. Consequently, maximal inequalities are encountered in particular
in stochastic process theory and in ergodic theory—both fields that specialize in
controlling the dependence between families of variables—and are a showcase ap-
plication for martingales.

1.10 Theorem [Maximal inequality]. For any submartingale X = (Xt,Ft)t∈N,

P{sup
t∈N
|Xt| ≥ λ} ≤

3

λ
sup
t∈N

E[|Xt|] for all λ > 0 . (1.23)

/

The proof is a little lengthy, but is a good illustration of a number of arguments
involving martingales. It draws on the following useful property:

1.11 Lemma [Convex images of martingales]. Let X = (Xt,Ft)t∈N be an
adapted process, and f : R→ R a convex function for which f(Xt) is integrable
for all t. If either

(1) X is a martingale or
(2) X is a submartingale and f is non-decreasing,

then (f(Xt),Ft) is a submartingale. /

Proof. Homework. �
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Proof of Theorem 1.10. We first consider only finite index sets upper-bounded
by some t0 ∈ N. If we restrict the left-hand side of (1.23) to t ≤ t0, we have

P{max
t≤t0
|Xt| ≥ λ} ≤ P{max

t≤t0
Xt ≥ λ}︸ ︷︷ ︸

term (i)

+P{max
t≤t0

(−Xt) ≥ λ}︸ ︷︷ ︸
term (ii)

. (1.24)

Bounding term (i): Define the random variable

T := min{t ≤ t0 |Xt ≥ λ} . (1.25)

Then T is an optional time, and constantly bounded since T ≤ t0 a.s. We note the
event A := {ω ∈ Ω | maxt≤t0 Xt(ω) ≥ λ} is contained in FT . Conditionally on A,
we have XT ≥ λ, so IAXT ≥a.s. IAλ, and

λP(A) = λE[IA] ≤ E[XT IA] . (1.26)

Now apply the Doob decomposition: X is a submartingale, so X =a.s. Y + Z for
a martingale Y and a non-decreasing process Z with Z0 = 0. Since T ≤ t0 and
Z is non-decreasing, ZT ≤a.s. Zt0 . Since (Yt) is a martingale, E[Yt0 |FT ] =a.s. YT
by the optional sampling theorem, and hence IAYT =a.s. E[IAYt0 |FT ], since A is
FT -measurable. Then

E[IAYT ] = E[E[IAYt0 |FT ]] = E[IAYt0 ] . (1.27)

Applied to X, this yields

E[IAXT ]
(1.27)

≤ E[IAXt0 ]
(∗)
≤ E[0 ∨Xt0 ] , (1.28)

where (∗) holds by Lemma 1.11, since the function x 7→ 0 ∨ x is convex and non-
decreasing. Thus, we have established

P{max
t≤t0

Xt(ω) > λ} ≤ 1

λ
E[0 ∨Xt0 ] . (1.29)

Bounding term (ii): We again use the Doob decomposition above to obtain

P{max
t≤t0

(−Xt) ≥ λ} ≤ P{max
t≤t0

(−Yt) ≥ λ}
(1.29)

≤ 1

λ
E[(−Yt0) ∨ 0]

(∗∗)
=

1

λ
E[Yt0 ∨ 0− Yt0 ]

(∗∗∗)
≤ 1

λ

(
E[Xt0 ∨ 0]− E[X0]

)
≤ 1

λ
(2 max

t≤t0
E[|Xt|]) .

Here, (∗∗) holds since (−x) ∨ 0 = x ∨ 0− x; (∗∗∗) holds since Y is a martingale,
so E[Yt0 ] = E[Y0] = E[X0], and because Yt0 ≤ Xt0 since Z is non-decreasing. In
summary, we have

P{max
t≤t0
|Xt| ≥ λ} ≤

1

λ
E[0 ∨Xt0 ] +

2

λ
max
t≤t0

E[|Xt|] ≤
3

λ
max
t≤t0

E[|Xt|] . (1.30)

Extension to N: Equation (1.30) implies P{maxt≤t0 |Xt| > λ} ≤ 3
λ supt∈N E[|Xt|],

and in particular P{maxt≤t0 |Xt| > λ} ≤ 3
λ supt∈N E[|Xt|], which for t0 →∞ yields

P{sup
t∈N
|Xt| > λ} ≤ 3

λ
sup
t∈N

E[|Xt|] . (1.31)

For any fixed m ∈ N, we hence have

E[(λ− 1
m )I{sup

t∈N
|Xt| > λ− 1

m}] ≤ 3 sup
t∈N

E[|Xt|] . (1.32)
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Since

I{sup
t∈N
|Xt(ω)| > λ− 1

m}
m→∞−−−−→ I{sup

t∈N
|Xt(ω)| ≥ λ} , (1.33)

(1.32) yields (1.23) by dominated convergence. �

Another important example of a tail bound is Hoeffding’s inequality: Sup-
pose X1, X2, . . . are independent, real-valued random variables (which need not be
identically distributed), and each is bounded in the sense that Xn ∈ [ai, bi] almost
surely for some constants ai < bi. Then the empirical average Sn = 1

n (X1 + . . .+Xn)
has tails bounded as

P(|Sn − E[Sn]| ≥ λ) ≤ 2 exp
(
− 2n2λ2∑

i(bi − ai)2

)
. (1.34)

This bound is considerably stronger than Markov’s inequality, but we have also
made more specific assumptions: We are still bounding the tail of a positive variable
(note the absolute value), but we specifically require this variable to be a an average
of independent variables.

It can be shown that the independent averages Sn above form a martingale
with respect to a suitably chosen filtration. (This fact can for example be used
to derive the law of large numbers from martingale convergence results). If these
specific martingales satisfy a Hoeffding bound, is the same true for more general
martingales? It is indeed, provided the change from one time step to the next can
be bounded by a constant:

1.12 Azuma’s Inequality. Let (Xt,Ft)t∈N be a martingale. Require that there
exists a sequence of constants ct ≥ 0 such that

|Xt+1 −Xt| ≤ ct+1 almost surely (1.35)

and |X1 − µ| ≤ c1 a.s. Then for all λ > 0,

P(|Xt − µ| ≥ λ) ≤ 2 exp
(
− λ2

2
∑t
s=1 c

2
t

)
. (1.36)

/

Proof. This will be a homework a little later in the class. �

I can hardly stress enough how handy this result can be: Since the only re-
quirement on the martingales is boundedness of increments, it is widely applicable.
On the other hand, where it is applicable, it is often also quite sharp, i.e. we may
not get a much better bound using more complicated methods. An application of
Azuma’s inequality that has become particularly important over the past twenty
or so years is the analysis of randomized algorithms in computer science:

1.13 Example [Method of bounded differences]. Suppose an iterative ran-
domized algorithm computes some real-valued quantity X; since the algorithm is
randomized, X is a random variable. In its nth iteration, the algorithm computes
a candidate quantity Xn (which we usually hope to be a successively better ap-
proximation of some “true” value as n increases). If we can show that (1) the
intermediate results Xn form a martingale, and (2) the change of Xn from one
step to the next is bounded, we can apply Theorem 1.12 to bound X. See e.g. [8,
Chapter 4] for more. /
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1.5. Notions of convergence for martingales

If you browse the martingale chapters of probability textbooks, you will notice that
martingale convergence results often state a martingale converges “almost surely
and in L1” to a limit X∞. Both modes of convergence are interesting in their own
right. For example, one can prove laws of large numbers by applying martingale
convergence results to i.i.d. averages; a.s. and L1 convergence respectively yield
the strong law of large numbers and convergence in expectation. Additionally,
however, aside from the existence of the limit, we also want to guarantee that
Xs =a.s. E[X∞|Fs] holds, as in (1.8), which indeed follows from L1 convergence if
we combine it with the martingale property.

To understand how that works, recall convergence of (Xs) to X∞ in L1 means

lim

∫
Ω

|Xs(ω)−X∞(ω)|P(dω) = limE
[
|Xs −X∞|

]
→ 0 . (1.37)

(Note: If T is a directed set, then (E[|Xs −X∞|])s∈T is a net in R, so L1 convergence
means this net converges to the point 0 in the sense of Definition 1.3.) It is easy to
verify the following:

1.14 Fact. If (Xs) converges in L1 to X∞, then (XsIA) converges in L1 to X∞IA
for every measurable set A. /

Hence, for every index s ∈ T, L1 convergence implies

lim

∫
A

XsdP = lim

∫
Ω

XsIAdP =

∫
Ω

X∞IAdP =

∫
A

X∞dP (1.38)

for every A ∈ Fs. By the martingale property (1.6), the sequence/net of integrals
is additionally constant, that is∫

A

XsdP =

∫
A

XtdP for all pairs s ≤ t and hence

∫
A

XsdP =

∫
A

X∞dP ,

(1.39)
which is precisely (1.8).

1.6. Uniform integrability

Recall from Probability I how the different notions of convergence for random vari-
ables relate to each other:

almost surely in probability L1 Lp

weakly

subsequence (1.40)

Neither does a.s. convergence imply L1 convergence, nor vice versa; but there are
additional assumptions that let us deduce L1 convergence from almost sure con-
vergence. One possible condition is that the random sequence or net in question
(1) converges almost surely and (2) is dominated, i.e. bounded in absolute value
by some random variable (|Xs| ≤ Y for some Y and all s). The boundedness as-
sumption is fairly strong, but it can be weakened considerably, namely to uniform
integrability, which has already been mentioned in Probability I. As a reminder:
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1.15 Definition. Let T be an index set and {fs|s ∈ T} a family of real-valued
functions. The family is called uniformly integrable with respect to a measure
µ if, for every ε > 0, there exists a positive, µ-integrable function g ≥ 0 such that∫

{|fs|≥g}
|fs|dµ ≤ ε for all s ∈ T . (1.41)

/

Clearly, any finite set of integrable random variables is uniformly integrable.
The definition is nontrivial only if the index set is infinite. Here is a primitive
example: Suppose the functions fs in (1.41) are the constant functions on [0, 1] with
values 1, 2, . . .. Each function by itself is integrable, but the set is obviously not
uniformly integrable. If the functions are in particular random variablesXs : Ω→ R
on a probability space (Ω,A,P), Definition 1.15 reads: For every ε, there is a
positive random variable Y such that

E
[
|Xs| · I{|Xs| ≥ Y }

]
≤ ε for all s ∈ T . (1.42)

The definition applies to martingales in the obvious way: (Xs,Fs)s∈T is called a
uniformly integrable martingale if it is a martingale and the family (Xs)s∈T of
functions is uniformly integrable.

Verifying (1.41) for a given family of functions can be pretty cumbersome, but
can be simplified using various criteria. We recall two of them from Probability I
(see e.g. [J&P, Theorem 27.2]):

1.16 Lemma. A family (Xs)s∈T of real-valued random variables with finite expec-
tations is uniformly integrable if there is a random variable Y with E[|Y |] <∞ such
that either of the following conditions holds:

(1) Each Xs satisfies∫
{|Xs|≥α}

|Xs|dµ ≤
∫
{|Xs|≥α}

Y dµ for all α > 0 . (1.43)

(2) Each Xs satisfies |Xs| ≤ Y .

/

As mentioned above, the main importance of uniform integrability is that it lets
us deduce L1 convergence from convergence in probability (and hence in particular
from almost sure convergence). Recall:

1.17 Theorem [e.g. [13, Theorem 21.2]]. Let X and X1, X2, . . . be random vari-
ables in L1. Then Xn → X in L1 if and only if (i) Xn → X in probability and (ii)
the family (Xn)n∈N is uniformly integrable. /

We can therefore augment the diagram (1.40) as follows:

almost surely in probability

L1 Lp+
uniform

integrability

weakly

subsequence

(1.44)



12 1. MARTINGALES

1.7. Convergence of martingales

We can now, finally, state the main result of this chapter, the general convergence
theorem for martingales. In short, the theorem says that uniformly integrable
martingales are precisely those which are of the form Xt =a.s. E[X∞|Ft] for some
random variable X∞, and this variable can be obtained as a limit of the random
net (Xt). We define F∞ as in (1.4). In the statement of the theorem, we augment
the index set T by the symbol ∞, for which we assume s � ∞ for all s ∈ T.

1.18 Martingale convergence theorem. Let (T,�) be a directed set, and let
F = (Fs)s∈T be a filtration.

(1) If (Xs,Fs)s∈T is a martingale and uniformly integrable, there exists an inte-
grable random variable X∞ such that (Xs,Fs)s∈T∪{∞} is a martingale, i.e.

Xs =a.s. E[X∞|Fs] for all s ∈ T . (1.45)

The random net (Xs) converges to X∞ almost surely and in L1; in particular,
X∞ is uniquely determined outside a null set.

(2) Conversely, for any integrable, real-valued random variable X,(
E[X|Fs],Fs

)
s∈T (1.46)

is a uniformly integrable martingale. /

Note well: (1.45) makes Theorem 1.18(ii) a representation result—the entire mar-
tingale can be recovered from the variable X∞ and the filtration—which is a con-
siderably stronger statement than convergence only.

Proving the convergence theorem. The proof of Theorem 1.18(i) is, un-
fortunately, somewhat laborious:

• We first prove Theorem 1.18(ii), since the proof is short and snappy.
• The first step towards proving Theorem 1.18(i) is then to establish the state-

ment in the discrete-time case T = N; this is Theorem 1.19 below.
• To establish almost sure convergence in discrete time, we derive a lemma known

as Doob’s upcrossing inequality (Lemma 1.20); this lemma is itself a famous
result of martingale theory.

• Finally, we reduce the general, directed case to the discrete-time case.

Proof of Theorem 1.18(ii). For any pair s � t of indices,

E[Xt|Fs] =a.s. E[E[X|Ft]|Fs] =a.s. E[X|Fs] =a.s. Xs ,

Fs ⊆ Ft

(1.47)

so (Xs,Fs) is a martingale by construction. To show uniform integrability, we use
Jensen’s inequality [e.g. J&P, Theorem 23.9]—recall: φ(E[X|C]) ≤a.s. E[φ(X)|C] for
any convex function φ—which implies

|Xs| =a.s.

∣∣E[X|Fs]
∣∣ ≤a.s. E

[
|X|
∣∣Fs] . (1.48)

Hence, for every A ∈ Fs, we have∫
A

|Xs|dP ≤
∫
A

|X|dP , (1.49)

which holds in particular for A := {|Xs| ≥ α}. By Lemma 1.16, the martingale is
uniformly integrable. �
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We begin the proof of Theorem 1.18(i) by establishing it in discrete time:

1.19 Theorem. Let X = (Xt,Ft)t∈N be a submartingale.

(1) If X is bounded in L1, i.e. if supt∈N E[|Xt|] <∞, the random sequence (Xt)
converges almost surely as t→∞.

(2) If X is even a martingale, and if the family (Xt)t∈N is uniformly integrable,
(Xt)t∈N converges almost surely and in L1 to a limit variable X∞ as t→∞.
Moreover, if we define F∞ as in (1.4), then (Xt,Ft)t∈N∪{∞} is again a mar-
tingale. /

Upcrossings. To show a.s. convergence in Theorem 1.19(i), we argue roughly
as follows: We have to show limtXt exists. That is true if lim inftXt = lim suptXt,
which we prove by contradiction: Suppose lim inftXt < lim suptXt. Then there are
numbers a and b such that lim inftXt < a < b < lim suptXt. If so, there are—by
definition of limes inferior and superior—infinitely many values of X each in the
intervals [lim inftXt, a] and [b, lim suptXt]. That means the process “crosses” from
below a to above b infinitely many times. We can hence achieve contradiction if we
can show that the number of such “upward crossings”, or upcrossings for short, is
a.s. finite. That is a consequence of Doob’s upcrossing lemma.

To formalize the idea of an upcrossing, we define random times (i.e. N-valued
random variables) as

Sj+1 := first time after Tj that X ≤ a = min{t > Tj |Xt ≤ a}
Tj+1 := first time after Sj+1 that X ≥ b = min{t > Sj+1|Xt ≥ b} ,

(1.50)

where we set T1 := 0, min∅ = +∞ and max∅ := 0.1 Note that all Sj and Tj are
stopping times. Then define the number of [a, b]-upcrossings up to time t as

N(t, a, b) := max{n ∈ N|Tn ≤ t} . (1.51)

To count upcrossings, we use an “indicator process” C with values in {0, 1}, with
the properties:

(i) Any upcrossing is preceded by a value Ct = 0.
(ii) Any upcrossing is followed by a value Ct = 1.

We define C as

Ct := I{Ct−1 = 1 ∧Xt−1 ≤ b}+ I{Ct−1 = 0 ∧Xt−1 < a} (1.52)

for t ≥ 2, and C1 := I{X0 < a}. That this process indeed has properties (i) and (ii)
is illustrated by the following figure, taken from [13]:

1 Rationale: A ⊂ B implies minA ≥ minB, and every set contains the empty set.
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The dots and circles are values of Xt; white circles indicate Ct = 0, black dots
Ct = 1. Note every upcrossing consists of a white circle (with value below a),
followed by a sequence of black dots, one of which eventually exceeds b. Now define
the process

Yt :=

t∑
s=1

Ct(Xt −Xt−1) for t ≥ 2 and Y1 = 0 . (1.53)

Again, a figure from [13], now illustrating Y :

We observe that, whenever Y increases between any two white dots, there is an
upcrossing. The value Yt behaves as follows:

(1) It initializes at 0.
(2) Each upcrossing increases the value by at least (b− a).
(3) Since the final sequence of black dots may not be an upcrossing, it may decrease

the final value of Yt on {0, . . . , t}, but by no more than |(Xt − a) ∧ 0|.
We can express (1)-(3) as an equation:

Yt ≥a.s. (b− a)N(t, a, b)− |(Xt − a) ∧ 0| . (1.54)

From this equation, we obtain Doob’s upcrossing lemma.

1.20 Lemma [Upcrossing inequality]. For any supermartingale (Xt)t∈N,

E[N(t, a, b)] ≤ E[|(Xt − a) ∧ 0|]
b− a for all t ∈ N . (1.55)

/

Proof. Equation (1.54) implies

E[N(t, a, b)] ≤ E[Yt] + E[|(Xt − a) ∧ 0|]
b− a , (1.56)

so the result holds if E[Yt] ≤ 0. The process C is clearly predictable; hence, each Yt
is Ft-measurable. Since X is a supermartingale and Ct ∈ {0, 1}, each variable Yt is
integrable. Since C is non-negative and X satisfies the supermartingale equation, so
does Y . Therefore, Y is a supermartingale, and since Y1 = 0, indeed E[Yt] ≤ 0. �

1.21 Exercise. Convince yourself that Lemma 1.20 holds with |(Xt − a) ∧ 0| re-
placed by (Xt − a) ∨ 0 if the supermartingale is replaced by a submartingale. /
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Proof of discrete-time convergence. The crucial point in the upcrossing
lemma is really that the right-hand side of (1.55) does not depend on t—only on
the value Xt. Thus, as long as the value of X is under control, we can bound
the number of upcrossings regardless of how large t becomes. For the proof of the
convergence theorem, we are only interested in showing the number of upcrossings
is finite; so it suffices that Xt is finite, which is the case iff its expectation is finite.
That is why the hypothesis of Theorem 1.19(i) requires X is bounded in L1. In
general, we have for any sub- or supermartingale (Xt)t∈N that

sup
t

E[|Xt|] <∞ ⇒ lim
t→∞

N(t, a, b) <a.s. ∞ for any pair a < b . (1.57)

1.22 Exercise. Convince yourself that (1.57) is true. More precisely, verify that:
(i) L1-boundedness implies supt E[Xt ∧ 0] <∞; (ii) supt E[Xt ∧ 0] <∞ and the
upcrossing lemma imply E[limt→∞N(t, a, b)] <∞; and (iii) the finite mean implies
limt→∞N(t, a, b) <∞ a.s. /

Proof of Theorem 1.19. To prove part (i), suppose (as outlined above) that
limt→∞Xt(ω) does not exist, and hence

lim inf
t

Xt(ω) < a < b < lim sup
t

Xt(ω) for some a, b ∈ Q . (1.58)

Thus, limXt exists a.s. if the event that (1.58) holds for any rational pair a < b
is null. But (1.58) implies X(ω) takes infinitely many values in [lim inftXt, a], and
also in [b, lim suptXt], and hence has infinitely many [a, b]-upcrossings. By the
upcrossing lemma, via (1.57), that is true only for those ω in some null set Na,b,
and since there are only countably many pairs a < b, the limit limXt indeed exists
almost surely. By the maximal inequality, Theorem 1.10, the limit is finite.

Part (ii): For t→∞, X converges almost surely to a limit X∞ by part (i). Since
it is uniformly integrable, it also converges to X∞ in L1. As we discussed in
detail in Section 1.5, L1 convergence combined with the martingale property implies
Xs =a.s. E[X∞|Fs] for all s ∈ N, so (Xs,Fs)N∪{∞} is indeed a martingale. �

Finally: Completing the proof of the main result. At this point, we have
proven part (ii) of our main result, Theorem 1.18, and have established part (i) in
the discrete time case. What remains to be done is the generalization to general
directed index sets for part (i).

Proof of Theorem 1.18(i). We use the directed structure of the index set
to reduce to the discrete-time case in Theorem 1.19.

Step 1: The net satisfies the Cauchy criterion. We have to show that the random
net (Xs)s∈T converges in L1; in other words, that

∀ε > 0 ∃s0 ∈ T : E[|Xt −Xu|] ≤ ε for all t, u with s0 � t and s0 � u . (1.59)

This follows by contradiction: Suppose (1.59) was not true. Then we could find
an ε > 0 and a sequence s1 � s2 � . . . of indices such that E[|Xsn+1

−Xsn |] ≥ ε
for infinitely many n. Since the (Xs,Fs)s∈T is a uniformly integrable martingale,
so is the sub-family (Xsn ,Fsn)n∈N—but it does not converge, which contradicts
Theorem 1.19. Thus, (1.59) holds.

Step 2: Constructing the limit. Armed with (1.59), we can explicitly construct
the limit, which we do using a specifically chosen subsequence: Choose ε in (1.59)
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consecutively as 1/1, 1/2, . . .. For each such ε = 1/n, choose an index sn satisfying
(1.59). Since T is directed, we can choose these indices increasingly in the partial
order, s1/1 � s1/2 � . . .. Again by Theorem 1.19, this makes (Xs1/n)n a convergent
martingale, and there is a limit variable X.

Step 3: The entire net converges to the limit X. For the sequence constructed
above, if n ≤ m, then s1/n � s1/m. Substituting into (1.59) shows that

E[|Xs1/m−Xs1/n |] ≤
1

n
and hence E[|X−Xs|] ≤

1

n
whenever s1/n � s .

Hence, the entire net converges to X.

Step 4: X does as we want. We have to convince ourselves that X indeed satisfies
(1.45), and hence that∫

A

XsdP =

∫
A

XdP for all A ∈ Fs . (1.60)

Since the entire net (Xs)s∈T converges to X in L1, we can use Fact 1.14: IAXs also
converges to IAX in L1 for any A ∈ Fs. Hence,∫

A

XsdP =

∫
Ω

IAXsdP =

∫
Ω

IAXdP =

∫
A

XdP . (1.61)

Step 5: X is unique up to a.s. equivalence. Finally, suppose X ′ is another F∞-
measurable random variable satisfying (1.45). We have to show X =a.s. X

′. Since
both variables are F∞-measurable, we have to show that∫

A

XdP =

∫
A

X ′dP (1.62)

holds for all A ∈ F∞. We will show this using a standard proof technique, which I
do not think you have encountered before. Since it can be used in various contexts,
let me briefly summarize it in general terms before we continue:

1.23 Remark [Proof technique]. What we have to show in this step is that some
property—in this case, (1.62)—is satisfied on all sets in a given σ-algebra C (here:
F∞). To solve problems of this type, we define two set systems:

(1) The set D of all sets A ∈ C which do satisfy the property. At this point, we do
not know much about this system, but we know that D ⊂ C.

(2) The set E of all A ∈ C for which we already know the property is satisfied.

Then clearly,

E ⊂ D ⊂ C . (1.63)

What we have to show is D = C.
The proof strategy is applicable if we can show that: (1) E is a generator of C,

i.e. σ(E) = C; (2) E is closed under finite intersections; and (3) D is closed under
differences and increasing limits. If (2) and (3) are true, the monotone class theorem
[J&P, Theorem 6.2] tells us that σ(E) ⊂ D. In summary, (1.63) then becomes

C = σ(E) ⊂ D ⊂ C , (1.64)

and we have indeed shown D = C, i.e. our property holds on all of C. /
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Now back to the proof at hand: In this case, we define D as the set of all
A ∈ F∞ which satisfy (1.62). We note that (1.62) is satisfied whenever A ∈ Fs for
some index s, and so we choose E as

E =
⋃
s∈T
Fs . (1.65)

Then (1.63) holds (for C = F∞), and it suffices to show D = F∞. Recall that
σ(E) = F∞ by definition, so one requirement is already satisfied.
D is closed under differences and increasing limits: Suppose A,B ∈ D. Then

(1.62) is satisfied for A \B, since we only have to subtract the equations for A
and B, so D is closed under differences. Similarly, suppose A1 ⊂ A2 ⊂ . . . is a
sequence of sets which are all in D, and A := ∪nAn. By definition of the integral,∫
A
XdP = limn

∫
An

XdP. Applying the limit on both sides of (1.62) shows A ∈ D.

The set system E is closed under finite intersections: Suppose A ∈ Fs and B ∈ Ft
for any two s, t ∈ T. Since T is directed, there is some u ∈ T with s, t � u, and
hence A,B ∈ Fu and A ∩B ∈ Fu ⊂ E . Hence, we have σ(E) = D by the monotone
class theorem, and

F∞ = σ(E) = D ⊂ F∞ , (1.66)

so (1.62) indeed holds for all A ∈ F∞. �

1.8. Application: The 0-1 law of Kolmogorov

Recall the 0-1 law of Kolmogorov [e.g. J&P, Theorem 10.6]: If X1, X2, . . . is an
infinite sequence of independent random variables, and a measurable event A does
not depend on the value of the initial sequence X1, . . . , Xn for any n, then A occurs
with probability either 0 or 1. The prototypical example is convergence of a series:
If the random variables take values in, say, Rn, the event{∑

iXi converges
}

(1.67)

does not depend on the first n elements of the series for any finite n. Hence, the
theorem states that the series either converges almost surely, or almost surely does
not converge. However, the limit value it converges to does depend on every Xi.
Thus, the theorem may tell us that the series converges, but not usually which
value it converges to.

In formal terms, the set of events which do not depend on values of the first n
variables is the σ-algebra Tn = σ(Xn+1, Xn+2, . . .). The set of all events which do
not depend on (X1, . . . , Xn) for any n is T := ∩nTn, which is again a σ-algebra,
and is called the tail σ-algebra, or simply the tail field.

1.24 Kolmogorov’s 0-1 law. Let X1, X2, . . . be independent random variables,
and let A be an event such that, for every n ∈ N, A is independent of the outcomes
of X1, . . . , Xn. Then P(A) is 0 or 1. /

In short: A ∈ T implies P(A) ∈ {0, 1}. This result can be proven concisely
using martingales. The martingale proof nicely emphasizes what is arguably the
key insight underlying the theorem: Every set in T is σ(X1, X2, . . .)-measurable.

Proof. For any measurable set A, we have P(A) = E[IA]. Suppose A ∈ T .
Then A is independent of X1, . . . , Xn, and hence

P(A) = E[IA] =a.s. E[IA|X1:n] for all n ∈ N . (1.68)
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We use martingales because they let us determine the conditional expectation
E[IA|X1:∞] given the entire sequence: The sequence (E[IA|X1:n], σ(X1:n))n is an
uniformly integrable martingale by Theorem 1.18(ii), and by Theorem 1.18(i) con-
verges almost surely to an a.s.-unique limit. Since

E
[
E[IA|X1:∞]

∣∣X1:n] =a.s. E[IA|X1:n] , (1.69)

(1.45) shows that the limit is E[IA|X1:∞], and hence

E[IA|X1:∞] =a.s. lim
n

E[IA|X1:n] =a.s. lim
n

P(A) = P(A) . (1.70)

Since T ⊂ σ(X1:∞), the function IA is σ(X1:∞)-measurable, and hence

P(A) = E[IA|X1:∞] = IA ∈ {0, 1} almost surely. (1.71)

�

1.9. Continuous-time martingales

The so-called continuous-time case is the special case where the index set is chosen
as T := R+, so we can think of the martingale (Xt) as a time series, started at
time t = 0. For any fixed ω ∈ Ω, we can the interpret the realization (Xt(ω)) of
the martingale as a random function t 7→ Xt(ω). Each realization of this function
is called a sample path. We can then ask whether this function is continuous,
or at least piece-wise continuous—this is one of the aspects which distinguish the
continuous-time case from discrete time. Rather than continuity, we will use a
notion of piece-wise continuity:

1.25 Reminder [rcll functions]. Let f : R+ → R be a function. Recall that f is
continuous at x if, for every sequence (xn) with xn → x, we have limn f(xn) = f(x).
We can split this condition into two parts: For every sequence xn → x, (1) limn f(xn)
exists and (2) equals f(x).

Now suppose that, instead of all sequence with limit x, we consider only those
which converge from above to x, i.e. sequences with xn → x and xn ≥ x for
all n; we denote convergence from above as xn ↘ x. If condition (1) is satisfied
for all sequences which converge to x from above, i.e. if limn f(xn) exists for all
xn ↘ x, we say that f has a right-hand limit at x. If (2) is also satisfied, i.e. if
limn f(xn) = f(x) for all such sequence, we call f right-continuous at x. Left-
hand limits and left-continuity are defined similarly, considering only sequence
which converge to x from below.

We say that a function on R+ is right-continuous with left-hand limits, or
rcll for short, if it is right-continuous at every point in [0,∞) and has a left-hand
limit at every point in (0,∞]. /

Intuitively, rcll functions are functions that are piece-wise continuous functions
which jump at an at most countable number of points (otherwise, they would not
have right- and left-hand limits). If the function jumps at x, the function value
f(x) is part of the “right-hand branch” of the function (which is condition (2) in
right-continuity).

Filtrations for continuous-time martingales. In this section, we discuss
conditions ensuring a martingale has rcll sample paths. To formulate such condi-
tions, we have to impose additional requirements on filtrations. The first is that
filtrations contain all negligible sets.
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1.26 Reminder [Negligible sets and completions]. If (Ω,A) is a measurable
space, the σ-algebra A does not usually contain all subsets of Ω. For a given prob-
ability measure P, there may hence be a non-measurable set B which is contained
in a P-null set A ∈ A. Sets which are contained in null sets are called negligible
sets. (In other words, a null set is a negligible set which is also measurable.)

Even if a negligible set is not technically measurable, we might still argue that
it is morally measurable, since we know what its measure would be if it happened
to be in A: B ⊂ A and P(A) = 0 implies the measure would have to be zero. With
this rationale, we can simply regard all negligible sets as null sets, and add them to
the σ-algebra. It is easy to check that the resulting set system is again a σ-algebra.

It is called the P-completion of A, and denoted AP
. Note we cannot define a

completion before specifying a measure on (Ω,A). /

To work with rcll sample paths, we need a similar requirement for filtrations:

1.27 Definition. A filtration (Ft)t∈R+
in a probability space (Ω,A,P) is called

complete if it contains all P-negligible sets, i.e. if Ft = FP
t for all t. /

A second requirement is that the filtration itself is “smooth”: Suppose for some
index s ∈ R+, the σ-algebras Ft with t > s suddenly contain much more information
than Fs—roughly speaking, the amount of information available “jumps up” at s.
Such cases are excluded by the following definition:

1.28 Definition. A filtration (Ft)t∈R+
is right-continuous if

Ft = ∩s>tFs for all t ∈ R+ . (1.72)

/

Martingales with rcll paths. Theorem 1.30 below shows under which con-
ditions a martingale, or even a submartingale, defined with respect to a complete
and right-continuous filtration has rcll sample paths. To proof it, we will need the
following lemma. I will cheat and proof the theorem, but not the lemma.

1.29 Lemma. Let F be a filtration indexed by R+, and let (Xt,Ft)t∈R+
be a sub-

martingale. Then there is a null set N such that the following holds: For all t ∈ R+,
there is a real-valued random variable Xt+ such that

Xt+(ω) = lim
s∈Q+,s↘t

Xs(ω) whenever ω 6∈ N . (1.73)

Modify Xt+ on the null set N by defining Xt+(ω) := 0 for ω ∈ N . If F is complete
and right-continuous, then Xt+ is integrable and

Xt ≤ Xt+ almost surely (1.74)

for each t ∈ R+, with equality almost surely if and only if the function µ(t) := E[Xt]
is right-continuous at t. /

Two remarks on Lemma 1.29:

(1) The assertion in (1.73) is stronger than just almost sure convergence for each t:
The latter would mean that, for each t, there is a null set Nt outside of which
(1.73) holds. Since the index set is uncountable, ∪tNt would not be guaranteed
to be a null set. The lemma shows, however, that there is a single null set N
outside of which (1.73) holds for all t.

(2) The lemma holds for a general submartingale. Recall that, if (Xt) is a martin-
gale, then all Xt have identical mean E[Xt] = µt = µ, so the function t 7→ E[Xt]
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is constant and hence rcll. By the last assertion in the lemma, equality in (1.74)
therefore holds automatically if (Xt) is a martingale.

1.30 Theorem [Submartingales with rcll sample paths]. Let (Xt,Ft)t∈R+

be a submartingale, where F is right-continuous and complete, and the function
µ(t) := E[Xt] is right-continuous. Then there exists a submartingale (Yt,Ft)t∈R+

satisfying Xt =a.s. Yt for all t whose paths t 7→ Yt(ω) are rcll almost surely. /

The result does not quite say (Xt) is almost surely rcll, but rather that there
is a martingale Y which is equivalent to X—in the sense that Xt =a.s. Yt, i.e. we
are not able to distinguish Y from X by probabilistic means—and this equivalent
martingale is rcll almost surely. The process Y is called a version or modification
of X (since we modify the measurable function X on a null set to obtain Y ).
Theorem 1.30 is our first example of a regularity result for a stochastic process,
and we will see in Chapter 5 that most regularity results are stated in terms of the
existence of almost surely regular versions.

Proof. Since (Xt) is a submartingale, Lemma 1.29 guarantees that the ran-
dom variable Xt+ defined in (1.73) exists for each t. Define Yt := Xt+. Then
the paths of Yt are rcll by construction. Since µ(t) is right-continuous by hy-
pothesis, Lemma 1.29 shows that Yt = Xt almost surely (equality holds in (1.74)).
The only thing left to show is hence that (Yt,Ft) is a submartingale, i.e. that∫
A
YsdP ≤

∫
A
YtdP for all A ∈ Fs and all s < t.

Let s < t. Then there are sequence s1 > s2 > . . . and t1 > t2 > . . . in Q+ such
that sn ↘ s and tn ↘ t. By Lemma 1.29,

Xs+ =a.s. lim
n
Xsn and Xt+ =a.s. lim

n
Xtn . (1.75)

Random variables that are almost surely equal integrate identically over measurable
sets, so for all A ∈ Fs∫

A

Xs+dP = lim
n

∫
A

XsndP and

∫
A

Xt+dP = lim
n

∫
A

XtndP . (1.76)

Since s < t, we can always choose the sequences such that sn < tn for all n, which
by the submartingale property implies∫

A

Xs+dP = lim
n

∫
A

XsndP ≤ lim
n

∫
A

XtndP =

∫
A

Xt+dP . (1.77)

Thus, (Xt+,Ft) is a submartingale. �

Note well: We cannot deduce directly from the definition Yt := Xt+ and al-
most sure equality in (1.74) that (Yt) is a submartingale, since (1.74) holds only
pointwise—there is in general a separate null set Nt of exceptions for every t ∈ R+,
and the union of this uncountable collection of null sets need not be null. In the
proof, we have negotiated the problem by choosing a dense countable subset of R+,
in this case Q+. Since the set is countable, we can conclude that there is a single
null NQ+ such that (1.74) holds simultanuously for all t ∈ Q+ whenever ω 6∈ NQ+ .

1.10. Application: The Pólya urn

Recall that an urn is a stochastic process defined by starting with a certain number
of colored balls, and repeatedly drawing a ball uniformly at random. You will be
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familiar with sampling with replacement (an urn in which the ball is replaced after
having been drawn) and sampling without replacement (the ball is removed).

More generally, an urn is a process where, each time we draw a ball, we may or
may not replace it, and may or may not add additional balls to the urn. For two
colors, say black and white, it can be parametrized as(

w a
d b

)
where

w = # initial white balls
b = # initial black balls

. (1.78)

Each time a ball is drawn, we replace it by a balls of the same color and d balls of
the opposite color. Important examples are:

a = 0 d = 0 Sampling without replacement
a = 1 d = 0 Sampling with replacement
a > 1 d = 0 Pólya urn
a = 0 d = 1 Ehrenfest urn (or Ehrenfest heat transfer model)

In particular, a Pólya urn with parameters (w0, b0, a) is a stochastic process
defined by an urn initially containing w0 white and b0 black balls. At each step,
draw a ball from the urn at random; then replace the ball, and add an additional
a balls of the same color. We define Xn as the fraction of white balls after n steps,

Xn =
# white balls after n steps

(# white balls + # black balls) after n steps
. (1.79)

1.31 Proposition. The proportions Xn of white balls in a Pólya urn converge al-
most surely: There exists a random variable X∞ such that limn→∞Xn(ω) = X∞(ω)
almost surely. /

Before we prove this existence result, I want to complement it by a result on
the form of the limit, which we will not prove (since it does not involve a martingale
argument):

1.32 Fact. The limiting proportion X∞ of white balls has law Beta
(
w
a−1 ,

b
a−1

)
. /

Proof of Proposition 1.31. We will show that (Xn) is a martingale, and
then apply the martingale convergence theorem to verify existence of the limit. Let
Wn and Bn respectively denote the number of white and black balls after n draws.
The probability of observing a white ball in the (n+ 1)st draw is, conditionally on
(Wn, Bn),

pn+1 =
Wn

Wn +Bn
. (1.80)

In each step, the number of balls of the color that was drawn increases by (a− 1).
Hence,

Xn+1|Wn, Bn =

{
Wn+(a−1)

Wn+Bn+(a−1) with probability pn
Wn

Wn+Bn+(a−1) with probability 1− pn
. (1.81)

The history of the process, up to step n, is given by the nth σ-algebra in the
filtration Fn. The conditional expectation of Xn+1 given the history of the process
is hence

E[Xn+1|Fn] =
Wn + (a− 1)

Wn +Bn + (a− 1)
pn+1 +

Wn

Wn +Bn + (a− 1)
(1− pn+1)

= . . . =
Wn

Wn +Bn
= Xn .

(1.82)
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Since Xn is also clearly integrable, it is hence a martingale, and even uniformly inte-
grable since it is bounded. Applying the martingale convergence theorem completes
the proof. �

A few words on Proposition 1.31:

• We know from basic calculus that a sequence need not converge—the propor-
tions could fluctuate perpetually. Proposition 1.31 shows that this is not the
case here: Even though the sequence is generated at random by the urn, it
always converges to a limit. Roughly speaking, if we would run the process for
an infinite amount of time to obtain the proportions X∞, and then restart it
with those proportions, they would never change again (which of course can
only be true since the urn has swollen to contain an infinite number of balls).

• On the other hand, the limit is random. If we start the process from the
same initial values twice, we obtain two distinct limiting proportions—with
probability 1, since the limiting distribution is continuous.

1.33 Remark [Preferential attachment networks]. The Pólya urn may seem
primitive, but it has many important applications. One example are random graphs
used as models for certain social networks: A preferential attachment graph
is generated as follows. Fix an integer m ≥ 1. Start with a graph consisting of
a single vertex. At each step, insert a new vertex, and connect it to m randomly
selected vertices in the current graph. These vertices are selected by degree-biased
sampling, i.e. each vertex is selected with probability proportional to the number
of edges currently attached to it. You will notice that (1) the placement of the
next edge depends only on the vertex degrees (not on which vertex is connected to
which), and (2) the model is basically a Pólya urn (where each vertex represents a
color, and the degrees are the number of balls per color). It is hence not surprising
that most proofs on asymptotic properties of this model involve martingales. This,
in turn, is one of the reasons why this model is as well-studied as it is in the applied
probability literature—the applicability of martingales makes it tractable, so we
study it because we can. /

1.11. Application: The Radon-Nikodym theorem

Let P be a probability measure on a measurable space (X ,A), and let µ be a finite
measure on the same space (that is, µ(X ) <∞). Recall that a density of µ with
respect to P is an integrable function f : X → R≥0 satisfying

µ(dx) =a.e. f(x)P (dx) . (1.83)

When does a density exist for a given pair µ and P?
Equation (1.83) says that f transforms the set function P into µ by reweighting

it point-wise. Since it we cannot transform 0 into a positive number by multiplica-
tion with any value, this clearly requires that µ vanishes wherever P vanishes, that
is,

P (A) = 0 ⇒ µ(A) = 0 (1.84)

for all measurable sets A in X . Recall that µ is called absolutely continuous with
respect to P if µ and P satisfy (1.84)—in symbols, µ� P . The term “absolute
continuity” derives from the following:
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1.34 Fact. If ν and µ are σ-finite measures, ν � µ holds if and only if

for all ε > 0 exists δ > 0 such that µ(A) ≤ δ ⇒ ν(A) ≤ ε (1.85)

holds for all measurable sets A. /

That absolute continuity is a necessary condition for (1.83) to hold is obvious.
Remarkably, it is also the only condition required:

1.35 Radon-Nikodym theorem (for probability measures). Let P be a prob-
ability measure and µ a finite measure on a measurable space X . Then µ has a
density with respect to P if and only if µ� P . Any two such densities differ only
on a P null set. /

Proof of the theorem. The idea of the proof is to subdivide the space X
into a partition of n disjoint sets Aj , and define

Y(A1,...,An)(x) :=

n∑
j=1

f(Aj)IAj (x) where f(Aj) :=

{
µ(Aj)
P (Aj)

P (Aj) > 0

0 P (Aj) = 0
.

(1.86)
Think of Y as a “discretization” of the density f whose existence we wish to es-
tablish. Roughly speaking, we will make the partition finer and finer (by making
the sets Aj smaller and increasing n), and obtain f as the limit of Y . Since Y is a
measurable function on the space X , which forms a probability space with P , we
can regard the collection of Y we obtain for different partitions as a martingale.

More formally, we construct a directed index set T as follows: A finite measur-
able partition H = (A1, . . . , An) of X is a subdivision of X into a finite number of
disjoint measurable sets Ai whose union is X . Let T be the set of all finite measur-
able partitions of X . Now we have to define a partial order: We say that a partition
H2 = (B1, . . . , Bm) is a refinement of another partition H = (A1, . . . , An) if every
set Bj in H2 is a subset of some set Ai in H1; in words, H2 can be obtained from H1

by splitting sets in H1 further, without changing any of the existing set boundaries
in H1. We then define a partial order on T as

H1 � H2 ⇔ H2 is a refinement of H1 . (1.87)

Since each index s ∈ T is now a measurable partition, we can define Fs as the
σ-algebra generated by the sets in s,

Fs := σ(A1, . . . , An) if s = (A1, . . . , An) . (1.88)

1.36 Lemma. (Ys,Fs)s∈T is a uniformly integrable martingale. /

Proof. It is easy to check the martingale property; we will show uniform inte-
grability. Let α > 0 and choose some index s = (A1, . . . , An). (Recall the definition
of uniform integrability in (1.41); we choose g as the constant function with value
α.) Then∫
{|Ys|≥α}

|Ys(x)|P (dx)
Ys≥0
=

∫
{Ys≥α}

Ys(x)P (dx)

=

∫
X

n∑
j=1

µ(Aj)

P (Ai)
I{x ∈ Ai and Ys(x) ≥ α}P (dx)

=µ{Ys ≥ α} .

(1.89)
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Since Ys is a positive random variable, Markov’s inequality for Ys reads

P{Ys ≥ α} ≤
1

α
E[Ys] =

1

α
µ(X ) . (1.90)

Now we use (1.85): For a given ε > 0, choose some δ which satisfies (1.85), and set

α > µ(X )
δ . Then (1.90) implies P{Ys ≥ α} ≤ δ, and hence∫

{|Ys|≥α}
|Ys(x)|P (dx)

(1.89)
= µ{Ys ≥ α}

(1.85)

≤ ε . (1.91)

The choice of ε and δ is independent of the index s (since the rightmost term in
(1.90) does not depend on s). Hence, (Ys,Fs) is uniformly integrable. �

The proof of uniform integrability is the only real leg work in the proof of the
Radon-Nikodym theorem. The rest is easy:

Proof of Theorem 1.35. Since (Ys,Fs) is a uniformly integrable martin-
gale, Theorem 1.18 shows that an integrable random variable Y∞ with E[Y∞|Fs] =a.s. Ys
exists and is uniquely determined, up to almost sure equivalence. To verify that
Y∞ is a density, we have to show that µ(A) =

∫
A
Y∞(x)P (dx), and that Y∞ is

non-negative almost surely. The identity E[Y∞|Fs] =a.s. Ys means∫
A

Y∞(x)P (dx) =

∫
A

Ys(x)P (dx) for all A ∈ Fs . (1.92)

For each A, the index set T contains in particular the partition s = (A, Ā) consisting
only of A and its complement Ā. For this s, the previous equation becomes∫

A

Y∞(x)P (dx) =

∫
A

Ys(x)P (dx)

=

∫
A

( µ(A)

P (A)
TA(x) +

µ(Ā)

P (Ā)
TĀ(x)

)
P (dx) = µ(A) .

(1.93)

This also implies that Y∞ ≥ 0 almost everywhere—otherwise, there would be a
non-null set A (i.e. P (A) > 0) on which Y∞ takes only negative values, and by the
previous equation, that would yield µ(A) < 0. �

FYI: The general case. The existence of densities is of course not limited to
the case where P is a probability measure, or even finite; the result is stated in the
form above so that it can be proven using martingales (and because the case where
P is not normalized is not particularly relevant in the following). Nonetheless, I
should stress that Theorem 1.35 still holds in precisely this form if µ and P are
both σ-finite measures:

1.37 Radon-Nikodym theorem. Let µ and ν be σ-finite measures on a mea-
surable space (X ,A). Then there exists a measurable function f : Ω→ [0,∞) with
µ(A) =

∫
A
fdν for all A ∈ A if and only if µ� ν. /

Indeed, there is a generalization beyond even the σ-finite case: ν need not be
σ-finite, and µ need not even be a measure. I state it here without proof (which
you can read up in [5, 232E], if you feel so inclined):

1.38 Generalized Radon-Nikodym theorem. Let ν be a measure on a mea-
surable space (X ,A), and let µ : A → R≥0 be a finitely additive set function. Then
there is a measurable function f : X → R≥0 satisfying µ(A) =

∫
A
fdν for all A ∈ A

if and only if:
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(i) µ is absolutely continuous with respect to ν.
(ii) For each A ∈ A with µ(A) > 0, there exists a set B ∈ A such that ν(B) <∞

and µ(A ∩B) > 0.

If so, f is uniquely determined ν-a.e. /





CHAPTER 2

Measures on nice spaces

We will now start to discuss probability measures on rather general spaces—
the law of a stochastic process, for example, is usually a probability measure on an
infinite-dimensional space (provided that we can even define in a straightforward
way what a dimension is). Two problems we encounter in this case are the following:

(1) How do we define a σ-algebra on the space?

On the line, we can generate the Lebesgue σ-algebra using intervals, or hypercubes
in Rd. That does not work in infinite dimensions; roughly speaking, the volume of
a hypercube with fixed edge length s is sd, and if d→∞, this volume converges to
0, 1 or∞ (depending on whether s is smaller than, equal to, or larger than 1). The
example illustrates that our finite-dimensional conceptions of volume do not really
work in infinite dimensions. On more abstract spaces, there is not even a simple
notion of dimensions that we could use as an exponent.

(2) Many properties of measures that hold automatically on Rd do not hold on
arbitrary measurable spaces. How do we ensure those properties?

There is a common answer to both problems, which is to define a topological space
with suitable properties, and to use the open sets in this space to generate the
σ-algebra. The topological spaces which have emerged as the golden mean between
generality and tractability for most purposes in analysis and probability are called
Polish spaces.

2.1. Topology review

A function between Euclidean spaces is continuous if limn f(xn) = f(x) for every
convergent sequence xn → x. This definition requires a metric, since the definition
of the limit involves a metric. Assuming a metric as given is a fairly strong condition,
but it turns out that continuity can be formulated in much more general terms: A
function between Euclidean spaces is continuous if and only if the preimage of every
open set is open. Provided we have a definition of what an open set is, this statement
does not involve a metric, so we can substitute it for the definition of continuity.
To ensure functions so defined as “continuous” have properties resembling those of
continuous functions on Euclidean space, we define open sets to behave similarly
to open sets in Rd. The set of all open sets is called a topology. The properties we
have to require are the following:

2.1 Definition. A topology τ on a set X is a set of subsets of X that satisfies:

(1) ∅ ∈ τ .
(2) τ is closed under arbitrary unions.
(3) τ is closed under finite intersections.

27
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The sets in τ are called open sets. The pair X := (X , τ) is called a topological
space. A function f : X→ X′ between two topological spaces is continuous if

f−1τ(X′) ⊂ τ(X) , (2.1)

that is if the preimage f−1A′ of every open set A′ in X′ is an open set in X. /

The definition of a topology above is very general; we could, for example, just
define three or four sets, fill in all unions and intersections, and call these the open
sets. To obtain a space with useful properties, we need to make sure it contains
a sufficient number of open sets. Usually, a minimal requirement is that any two
points can be separated by open sets:

2.2 Definition. A Hausdorff space is a topological space in every pair of points
is separated by disjoint open neighborhoods: For any x, x′ ∈ X, there exist open
sets A,A′ ∈ τ such that x ∈ A, x′ ∈ A′ and A ∩A′ = ∅. /

There is a topological concept analogous to the generator of a σ-algebra: If G
is a system of sets, the topology generated by G is the smallest topology which
contains all sets in G, and denoted τ(G). Every set in τ(G) can be represented as
a (possibly uncountable) union of finite intersections of sets in G (except possibly
∅ and X ). In this sense, topologies are simpler than σ-algebras—a set in a σ-
algebra need not have such an explicit representation in terms of sets in a generator.
Because of this fact, we distinguish two particular types of generators:

2.3 Definition. If every set in τ can be represented as a union of sets in G, then
G is called a base of τ . Any generator of τ that contains ∅ and X is called a
subbase of τ . (Note this implies every set in τ is a union of finite intersections of
set in G.) /

We have not yet discussed how we can actually define a topology on a given
space. There are two topologies you probably have encountered, at least implicitly:

• The standard topology on Rd. This is the topology generated by all open balls
in Rd (the open intervals in case of R). Under this topology, the topological
definitions of open sets, closed sets, continuous functions etc. coincide with the
Euclidean definitions used in every calculus class.

• Finite or countable sets fit into the picture if endowed with the discrete topol-
ogy, the topology generated by all subsets. That is, every set is open, every
set is closed, and every function on the set is continuous.

There are two standard recipes to define more general topologies on a given set X :

(1) Define a notion of convergence of sequences or nets in X . If we know which
sequences converge, we know which sets are closed, and hence (by taking com-
plements) which sets are open. We usually define convergence by defining a
metric on X , in which case the resulting topology is called a metric topology.

(2) Define a family F of (usually real-valued) functions on X, and choose the
smallest topology which makes all f ∈ F continuous. Such a topology is called
a weak topology.

The standard topology on Euclidean space is, of course, the metric topology defined
by the Euclidean distance; it is also the weak topology generated by the set of all
continuous functions (defined in the ε-δ-sense). Clearly, every topology is the weak
topology generated by its continuous functions. The discrete topology is a metric
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topology defined by the metric

d(x, y) := I{x 6= y} . (2.2)

There are two important types of topologies that are derived from given topolo-
gies: The product and the relative topology. Consider two topological spaces
X = (X , τ(X)) and Y = (Y, τ(Y)). Is there a natural way to equip the product
space X×Y with a topology that preserves the topological properties of X and
Y? By “preserving the topologies”, we mean that if we project from the product
X×Y back to, say, X, we should recover the original topology τ(X). To formalize
this idea, we formalize the projection as a mapping, and then use the weak topology
generated by these maps.

2.4 Definition. Let Xt = (Xt, τt) be topological spaces, for all t in a (possibly
uncountable) index set T. For each t ∈ T, define the projection map

prXt
:
∏
s∈T

Xs → Xt

(xs)s∈T 7→ xt

(2.3)

The weak topology on the product set
∏

Xs generated by the family {prXt
, t ∈ T}

is called the product topology. /

If the product has two factors X and Y, the product topology is generated by
all Cartesian products A×B of open sets A in X and B in Y; its form for any finite
number of factors is analogous. If T is countably infinite or even uncountable, the
generator also consists of products ×sAs, where As is open in Xs, but As equals
Xs for all but finitely many s.

The second type of derived topology concerns a subset Y of a topological space
X. The subset “inherits” a topology from X, namely the restriction of all open sets
in X to Y:

τ ∩ Y := {A ∩ Y|A ∈ τ} (2.4)

Once again, this can be elegantly formulated as a weak topology:

2.5 Definition. Let Y be a subset of a X = (X , τ), and let IY : Y ↪→ X denote
the canonical inclusion map (i.e. the map which is defined as x 7→ x for x ∈ Y
and undefined outside Y). The weak topology on Y generated by IY is called the
relative topology (or subspace topology, or trace topology) on Y. /

You notice that, given a product topology on e.g. X×Y, the original topology
on X coincides with its relative topology under the product topology.

2.6 Definition. The σ-algebra B(X) := σ(τ) generated by all open sets of a topo-
logical space X is the Borel σ-algebra of X. Its elements are the Borel sets. /

When we refer to a measure on a topological space X without further qualification,
we always mean a measure defined on the Borel σ-algebra of X.

It is worth noting that the Borel σ-algebra is in general much larger than the
topology of X: Recall that, if G is a generator of a topology, then every open set is
a union of finite intersections of sets in G. As a generator of the topology, G is also
a generator of the Borel σ-algebra, but there is no similarly explicit representation
of arbitrary Borel sets. This is so because σ-algebras are closed under both count-
able unions and countable intersections, and the two do not commute. Hence, to
represent an arbitrary Borel set, we need countable unions of countable intersec-
tions of countable unions of..., which leads to a structure within the Borel σ-algebra



30 2. MEASURES ON NICE SPACES

known as the “Borel hierarchy”. In particular, recall that there is no such thing as
a countably infinite σ-algebra; any σ-algebra is either finite or uncountable.

2.7 Lemma. If two measures defined on the Borel σ-algebra of X coincide on all
open sets, or if they coincide on all closed sets, then they are identical. /

Proof. Both the open and the closed sets form generators of B(X) that are
closed under finite intersections, and hence completely determine measures on B(X)
(cf. [J&P, Corollary 6.1]). �

2.2. Metric and metrizable spaces

The minimal condition we need to obtain one of the “nice” spaces in the title of this
chapter is metrizability. It has many implications for analysis, and in particular
two fundamental consequences for probability: On metrizable spaces, all proba-
bility measures have a rather indispensable property called regularity, and weak
convergence of distributions is well-defined on such spaces.

2.8 Definition. A function d : X × X → [0,∞) is called a metric on X if:

(1) It is positive definite: d(x, y) = 0 if and only if x = y.
(2) It is symmetric: d(x, y) = d(y, x) for all x, y ∈ X .
(3) It satisfies the triangle inequality: d(x, y) + d(y, z) ≤ d(x, z) for all x, y, z ∈ X .

/

Recall that a net (xt)t∈T converges to a limit x with respect to a given metric
d if the net d(xt, x) converges to 0 in R. Also recall that a set A is called closed
with respect to d if the limit of every d-convergent sequence of points in A is also
in A. The topology induced by d is the set system

τ := {A ⊂ X |A closed with respect to d} . (2.5)

We call a metric compatible with a given topology τ if d induces τ .

2.9 Exercise. Let X be a set and d a metric on X . Show that the set system τ
defined in (2.5) is a topology. /

2.10 Definition. A topological space X = (X , τ) is called metrizable if there
exists a metric on X which induces τ . For a specific compatible metric d, the pair
(X, d) is called a metric space. /

The distinction between metrizable and metric spaces is more useful than it may
seem at first glance: Simply the fact that a topology can be generated by a metric
implies a whole range of nice topological properties of X, but these properties do
not depend on the metric. We hence refer to X as metrizable if only such metric-
independent properties are concerned. On the other hand, two metrics that metrize
the same topology can have rather different properties. For two specific compatible
metrics d1 and d2, we hence regard (X, d1) and (X, d2) as two distinct metric spaces.

2.11 Remark. Mathematical statistics provides an example of where this distinc-
tion matters: If two metrics metrize the same topology, then sequences converge
in one if and only if they converge in the other; but two convergent sequences may
converge at different rates. This is of no consequence in parametric statistics, where
the parameter space can always be regarded as a subset of Euclidean space, and all
metrics that metrize the Euclidean topology yield identical rates. In nonparametric
statistics, however, parameter spaces are infinite-dimensional, and the properties of
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metrics can differ substantially. Given a topology on such a parameter space, any
two compatible metrics yield identical notions of consistency (since consistency de-
pends only on whether or not an estimator converges), but may yield very different
convergence rates. /

2.12 Lemma. If X is metrizable, it is a Hausdorff space. /

Proof. Homework. �

Before we move to probability theory again, we should mention a special type
of set that we use repeatedly in the following: The set

Br(x) := {y ∈ X|d(x, y) < r} (2.6)

is called the open ball of radius r centered at x, or an open d-ball if we wish to
emphasize the metric.

2.13 Lemma. In a metric space (X, d), a set A is open if and only if, for every
x ∈ A there is some ε > 0 such that Bε(x) ⊂ A. Hence, every open set is the union
of all open balls it contains. /

Proof. A closed set F is precisely the set of all limits of sequences in F .
If A is open, its complement A is closed. Hence, x ∈ A if and only if x is not
the limit of any sequence in A. By the definition of d-convergence, this means
that ε := infy∈A d(x, y) > 0. Thus, Bε(x) ⊂ A. The converse holds by definition:
Arbitrary unions of open sets are open. �

2.3. Regularity of measures

We have not so far established any specific link between a measure on the Borel
sets of a topological space and the underlying topology. We know of course, by
Lemma 2.7, that a measure on the Borel sets is uniquely determined by its values
on the open sets—but the same is true for any measure and any generator of the
underlying σ-algebra, provided the generator is closed under finite intersections
[J&P, Corollary 6.1]. In other words, we have not yet done anything with the open
sets that we could not do just as well with another generator.

However, Lemma 2.7 is not constructive: The open sets determine a measure µ
on B(X) abstractly, in the sense that any other measure ν with identical values on
all open sets must be identical. The next definition makes determination by open
sets constructive, in the sense that we can derive the value of a probability measure
P on any set to arbitrary precision from its values on open sets, or similarly, by its
values on closed sets.

2.14 Definition. A measure µ on a topological space X is called:

(1) Inner regular if, for every Borel set A,

µ(A) = sup{µ(F )|F ⊂ A and F closed} . (2.7)

(2) Outer regular if, for every Borel set A,

µ(A) = inf{µ(G)|A ⊂ G and G open} . (2.8)

(3) Regular if it is inner and outer regular.

/
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Note that we can alternatively formulate these definitions as follows: P is inner
regular if, for any A ∈ B(X),

∀ε > 0 ∃ closed F ⊂ A : µ(A \ F ) < ε . (2.9)

Similarly, outer regularity requires

∀ε > 0 ∃G ∈ τ,A ⊂ G : µ(G \A) < ε . (2.10)

Combining these two, we see that regularity means: For any A ∈ B(X) and any
ε > 0, there exist a closed F and an open G such that

F ⊂ A ⊂ G and µ(G \ F ) < ε . (2.11)

If we can establish that a probability measure P is regular, we have indeed
established a much closer link between the topology and P than Lemma 2.7. One
reason why metrizable spaces play such a central role in probability theory is that
metrizability suffices to ensure regularity:

2.15 Theorem. Every probability measure on a metrizable space is regular. /

The proof is based on the fact that the existence of a compatible metric lets
us define the distance between points and sets. To do so, we define the distance
function of a set A in a metric space (X, d) as

d(x,A) := inf
y∈A

d(x, y) . (2.12)

2.16 Lemma. For any subset A of a metric space (X, d), the function x 7→ d(x,A)
is Lipschitz (with Lipschitz constant 1). In particular, it is continuous. /

Proof. Exercise. (Hint: Use the triangle inequality.) �

The proof of Theorem 2.15 now proceeds similarly to the monotone class ar-
guments we have encountered previously, but we do not actually have to invoke
the monotone class theorem. Instead, we can verify the properties of a σ-algebra
directly.

Proof of Theorem 2.15. Let C be the set of all measurable sets A which
satisfy (2.11). If F is a closed set, the set

F δ := {x ∈ X|d(x, F ) < δ} (2.13)

is open. Hence, if the set A in (2.11) is closed, then (2.11) holds for F := A and
G := F δ with sufficiently small δ. Consequently, C contains all closed sets. Since
the closed sets generate B(X), the set C is a generator of B(X). If we can show
that C is even a σ-algebra, then C = B(X), and the claim follows.

Clearly, C is closed under complements, since the complement of a set approx-
imated by F and G is approximated by G and F . Now suppose An is a sequence
of sets in C with union A. We construct sets F and G approximating A as follows:
Since An ∈ C, we can choose a closed Fn and an open Gn such that

P (Gn \ Fn) <
ε

2n+1
. (2.14)

We then choose n0 such that

P
(⋃

n∈NFn \
⋃
n≤n0

Fn

)
<
ε

2
, (2.15)
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and define F := ∪n≤n0
Fn (which is closed) and G := ∪nGn (which is open). Then

P (G \ F ) < ε, so C is closed under countable unions. Clearly, it is also closed under
complements, so it is indeed a σ-algebra. �

2.4. Weak convergence

A second reason why metrizable spaces are important is that they are exactly
the spaces on which we can meaningfully define weak convergence of probability
measures; this fact is closely related to regularity. In this chapter, we will have to
endure many expressions of the form

∫
fdPn →

∫
fdP etc, so this is a good time

to introduce more concise notation: Whenever a function f on X is integrable with
respect to a measure µ, we write

µf :=

∫
X

f(x)µ(dx) (2.16)

for the integral.1 Also, for any topological space X, we denote by Cb(X) the set of
real-valued, bounded, continuous functions on X.

2.17 Definition. A sequence (or net) Pn of probability measures on a metrizable
space X is said to converge weakly to a probability measure P if

Pnf → Pf for all f ∈ Cb(X) . (2.17)

We denote weak convergence as Pn
w−→ P . /

Since the set Cb(X) is well-defined for any topological space X, it seems tempt-
ing to simply generalize the definition to arbitrary topological spaces. That does
not work, however, since the definition is based on the fact that a probability mea-
sure µ is uniquely determined by its integrals

∫
fdµ for all f ∈ Cb(X), which is not

the case for arbitrary X. Metrizability suffices, though:

2.18 Theorem. Let P and Q be probability measures on a metrizable space X.
Then

P = Q ⇔ Pf = Qf for all f ∈ Cb(X) . (2.18)

/

Proof of Theorem 2.18. Let d be a compatible metric on X. For any open
set U , we approximate the indicator function IU by a sequence of bounded contin-
uous functions as follows: Since U is open, its complement F := U is closed, and
we again define the sets F δ as in (2.13) for any δ > 0. We then define the function

fδ(x) := min{1, δ−1d(x, U)} . (2.19)

This function takes value 0 on U , value 1 outside F δ, and on F δ \ U , it increases
from 0 to 1 as δ−1d(x, U). Since d( • , U) is continuous, so is each fδ, hence
fδ ∈ Cb(X).

We next use the fact that U is open, which implies that every point x in U
has positive distance ε := d(x, U) to the complement U . Hence, for δ < ε, we have
fδ(x) = 1 = IU (x). Thus, fδ ↗ IU point-wise as δ → 0. By monotone convergence
of the integral, Pfn converges to P IU = P (U). The same holds for Q, and since

1 The notation suggests that µ is an operator acting on f . Note this is more than just a
shorthand: By the properties of integrals, we have µ(αf + βg) = αµf + βµg, so a measure can

indeed be regarded as a linear functional acting on functions defined on X.
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the integrals coincide for all f ∈ Cb(X) by hypothesis, the two measures coincide
on all open sets. By Lemma 2.7, that means they are identical. �

2.19 Remark. If you are familiar with Billingsley’s textbook [3], you will notice
that my proof of Theorem 2.15, and also of Theorem 2.20 below, are precise copies
of his; they are the most concise and elegant proofs of these results I am aware
of. As Billingsley also shows, Theorem 2.18 can be deduced directly from the
regularity result in Theorem 2.15. I have chosen a slightly different argument here,
to emphasize the fact that (2.18) is not quite a consequence of regularity. Rather,
on metrizable spaces, both are a consequence of the same fact, namely the existence
of a continuous distance function. /

Our main technical result on weak convergence is the collection of criteria
summarized by the next theorem. To state the result, and to prove it, we need a
few more definitions: The interior A◦ of a set A is the largest open set contained
in A, i.e. the union of all open sets contained in A. The closure cl(A) of A is the
smallest (with respect to inclusion) closed set containing A. A point x is called a
boundary point of A if

V ∩A 6= ∅ and V ∩A 6= ∅ (2.20)

for all neighborhoods V of x. The set of all boundary points of A is called the
boundary ∂A of A. The closure, interior, and boundary of any set satisfy the
following relations:

cl(A) = A◦ ∪ ∂A and ∂A = ∂A = cl(A) ∩ cl(A) (2.21)

Also, recall that every bounded sequence has a limit point. The same is true for
bounded nets. The smallest limit point is called the limit inferior (lim inf), the
largest one the limit superior (lim sup). A sequence or net in R converges if and
only if lim inf and lim sup coincide, in which case this point is the limit.

2.20 Theorem [Criteria for weak convergence]. Let (Ps)s∈T be a net of prob-
ability measures on a metrizable space X. Then the following are equivalent:

(1) Ps
w−→ P .

(2) Psf → Pf for every bounded uniformly continuous function f .
(3) lim sups Ps(F ) ≤ P (F ) for every closed set F .
(4) lim infs Ps(G) ≥ P (G) for every open set G.
(5) Ps(A)→ P (A) for every Borel set A with P (∂A) = 0.

/

Proof. By definition, (1) implies (2), and clearly (3) ⇔ (4). We will proof

(2)⇒ (3) and (3) + (4)⇒ (5) and (5)⇒ (1) .

Step 1: (2)⇒(3). Let F be closed. For any δ > 0, we again define the function fδ
as in (2.19). We have already established that fδ is bounded and continuous. Since
|fδ(x)− fδ(y)| ≤ δ−1d(x, y), it is even uniformly continuous. We also know

IF ≤ 1− fδ ≤ IF δ for any δ > 0 . (2.22)

Assuming that (2) holds, we hence have

lim supPsIF
(2.22)

≤ lim supPs(1− fδ)
limit exists

by (2)
= limPs(1− fδ)

(2)
= P (1− fδ)

(2.22)

≤ P IF δ = P (F δ) .
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Since P , as a probability measure on a metrizable space, is regular, and since F is
closed, we have P (F δ)↘ P (F ) for δ → 0. Consequently, (3) holds.

Step 2: (3)+(4)⇒(5). Let A be a Borel set. Since its interior A◦ is open and its
closure cl(A) is closed, we can apply (3) and (4) and obtain

P (A◦)
(4)

≤ lim inf Ps(A
◦)

A◦⊂A
≤ lim inf Ps(A)

≤ lim supPs(A)
A⊂cl(A)

≤ lim supPs(cl(A))
(3)

≤ P (cl(A)) .

(2.23)

Now assume P (∂A) = 0. By (2.21), this implies P (cl(A)) = P (A◦), so all inequali-
ties in (2.23) are even equalities, and

P (A) = lim inf Ps(A) = lim supPs(A) = limPs(A) . (2.24)

Step 3: (5)⇒(1). In previous proofs, we have started with sets and constructed
bounded continuous functions to approximate their measure; now we have to do
the converse. To express f ∈ Cb(X) by means of a set, choose any constant t, and
consider the set [f > t] := {x|f(x) > t}. Since f is by assumption upper-bounded
by some constant c, we have

Pf =

∫ ∞
0

P [f > t]dt =

∫ c

0

P [f > t]dt . (2.25)

Now we have to make use of (5). Continuity of f implies ∂[f > t] ⊂ [f = t]. The set
[f = t] has non-zero measure only if f assumes constant value t on some non-null
set A. Since we can subdivide X into at most countably many disjoint non-null
sets, there are at most countably many such constants t. For all other t, [f = t] is
a null set, and hence P (∂[f > t]) = 0. By (5),

Ps([f > t])→ P ([f > t]) for all but countably many t . (2.26)

We substitute this into (2.25). Note that we are integrating over t in (2.25) with
respect to Lebesgue measure, so the countable set of exceptional constants t is a null
set. Since the sequence of functions t 7→ Ps[f > t] is dominated (by the constant
function with value 1), and converges to the function t 7→ P [f > t] for Lebesgue-
almost all t, we have

Psf
(2.25)

=

∫ c

0

Pn[f > t]dt −→
∫ c

0

P [f > t]dt
(2.25)

= Pf , (2.27)

where convergence is due to (5) and Lebesgue’s dominated convergence theorem
[e.g. K]. �

2.5. Polish spaces and Borel spaces

In this section, we ask which additional properties we have to add to metrizability
to obtain spaces on which probability theory works without pitfalls. One property
we would like to ensure is that the Borel σ-algebra is countably generated. That is,
for example, a key requirement for the existence of conditional distributions, and
for various concepts in statistics (such as well-behaved sufficient statistics).
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On a topological space X = (X , τ), it seems we should be able to ensure B(X)
is countably generated by requiring that τ has a countable generator. We have to
be careful, though:

2.21 Remark [Generated topology vs. generated σ-algebra]. If we use a
generator G of the topology τ to generate a σ-algebra, we do not generally obtain
the Borel σ-algebra. Since we may need uncountable unions to construct sets in τ
from those in G, σ(G) need not contain every open set. /

It turns out, however, that if a generator of τ is (1) a base and (2) countable,
then there exists a countable generator of B(X):

2.22 Lemma. Let X be a topological space. If G is a countable base for the topology
of X, it is a generator for the Borel σ-algebra. /

Proof. Obvious—every open set is a union of sets in the base, so in this case
a countable union, and hence also contained in σ(G). �

Spaces with a a countable base play an important role in topology, and come
with their own terminology:

2.23 Definition. A topological space is called second-countable if its topology
possesses a countable base. /

If X is metrizable, we can always construct a base explicitly by choosing any
compatible metric d. Then the set of all open d-balls, as defined in (2.6), is a base
of the topology by Lemma 2.13. We do not even have to use all open balls: Those
with centers in a dense subset suffice.

2.24 Definition. A subset D of a topological space X is dense if every non-empty
open set contains a point in D. /

Every set is clearly dense in itself. By far the most important example of a
non-trivial, dense subset is the set Q of rational numbers, which is dense in R.
(Note that Q is much smaller than R, since it is countable.) In a metric space
(X, d), dense means equivalently that, for every x ∈ X and every ε > 0, there is a
point x′ ∈ D with d(x, x′) < ε.

2.25 Lemma. Let (X, d) be a metric space, D a dense subset and define the system
of open balls with centers in A and rational radii,

G := {Br(x) |x ∈ D and r ∈ Q+} . (2.28)

Then G is a base of the topology of X. /

Proof. We know by Lemma 2.13 that every open set G is the union of all
open balls it contains. Since D is dense, every point x ∈ G is also contained in an
open ball centered at a point in D. Since Q+ is dense in R+, this is even true if we
consider only balls centered at points in D with rational radii. Hence, every open
set G is the union of all elements of G which are subsets of G, which is precisely
the definition of a base. �

We see immediately that the base constructed in (2.28) becomes countable if
D is countable. A space in which such a subset exists is called separable.

2.26 Definition. A topological space X is separable if it possesses a dense subset
that is countable. /



2.5. POLISH SPACES AND BOREL SPACES 37

Since separability makes the set G in (2.28) a countable base, it makes X second-
countable. Conversely, any second-countable space is clearly separable. Hence:

2.27 Theorem. A metrizable space is second-countable if and only if it is separa-
ble. In particular, the Borel σ-algebra of a separable metrizable space is countably
generated. /

2.28 Example [The ball σ-algebra and nonparametric statistics]. In any
metric space, the σ-algebra σ(G) generated by the system G of all open balls is
called the ball σ-algebra. The last theorem implies that σ(G) = B(X) if the space
is separable. In non-separable spaces, the caveat of Remark 2.21 applies: We have
σ(G) ⊂ σ(τ), but equality does not necessarily hold.

The theory of nonparametric statistical models is a topic in which you may reg-
ularly encounter spaces X which are not separable. This is, roughly speaking, due
to the fact that meaningful convergence rates require metrics defined by supremum-
type norms or “uniform” norms. These norms have a habit of making interesting
infinite-dimensional spaces non-separable. Consequently, the ball σ-field is smaller
than the Borel σ-field. This means that functions into X which are not Borel-
measurable may still be ball-measurable (and hence be valid random variables with
respect to the ball σ-field). In mathematical statistics and empirical process theory,
the ball σ-field turns out to be a possible alternative to the Borel sets, mostly for
three reasons:

(1) Many interesting functions are ball- but not Borel-measurable.
(2) The regularity theorem (Theorem 2.15) also holds on the ball σ-field.
(3) The basic results on weak convergence (i.e. Theorem 2.18 and Theorem 2.20)

still hold on the ball σ-field for measures whose support is separable—that
means we can still salvage weak convergence theory for measures concentrated
on a sufficiently small subset of the space.

On the other hand, odd things happen; for example, since there are open sets which
are not measurable, continuous functions need not be measurable. See [12] for more
on this topic. /

2.29 Remark [Continuous functions on separable spaces]. If X is a topolog-
ical space and D a dense subset, then every continuous mapping on X is uniquely
determined by its values on D. Hence, every continuous function on separable space
is completely determined by its value at a countable number of points. In this sense,
continuous functions on such spaces are objects of “countable complexity”, and the
space of continuous functions on a separable space can be regarded as a space of
countable dimension. /

Overall, metrizability and separability are the two most important properties of
topological spaces for the purposes of probability and statistics, and many relevant
properties can be established assuming only these two. Indeed, especially in older
research articles, a separable metric space is often the standard assumption. Mod-
ern probability usually adds one more assumption, called completeness, to exclude
certain pathologies. To understand this property, we must note the unexpected
way in which Cauchy sequences can behave on general topological spaces. Recall
the definition: A sequence (xn) in a metric space (X, d) is a d-Cauchy sequence
if, for every ε > 0, there exists some nε such that

d(xn, xm) < ε for all n,m > nε . (2.29)
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Compare this to a sequence converging to a limit x with respect to d:

d(xn, x)→ 0 for n→∞ . (2.30)

These two are not quite the same: The convergent sequence clusters more and more
tightly around the limit point as n grows, whereas the Cauchy sequence becomes
more and more “densely” concentrated. Every d-convergent sequence is clearly d-
Cauchy. Intuitively, the definitions should be equivalent—and they are of course
equivalent in Euclidean space—but in general, a d-Cauchy sequence need not be
convergent with respect to d. Here is an example involving a rather odd metric:

2.30 Example [Cauchy sequences need not converge]. Define a function d
on N× N as d(n,m) := | 1

m − 1
n |. Then d is a metric on N that metrizes the discrete

topology. The sequence (1, 2, 3, . . .) is a d-Cauchy sequence, even though it is clearly
not convergent. [From A&B] /

To avoid nasty surprises, we exclude spaces containing non-convergent Cauchy
sequences. This requirement has a name:

2.31 Definition. A metric space (X, d) is called complete if every d-Cauchy se-
quence converges. A metrizable space is called complete, or completely metriz-
able if there exists a compatible metric d such that (X, d) is complete. /

Note convergence is a topological concept, whereas completeness is a metric
concept (although complete metrizability has topological implications). The natu-
ral habitat of modern probability theory are spaces with all three properties:

2.32 Definition. A separable, completely metrizable space is a Polish space. /

Polish spaces and mappings between Polish spaces have many very useful prop-
erties that we can unfortunately (and I mean unfortunately!) not discuss in detail;
if you are interested in this topic, I recommend the account given by Aliprantis and
Border [A&B]. We summarize:

• Metrizability ensures regularity of probability measures and a meaningful def-
inition of weak convergence.

• Separability ensures the Borel σ-algebra is countably generated. We can even
explicitly construct a countable generator using open balls.

• Completeness avoids pathologies regarding Cauchy sequences. Why this is
useful is a little less obvious from the perspective of probability, and I have
to ask you to take the importance of completeness on faith. Basically, it has
been recognized in analysis in the last 50 or so years that Polish spaces have
nicer properties than just separable metric spaces (some of which are listed in
Section 2.9 below). Hence, we work on Polish spaces whenever possible. In
statistics and probability, assuming completeness is usually no restrictive. The
property of Polish spaces we sometimes have to sacrifice rather tends to be
separability, cf. Example 2.28.

To derive the properties of Polish spaces, we have started with useful properties
of Rd and asked for those to be preserved. However: We have not so far verified
that any space other than Rd is actually Polish, so all of this may just be wishful
thinking. It turns out that many of the most important spaces arising in probability
and related fields are Polish, however. Instead of proving our way through every
single one of them, I have listed examples in Table 2.1. I will only state the following
result, which shows under which conditions the derived topologies—product and
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relative topologies—are again Polish. Recall that a countable intersection of open
sets is called a GδGδGδ set (and a countable union of closed sets a FσFσFσ set).

2.33 Theorem [Derived topologies and Polish spaces]. Every countable prod-
uct of Polish spaces is Polish in the product topology. A subset of a Polish space X
is Polish in the relative topology if and only if it is a Gδ set in X. /

We will see below (Theorem 2.55) that two distinct Polish topologies on a given
set may generate the same Borel sets. If we are only interested in measurability
properties, it can therefore be useful to abstract from the specific choice of Polish
topology and consider only the σ-algebra it generates:

2.34 Definition. A measurable space (X ,B) is called a Borel space (or, by some
authors, a standard Borel space) if there is a Polish topology on X whose Borel
σ-algebra is B. /

2.6. The space of probability measures

For any topological space X, we denote the set of all probability measures on
the Borel σ-algebra of X as PM(X). Weak convergence of probability measures
defines a topology on PM(X), called the topology of weak convergence. This
topology turns PM(X) into a topological space PM(X), which we call the space
of probability measures on X.

When we refer to the space of probability measures, we always refer to the
topology of weak convergence, as is common practice in the literature. Otherwise,

we state so explicitly.

Note that the topology of weak convergence is a weak topology, namely the one
generated by the family of mappings {µ 7→

∫
fdµ | f ∈ Cb(X)}. (Why?) If X is

separable, it is also a metric topology, and again separable. More generally, the
space PM(X) inherits key topological properties from X:

2.35 Theorem [Topological properties of PM(X)]. Let X be a metrizable
space. Then the following hold:

(1) PM(X) is separable and metrizable if and only if X is separable.
(2) PM(X) is compact if and only if X is compact.
(3) PM(X) is Polish if and only if X is Polish.
(4) PM(X) is Borel if and only if X is Borel.

/

Proof. See [A&B, §15.3]. �

2.36 Remark [Prokhorov metric]. If X is a separable metrizable space and d
a compatible metric, the the topology of weak convergence can be metrized by the
Prokhorov metric (also known as Lévy-Prokhorov metric): We denote by Aδ

the set {x ∈ X|d(x,A) ≤ δ} for any measurable set A. (Note that, in contrast to
the similar sets F δ used in the proof of the regularity theorem, we now use ≤, i.e.
the sets Aδ are closed.) The Prokhorov metric is defined for any two probability
measures P and Q on X as

dLP(P,Q) := inf{δ > 0 |P (A) ≤ Q(Aδ) + δ for all A ∈ B(X)} . (2.31)

/
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PM(X)

δ{1}

δ{2}δ{3}

Figure 2.1. The space PM(X) for the finite discrete space X = {1, 2, 3}.

The space PM(X) has very pretty geometric properties: If P and Q are
two probability measures, then the two-component mixture (λP + (1 − λ)Q) (for
λ ∈ [0, 1]) is clearly again a probability measure. Hence, PM(X) is convex. The
extreme points of a convex set are those elements not expressable as convex combi-
nations of other points in the set. In the case of probability measures on X, these
are precisely the point masses δx. In the simple case X := {1, 2, 3}, equipped with
the discrete topology, PM(X) looks like the polytope shown in Figure 2.1.

The center of the polytope corresponds to the uniform distribution. The faces
of the convex set (in this case: the three boundary lines of the triangle) are those
measures which can be obtained as a convex combinations of a subset of extreme
points (in this case, mixtures of two point masses). For each additional point
in X, we must add a point mass, and hence a dimension. If X is finite with n
elements, we obtain a polytope in Rn−1. In general, when X is uncountable, we
obtain an infinite-dimensional space, but the triangle above is still its closest finite-
dimensional analogue—even if X is infinite, any two point masses are still connected
by an edge, since their mixtures are not representable using any other point masses.
If you are interested in the geometric properties of PM(X), I recommend Chapter
15.2 and 15.4 in [A&B].

2.37 Remark [PM(X) is not separable in total variation]. A metric on
probability measures you may be familiar with is the total variation distance

dTV(P,Q) := 2 sup
A∈B(X)

|P (A)−Q(A)| . (2.32)

This distance has some nice properties; for instance, if S is a sufficient statistic for
the set {P,Q}, then it preserves total variation, i.e. d(S(P ), S(Q)) = d(P,Q). It
also has a nice probabilistic interpretation:

dTV(P,Q) := 2 inf{P(X 6= Y )|L(X) = P,L(Y ) = Q} (2.33)

The infimum is taken over all possible pairs of random variables X and Y whose
laws are respectively P and Q—that is, over all possible ways in which X and Y
can stochastically depend on each other.

The set of probability measures on an uncountable Polish space is not separable
in the topology defined by total variation. Total variation can nonetheless be useful
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on certain subsets of PM(X): If µ is a σ-finite measure on X, let P(µ) denote
the set of all probability measures that are absolutely continuous with respect
to µ. Then the restriction of dTV to P(µ) is precisely the L1 distance, and in
particular, dTV(P,Q) =

∫
|p(x)− q(x)|µ(dx) if p and q are the µ-densities of P and

Q. Moreover, dTV metrizes the relative topology of PM(X) on P(µ). /

2.7. Compactness and local compactness

Ask ten mathematicians which topological property they would consider the most
useful one, and chances are nine or so will name compactness. Compact sets are,
roughly speaking, the topological generalization of finite sets: Recall that there are
two ways in a which a sequence in, say, R may not converge: It could oscillate back
and forth, or it could “escape to infinite”. The latter can only happen because R
is unbounded. In a finite set, a sequence that does not converge must oscillate.
Whether or not it converges, it must visit at least one point infinitely often, and
so even a sequence which does not converge has a subsequence that does. Sets
with this property—every sequence (net) has a convergent subsequence (subnet)—
are called compact. There are several equivalent definitions of compactness; the
following one emphasizes the intuition that compact sets generalize finite sets.

2.38 Definition. Let K be a set in a topological space X. A family {Gs|s ∈ T} of
open sets is called an open cover of K if K ⊂ ⋃sGs. A subset K of a topological
space is compact if every open cover has a finite subcover. A topological space is
compact if it is a compact set. /

2.39 Fact. Some helpful properties of compacts sets and spaces:

(1) A topological space X is compact iff every net in X has a convergent subnet.
(2) A metrizable space X is compact iff every sequence in X has a convergent

subsequence.
(3) Compact sets are closed (if X is Hausdorff).
(4) Continuous images are compact. (Images, not preimages!)
(5) If a compact space is metrizable, it is Polish. /

Compactness is a fairly strong property, but surprisingly robust. Clearly, finite
unions and countable intersections of compact sets are compact. Moreover:

2.40 Theorem [Tychonoff]. The product of (arbitrarily many) topological spaces
is compact in the product topology if and only if each factor is compact. /

The following lemma is a convenient way of verifying compactness in metric
spaces: A set A in a metric space is called totally bounded if, for every ε > 0,
there is a finite set {x1, . . . , xn} such that A ⊂ ⋃i≤nBε(xi).
2.41 Lemma. In a complete metric space, a closed set is compact if and only if it
is totally bounded. /

Total boundedness is not the same as finite diameter: If a set in a vector space
has, say, diameter 1, and we try to cover it with balls of diameter 1

2 , we need more
ball to do so the higher the dimension of the space. If the dimension is infinite,
we need an infinite number of balls. Indeed, this idea is used to define a notion of
dimension in spaces that are not vector spaces (and hence have no axes to count).

The property that sequences in a set cannot “escape to infinity” is true when-
ever the set is contained in a compact set, even if it is not itself compact. In a
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Hausdorff space, that means the set is not closed. In this case, every sequence of
points in the set still has a convergent subsequence, but the limit of the subsequence
may not be in the set. Such sets have a name:

2.42 Definition. A subset of a topological space is called relatively compact if
its closure is compact. /

Compactness of a space X can be interpreted vaguely as saying that X is not
too large—the real line is not compact because it is too long. In general analysis,
there is another way in which a space can become “too large”: In a metric vector
space, for example, the unit ball is bounded, and it is compact if the dimension
of the space is finite. If the dimension is infinite, the ball is still bounded, but it
is no longer compact. The qualitative difference between the two cases is that the
line is globally large, but perfectly well-behaved in a small neighborhood of a given
point. In an infinite-dimensional vector space, the space is “too large” even locally
around each point. To distinguish these two cases in a topological way, we use the
following definition:

2.43 Definition. A topological space is locally compact if every point has a
neighborhood that is compact, i.e. if for every point x, there is a compact set which
contains x in its interior. /

Compactness clearly implies local compactness. The example above seems to
suggest that compact spaces should hence behave like finite-dimensional spaces, but
we have to be careful: Even spaces which in many regards have infinite-dimensional
properties (such as PM(X) on a compact space X) can be compact, and hence
locally compact. In vector spaces, however, there is a one-to-one correspondence
between local compactness and dimension.

In order to make this correspondence precise, we have to define the notion
of a topological vector space. Basically, for every algebraic structure (a set with
operations defined on it) we can define a topological version of that structure, by
equipping the set with a topology. However, we have to make sure that the topology
and the operation are compatible:

2.44 Definition. A topological group is a group with a topology defined on
it which makes the group operation continuous. Similarly, a topological vector
space is a vector space endowed with a topology which makes linear operations
(addition and scaling) continuous. /

2.45 Lemma. A topological vector space is locally compact if and only if it is finite-
dimensional. /

One way in which locally compact spaces are important in probability and
statistics is that they admit a translation-invariant measure. Such a measure does
not usually exist, even on well-behaved spaces such as Polish ones.

2.46 Theorem. Let X be a locally compact, second-countable Hausdorff space, with
an operation + defined on it such that (X,+) is a topological group. Than there is
a measure λ on X which satisfies λ(A+ x) = λ(A) for all Borel sets A and points
x ∈ X. This measure is unique up to scaling by a positive constant. /

The measure λ is called Haar measure on the group (X,+). Lebesgue measure
is Haar measure on the group (Rd, d), scaled to satisfy λ([0, 1]d) = 1.

2.47 Remark [Translation-invariance and density representations]. In sta-
tistics in particular, the existence of Haar measure is relevant since it is arguably a
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prerequisite for working with densities: Recall that the density f = dµ/dν of some
measure µ is always defined with respect to another measure ν. That does not
require local compactness, of course, but the interpretation of densities becomes
difficult if ν is not translation-invariant—does a large value of f on a set A mean
that µ is large on A, or that ν is small? Hence, to keep densities interpretable, ν
needs to be “flat”, which is precisely what translation-invariance means. /

2.8. Tightness

Recall the regularity properties of measures defined in Section 2.3, in terms of
the behavior of a measure on open or closed sets. If we replace the closed sets by
compact ones—a stronger hypothesis—we obtain a property called tightness, which
is so useful that it has become a pivotal concept in probability.

2.48 Definition. A measure µ on a topological space X is called tight if

µ(A) = sup{µ(K)|K ⊂ A and K compact } for all A ∈ B(X) . (2.34)

/

For tightness, there is a direct counterpart to Theorem 2.15. To guarantee
regularity, metrizability of X was sufficient. Tightness is a stronger property; we
have to strengthen the hypothesis somewhat.

2.49 Theorem. Every probability measure on a Polish space is tight. /

A tight probability measure is called a Radon measure. (More generally,
an arbitrary measure is a Radon measures if it is tight and also locally finite, i.e.
µ(K) <∞ for all compact K.)

Proof of Theorem 2.49. Fix any compatible metric on X. Suppose P is
a probability measure on X. Given any ε > 0, we have to find a compact set K
such that P (K) > 1− ε. We construct K as follows: Since X is separable, it has
a countable dense subset {x1, x2, . . .}. Hence, the d-balls Bδ(xi) cover X for any
choice of δ. For every k ∈ N, choose δ := 1/k. Since P is a probability measure,
there is for each k some nk ∈ N such that

P
(⋃

i≤nkB1/k(xi)
)
> 1− ε

2k
. (2.35)

Now take the intersection over all k: The set

A :=
⋂
k∈N

⋃
i≤nkB1/k(xi) (2.36)

is totally bounded. Its closure K := cl(A) is compact, by Lemma 2.41. By (2.35),

P (K) > 1−
∑
k∈N

ε

2k
> 1− ε , (2.37)

which is precisely what we had to show. �

Tightness is a particularly powerful property if it holds uniformly for an entire
family of measures.

2.50 Definition. A family {Ps|s ∈ T} of measures on a topological space X is
called tight if, for every ε > 0, there is a compact set K such that

Ps(K) > 1− ε for all s ∈ T . (2.38)

/
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Above, we have discussed the relationship between compactness (or relative
compactness) and convergence. Since the topology on PM(X) describes weak
convergence, and one of the typical problems arising in proofs of probabilistic results
is to establish weak convergence of a given sequence, it would be very useful to know
what the relatively compact sets of PM(X) are.

2.51 Theorem [Prokhorov]. Let {Ps|s ∈ T} be a family of probability measures
on a metrizable space X. Then

{Ps|s ∈ T} tight ⇒ {Ps|s ∈ T} relatively compact in PM(X) , (2.39)

and the two are even equivalent if X is Polish. /

On a metrizable space, we can hence prove weak convergence via tightness.

Given a sequence (Pn), we can show that Ps
w−→ P by showing:

(1) {Pn|n ∈ N} is tight.
(2) If a subsequence converges, it converges to P .

Then Theorem 2.51 implies Pn
w−→ P .

One way in which compactness is used in proofs is to show that some finitely
additive set function is indeed countably additive. This type of argument only
depends on an abstract property of compact sets: If, in a countable collection of
compact sets, every finite subcollection has non-empty intersection, then the entire
collection has nonempty intersection. We can state the argument more generally for
classes of sets that behave like compact sets with regard to intersections: A family
K of a sets is called a compact class if it has the finite intersection property, i.e.
if every sequence (Kn) of sets in K satisfies

every finite subset of sets Kn in (Kn) has non-empty intersection

⇓ (2.40)

(Kn) has non-empty intersection .

A set function µ : G → R+ is called tight with respect to a compact class K ⊂ G if

µ(A) = sup{µ(K)|K ∈ K and K ⊂ A} for all A ∈ G .

2.52 Lemma. Let G be an algebra and let µ : G → [0,∞) be a finitely additive set
function on G, with µ(G) <∞ for all G ∈ G and µ(∅) = 0. If µ is tight with respect
to some compact class K ⊂ G, then it is σ-additive on G. /

The statement is slightly more general than in the homework, since we only
require G to be an algebra, not a σ-algebra. If you cannot find your homework
solution anymore, see [A&B, Theorem 10.13] for a proof.

2.9. Some additional useful facts on Polish spaces

A fundamental result (which I will not prove here) is that any two uncountable
Borel spaces are isomorphic, in the following sense: A Borel isomorphism of
two Borel spaces (X1,B1) and (X2,B2) is a bijective mapping f : X1 → X2 which is
measurable and has a measurable inverse.

2.53 Borel isomorphism theorem. Every Borel space is Borel isomorphic to a
Borel subset of [0, 1]. In particular, for every probability measure P on a Borel space
(X ,B), there exists a Borel isomorphism f : [0, 1]→ X and a probability measure
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P0 on [0, 1] such that P = fP0. If X is uncountable, P0 can always be chosen as
the uniform distribution. /

To ensure that a bijection between Borel spaces is a Borel isomorphism, it is
in fact sufficient to verify that it is measurable:

2.54 Theorem. If a bijection f : X1 → X2 between two Borel spaces is measurable,
its inverse is also measurable. /

Finally, I would like to point out that it can be risky to think of “the” Polish
space defining a Borel space, since various different Polish topologies can all define
the same Borel sets—this is again a consequence of the fact that the Borel σ-algebra
is typically much larger than the topology by which it is generated. We can often
change the topology considerably without affecting the Borel sets. This is clarified
by the following result, which is really rather stunning:

2.55 Theorem. Let X = (X , τ) be a Polish space, and f : X→ Y a Borel function
from X into an arbitrary second-countable space Y. Then there exists another
Polish topology on X such that:

(1) τ ′ generates the same Borel sets as τ .
(2) f is continuous with respect to τ ′.

The same is even true if the single function f is replaced by a countable family of
Borel functions. /



CHAPTER 3

Conditioning

The topic of this chapter are the definition and properties of conditional dis-
tributions. Intuitively, it is pretty straightforward what a conditional distribution
should be: Suppose X and Y are two random variables. We want to define an
object P[X ∈ A|Y = y] with the semantics

P[X ∈ A|Y = y] = probability of {X ∈ A} given that Y = y . (3.1)

This quantity depends on two arguments, the measurable set A and the value y
of Y , and we can hence abbreviate p(A, y) := P[X ∈ A|Y = y]. Denote by PY the
distribution of Y . Assuming (3.1) is true, the function p should certainly satisfy∫

B

p(A, y)PY(dy) = P{X ∈ A, Y ∈ B} . (3.2)

3.1 Definition. Let X be a metrizable and Y a measurable space. A measurable
mapping Y → PM(X) is called a probability kernel. Let (Ω,A,P) be a probabil-
ity space, and X : Ω→ X and Y : Ω→ Y random variables. A probability kernel
y 7→ p( • , y) satisfying (3.2) is called a conditional probability of X given Y . /

We can either read p as a function y 7→ p( • , y) of a single argument (which
takes points to measures), or as a function (A, y) 7→ p(A, y) of two arguments (which
maps into [0, 1]). Both perspectives are useful, and I will use the notations p(y)
and p(A, y) interchangeably. Now, before I explain the definition in more detail,
let me state the most important result of this chapter:

3.2 Theorem [Conditional distributions]. Let (Ω,A,P) be a probability space,
let X be Polish, and let Y be a measurable space. For any two random variables
X : Ω→ X and Y : Ω→ Y, the following holds:

(1) (Existence) X has a conditional distribution given Y , that is, there exists a
probability kernel satisfying (3.2).

(2) (Uniqueness) There exists a null set N such that any two conditional probabil-
ities p and p′ of X given Y satisfy

∀ω 6∈ N : p(A,ω) = p′(A,ω) for all A ∈ B(X) . (3.3)

/

We will not prove this result yet—it is a special case of a more abstract result
which we prove below.

3.1. A closer look at the definition

Let me try to unpack Definition 3.1 a bit. Its rough structure should be pretty
accessible—a conditional probability is a mapping which takes points to probability
measures. We should try to understand the detailed assumptions, though: (3.1)

47
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is not a precise mathematical statement, but it tells us that (1) p( • , y) should be
a measure for every y and (2) that (3.2) should hold. From there, we get to the
definition as follows:

(1) For (3.2) to even be well-defined, the function y 7→ p(A, y) must be integrable,
and hence measurable, for every A.

(2) We require metrizability of X so that we can equip the set of probability mea-
sures on X with the topology of weak convergence. That makes y 7→ p( • , y) a
mapping Y → PM(X). We will see below that we should actually require X
to be Polish to make conditional distributions behave well, so metrizability is
no loss of generality.

(3) The set-wise (for every A) measurability of the function y 7→ p(A, y), which
maps y into [0, 1], is now equivalent to measurability of the mapping y 7→ p( • , y),
which maps y into PM(X). (This is so because the evaluation functional
eA : µ 7→ µ(A) is a measurable mapping PM(X)→ [0, 1] for every Borel set A,
and since p(A, y) = eA(p( • , y)).)

3.2. Conditioning on σ-algebras

The general notion of a conditional distribution is defined by conditioning on a
σ-algebra, rather than on a random variable (just as for conditional expectations,
cf. [J&P, Chapter 23]). We arrive at the definition by showing that the conditional
distribution of X given Y does not directly depend on Y , only on the σ-algebra
σ(Y ) generated by Y . This σ-algebra can then be substituted by some other σ-
algebra C. The intuitive meaning of the conditional probability P[X ∈ A|C] of X
given C is

P[X ∈ A|C](ω) = probability that X(ω) ∈ A if we know

for every C ∈ C whether ω ∈ C .

For a fixed measurable set A, the function

y 7→ p(A, y) = P[X ∈ A|Y = y] (3.4)

is called the conditional probability of the event {X ∈ A} given Y . This is not yet
our final definition, since a conditional probability can be defined more generally
than a conditional distribution: It is a much simpler object, and does not require
X to take values in a Polish space. For the purposes of this section, we hold A
fixed. We can hence abbreviate further and write

f(y) := P[X ∈ A|Y = y] . (3.5)

Equation (3.2) then becomes

P{X ∈ A, Y ∈ B} =

∫
B

f(y)PY(dy) . (3.6)

Hence, any measurable function f satisfying (3.6) can be regarded as a conditional
probability of {X ∈ A} given Y .

The event {X ∈ A} is really the set X−1A in Ω. Aside from defining this event,
the random variable does not play any role in (3.6). There is hence no reason to
restrict ourselves to sets of the form X−1A for some A; more generally, we can
consider any set A′ ∈ A.
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3.3 Definition. Let (Ω,A,P) be a probability space, (Y,AY ) a measurable space
and Y : Ω→ Y a random variable. Let A′ ∈ A. Then any measurable function
f : Y → [0, 1] satisfying

P(A′ ∩ Y −1B) =

∫
B

f(y)PY(dy) (3.7)

is called a conditional probability of A′ given Y , denoted f(y) =: P[A|Y = y]. /

The law PY of Y is precisely the image measure PY = Y (P). We can therefore
re-express f on Ω using the identity1∫

B

f(y)PY(dy) =

∫
Y −1B

f ◦ Y (ω)P(ω) . (3.8)

The function g : Ω→ [0, 1] defined by g := f ◦ Y can then be interpreted as

g(ω) = P[A|Y = Y (ω)] . (3.9)

Since (3.8) holds only for those sets in Ω which are of the form Y −1B, the function
g is σ(Y )-measurable.

Let me summarize what we can conclude so far: A valid conditional probability
of A given Y is any σ(Y )-measurable function g : Ω→ [0, 1] satisfying

P(A ∩B) =

∫
B

g(ω)P(dω) for all B ∈ σ(Y ) . (3.10)

As for X above, we note the random variable Y plays no explicit role in this last
formulation—it only defines the σ-algebra σ(Y ). Although we defined g above by
means of Y ,

whether a given function g satisfies (3.10) depends only on the σ-algebra σ(Y ).

Since any σ-algebra C ⊂ A is of the form C = σ(Y ) for some random variable Y ,
we can choose an arbitrary σ-algebra C ⊂ A and substitute it for σ(Y ) in (3.10) to
obtain

P(A ∩B) =

∫
B

g(ω)P(dω) for all B ∈ C . (3.11)

We can then regard a C-measurable function g satisfying (3.11) as a conditional
probability of A given the σ-algebra C.

Now, a sharp look at (3.11) shows that we know a C-measurable function which
satisfies the equation, namely the conditional expectation E[IA|C]:∫

B

E[IA|C](ω)P(dω)
B∈C
=

∫
B

IAP(dω) = P(A ∩B) (3.12)

Since conditional expectations are unique up to a null set, we can always choose
g = E[IA|C].
3.4 Definition. Let A ∈ A, and let C be a sub-σ-algebra of A. Then

P[A|C](ω) := E[IA|C](ω) . (3.13)

is called a conditional probability of A given C. /

After all the abstractions above, that is actually quite intuitive, since the prob-
ability of a set A can always be expressed as P(A) = E[IA].

1 Recall the rules for integration with respect to an image measure: If µ is a measure on X,

T a measurable mapping X→ X′, and g a positive function on X′, then∫
A′
g(x′)(T (µ))(dx′) =

∫
T−1A′

g ◦ T (x)µ(dx) for all measurable A′ ⊂ X′ . (3.14)
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3.3. Conditional distributions given σ-algebras

The definition of a conditional distribution can be extended from random variables
to σ-algebras in a precisely analogous manner as that of a conditional probability:

3.5 Definition. Let (Ω,A,P) be a probability space and X a Borel space. Let
X : Ω→ X be a random variable and C ⊂ A a σ-algebra. Then any C-measurable
probability kernel p : Ω→ PM(X) satisfying

P(X−1A ∩B) =

∫
B

p(A,ω)P(dω) for all A ∈ B(X), B ∈ C (3.15)

is called a conditional distribution of X given C. /

The conditional distribution of X given a random variable Y is hence precisely
the special case C := σ(Y ). The two cases are indeed equivalent, in the sense that
C can always be obtained as σ(Y ) for a suitably chosen Y , but it can be useful
to make p independent from Y and whatever space Y takes values in, and work
directly in Ω.

3.6 Theorem. Let X be a random variable on a probability space (Ω,A,P) with
values in a Polish space X, and let C ⊂ A be a σ-algebra. Then the following holds:

(1) (Existence) X has a conditional distribution given C, that is, there exists a
probability kernel satisfying (3.15).

(2) (Uniqueness) The conditional distribution is unique: There exists a null set N
such that any two conditional probabilities p and p′ of X given C satisfy

∀ω 6∈ N : p(A,ω) = p′(A,ω) for all A ∈ B(X) (3.16)

/

Our next task is to prove this result. The idea is simple: If p exists, it certainly
satisfies p(A,ω) = E[IX−1A|C](ω) P-almost surely. We will therefore start with the
quantities E[IX−1A|C](ω), for all A ∈ B(X) and all ω, and try to assemble them
into a suitable function p. The problem is that each function E[IX−1A|C] is only
determined up to a null set, so for each A ∈ B(X), we pick up a null set NA ⊂ Ω of
exceptions. Unless X is finite, B(X) is uncountable, and the null sets NA aggregate
into a set which is in general non-null. This is where the Borel space requirement
comes in: It guarantees that B(X) has a countable generator, and we will show
that considering only sets A in this generator suffices to define p.

We will break the proof down into a couple of lemmas. Recall first that an
algebra in a set Ω is a system of subsets that contains ∅ and Ω, and is closed
under set differences and finite unions.

3.7 Lemma. If a σ-algebra admits a countable generator, this generator is con-
tained in a countable generator which is an algebra. In particular, the Borel σ-
algebra B(X) of a Polish space X is generated by a countable algebra. /

Proof. Let F be a countable generator; in the case of a Polish space, choose
F as a countable base of X. Let F ′ consist of F on all complements of sets in F .
Then define G as the system of all sets G of the form G = ∪ni=1 ∩nj=1 Fij , where
n ∈ N and Fij ∈ F ′. Then G is a countable algebra containing F . �

The first aspect of Theorem 3.6 we prove is uniqueness:
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3.8 Lemma. Under the conditions of Theorem 3.6, there is a P null set N such
that (3.16) holds for any two conditional distributions p and p′ of X given C. /

Proof. Let G be the countable generator constructed in Lemma 3.7. Since p
and p′ are conditional distributions, we have by definition

p(A,ω) =a.s. E[IX−1A|C](ω) =a.s. p′(A,ω) (3.17)

for each A ∈ G. There is a null set NA of exceptions for each A, and hence an
overall set N := ∪A∈GNA of exceptions. Since G is countable, N is again null. We
have

p(A,ω) = p′(A,ω) for all ω 6∈ N (3.18)

for all A ∈ G. By definition, p( • , ω) is a measure for each ω. Since G generates
B(X) and is an algebra (and hence closed under finite intersections), the values of
this measure on G completely determine it on all of B(X) [J&P, Corollary 6.1]. �

Proof of Theorem 3.6. Step 1: Defining a candidate object. Let G again be the
countable generator of B(X) constructed in Lemma 3.7. Let PX := X(P) be the
law of X. As a probability measure on a Polish space, it is tight by Theorem 2.49.
Let (Gi) be an enumeration of the sets in G. By tightness, there exists for each Gi
an increasing sequence of compact sets Ki1 ⊂ Ki2 ⊂ . . . in X such that

PX(Gi) = sup
j∈N

PX(Kij) . (3.19)

Define K = {Kij |i, j ∈ N}. Clearly, K is countable, and by Lemma 3.7, there is
hence a countable generator G∗ which contains both G and K and forms an algebra.
Now define a function on G∗ × Ω as

q(G,ω) := E[IG ◦X|C](ω) for all G ∈ G, ω ∈ Ω . (3.20)

Note ω 7→ q(G,ω) is measurable for each G ∈ G∗.

Step 2: A 7→ q(A,ω) is a probability measure. It is straightforward to deduce from
the definition (3.20) that G 7→ q(G,ω) satisfies both q(X, ω) = 1 and q(∅, ω) = 0
P-a.s. and is finitely additive almost surely, i.e.

n∑
i=1

q(Gi, ω) = q(∪ni=1Gi, ω) P-a.s. (3.21)

for any finite collection G1, . . . , Gn of disjoint sets in G∗. For each such collection,
we pick up a null set of exceptions, plus one null set each for ∅ and X. Since
G∗ is countable, there are only countably many finite subsets of sets, so overall
we obtain a null set Nq, with the property that G 7→ q(G,ω) is a finitely additive
probability measure on G∗ for all ω 6∈ Nq. In particular, it satisfies the conditions
of Lemma 2.52 for ω 6∈ Nq.

Now consider the set K: The compact sets in B(X) form a compact class.
Clearly, any subset of a compact class is a compact class, so K is a compact class
contained in G∗. Hence, we will show that q( • , ω) is tight on G∗ with respect to K
for all ω outside a null set; countable additivity then follows by Lemma 2.52.

First, let Gi be a set in the original generator G. Then by construction of the
sets Kij , we have IKij → IGi PX-a.s. Hence, we have

q(Gi, ω) =a.s. E[IGi◦X|C](ω) =a.s. sup
j

E[IKij ◦X|C](ω) =a.s. sup
j

q(Kij , ω) . (3.22)
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Thus, q(G,ω) can be approximated to arbitrary precision from within by sets in K
whenever G ∈ G. Trivially, the same holds if G ∈ K. Each such approximation of
a set G comes with a null set of exceptions. Since both G and K are countable, we
obtain an overall null set NK,G . Now recall the construction of G∗ from G ∪ K us-
ing Lemma 3.7: If q(Fij , ω) can be approximated to arbitrary precision for finitely
many sets Fij in G ∪ K, then obviously also q(G,ω) for G = ∪ni=1 ∩nj=1 Fij . Since
there are only countably many such combinations, we obtain another null set of
exceptions. This null set, and the null sets NK,G and Nq above aggregate into an
overall null set N . For every ω 6∈ N , q(G,ω) is tight on G∗ with respect to K, and
by Lemma 2.52, it is countably additive. To ensure we obtain a valid probability
kernel, we define q(A,ω) := IA(X(ω)) whenever ω ∈ N .

Step 3: ω 7→ q(A,ω) is measurable. What remains to be shown is that ω 7→ q(A,ω)
is measurable for all A ∈ B(X). We know this holds, by construction, whenever
A ∈ G∗. Since G∗ is a generator and an algebra, measurability on all of B(X)
follows with the monotone class theorem. �

3.4. Working with pairs of random variables

In this section, we collect some tools that help us handle pairs (X,Y ) of random
variables. Recall that it makes a substantial difference whether

(i) X
d
= Y or (ii) X =a.s. Y .

Statement (ii) says that X(ω) = Y (ω) for all ω outside a null set. That is, if we
think of the variables as mappings X : Ω→ X and Y : Ω→ X, these two mappings
are identical, up to a set of measure zero. On the other hand, (i) only states X
and Y have the same distribution, i.e. the measures X(P) and Y (P) put the same
amount of mass on each measurable set, which is a much weaker statement.

3.9 Example. The difference between (i) and (ii) produces additional fallout when
we consider pairs of random variables: If X, X ′ and Y are random variables,

X
d
= X ′ does not imply (X,Y )

d
= (X ′, Y ) . (3.23)

The joint distribution of X and Y is the distribution of the random variable
ω → (X(ω), Y (ω)). Even if X and X ′ are identically distributed, it is perfectly
possible that X(ω) 6= X ′(ω) for all ω, and so (X ′(ω), Y (ω)) can have a different
distribution than (X(ω), Y (ω)). /

3.10 Exercise. Elementary, but well worth doing: Give a counterexample. Choose
Ω = [0, 1] and P as Lebesgue measure. Specify random variables X, X ′ and Y on
Ω, say with values in R, such that X and X ′ are identically distributed, but (X ′, Y )
and (X,Y ) are not. /

We have defined conditional probability of a random variable X in terms of
a conditional expectation. For our first result in this section, we note that the
converse is also possible: If X takes values in a Borel space and p is a conditional
distribution of X given a σ-algebra C, we can compute E[X|C] as

E[X|C](ω) =a.s.

∫
X

xp(dx, ω) . (3.24)
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The next result generalizes this to functions of two arguments, and can hence be
read as a Fubini theorem for conditional distributions.

3.11 Lemma. If X is a random variable with values in a Borel space X, and a
probability kernel p is a version of the conditional distribution P[X ∈ • |Y = y],
then

E[f(X,Y )|Y = y] =

∫
X

f(x, y)p(dx, y) PY-a.s. (3.25)

/

The proof is basically an application of the monotone class theorem, and I will skip
it here. If you feel curious:

Proof. See e.g. [K, Theorem 6.4]. �

The next theorem does perhaps not look particularly thrilling at first glance,
but it is in my experience one of the most useful tools for problems involving
conditionals:

3.12 Theorem. Let p : Y → PM(X) be a probability kernel, where (Y,AY) is a
measurable space and X a Borel space. Then there exists a measurable function
f : [0, 1]× Y → X such that

P{f(U, y) ∈ A} = p(A, y) for U ∼ Uniform(0, 1) . (3.26)

/

Proof. We begin by invoking the Borel isomorphism theorem (Theorem 2.53),
by which it is sufficient to prove the result for X = [0, 1]. To establish the result,
we construct f explicitly: Define

f(u, y) := sup{x ∈ [0, 1] |p([0, x], y) < u} . (3.27)

We have to show that (i) f is jointly measurable in (u, y), and (ii) that it satisfies
(3.26). Regarding measurability, we observe:

(1) Since f maps into X = [0, 1], and the Borel sets in [0, 1] are generated by the
half-open intervals, it suffices to show the preimages of all sets (a, b] ⊂ [0, 1] are
measurable.

(2) The preimage of the interval [0, x] is

f−1[0, x] = {(u, y)|u ≤ p([0, x], y)} .
If (u, y) is contained in f−1[0, x], it is also in f−1[0, x′] for all x ≤ x′, which
means f−1[0, x] ⊂ f−1[0, x′].

(3) We therefore have

f−1(a, b] = f−1([0, b] \ [0, a]) = f−1[0, b] \ f−1[0, a] ,

It is hence sufficient to show the set f−1[0, x] is measurable for each x ∈ [0, 1].
(4) The function y 7→ p([0, x], y) is measurable by definition of probability kernels.
(5) The supremum of a sequence of measurable functions is measurable. The

supremum in (3.27) remains unchanged if we restrict x ∈ [0, 1] to rational val-
ues, which indeed yields a sequence of measurable functions y 7→ p([0, xn], y).

(6) The set

f−1[0, x] = {(u, y)|p([0, x], y) < u} = {(u, y)|p([0, x], y)− u < 0}
is therefore measurable, since, additionally, both differences of measurable func-
tions and the set {s ∈ R|s < 0} are measurable.
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Thus, f is jointly measurable. Now suppose U is a Uniform(0, 1) random variable.
Then for any y,

P{f(U, y) ≤ x} = P{u ≤ p([0, x], y)} = p([0, x], y)

for any x ∈ [0, 1]. Hence, x 7→ p([0, x], y) is a cumulative distribution function for
f(U, y), which (since X = [0, 1]) implies f(U, y) has law p( • , y). �

A neat application of this theorem is the following: In modeling problems,
especially in applied statistics or in machine learning, you will frequently encounter
notation of the formX|Y , meant to be read as “the random variableX conditionally
on Y ”. For instance, one could write

X|(Y = y) ∼ P (3.28)

to state that, for a fixed value y, the conditional distribution of X given Y = y is the
measure P . We already know by the existence theorem for conditional distributions
that we can make this assumption if X is a Borel space (choose P := p( • , y)).
However, the existence theorem only tells us that we can choose some random
variable Xy for every y that is distributed according to p( • , y). It does not tell
us that Xy depends measurably on y—which means, for example, that we cannot
think of y as being random (we cannot substitute Y for y and write XY ), and that
apparently simple statements like X|(Y = y) =a.s. y are not well-defined. Using
Theorem 3.12, we can give a precise definition of a random variableXy parametrized
by y which does depend measurably on y.

3.13 Corollary. Let X and Y be two random variables with values in Borel spaces
X and Y. Then X and Y can be represented as random variables on a probability
space (Ω,A,P) such that there exists a measurable function X ′ : Ω×Y → X with

P{X ′(ω, y) ∈ A} = p(A, y) PY-a.s. . (3.29)

/

To obtain the form Xy above, set Xy(ω) := X ′(ω, y), so

L(Xy) = P[X ∈ • |Y = y] . (3.30)

We can think of this Xy as a “conditional random variable”.

Proof. We can always assume that any countable collection of random vari-
ables with values in Borel spaces—in this case X, Y , and the uniform variable U
in Theorem 3.12—are defined on a joint probability space. Then choose f as the
function in Theorem 3.12, and define X ′(ω, y) := f(U(ω), y). �

The next result concerns distributional equations; in this case, pairs of random
variables that satisfy an equality in distribution.

3.14 Theorem. Let X and Y be random variables with values in Borel spaces X
and Y. Then for any random variable X ′ with the same distribution as X, there
is a measurable mapping f : X× [0, 1]→ Y such that

(X ′, f(X ′, U))
d
= (X,Y ) (3.31)

where U ∼ Uniform(0, 1) is independent of X ′. /
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In simpler terms, the theorem says: Given two random variables X
d
= X ′ with

values in X and a random variable Y with values in Y, we can always find another
Y-valued random variable Y ′ satisfying the distributional equation

(X ′, Y ′)
d
= (X,Y ) . (3.32)

Compare this to Example 3.9 at the beginning of this section.

Proof of Theorem 3.14. Since Y is Borel, there exists a kernel p with

p(A, x) =a.s. P[Y ∈ A|X = x] , (3.33)

by Theorem 3.2. By Theorem 3.12, we can choose some f : [0, 1]×X→ Y with
L(f(U, x)) = p( • , x) for all x. Let g be a real-valued, measurable function. Then

E[g(X ′, f(U,X ′))] = EX′
[
EU |X′=x′ [g(X ′, f(X ′, U))]

]
Lemma 3.11

= EX′
[ ∫

Y

g(X ′, y)p(dy,X ′)
]
.

(3.34)

This is now simply the expectation of a function of X ′, and since X ′
d
= X, we have

EX′
[∫

Y

g(X ′, y)p(dy,X ′)
]

= EX
[∫

Y

g(X, y)p(dy,X)
]

=

∫
X

∫
Y

g(x, y)p(dy, x)PX(dx) = E[g(X,Y )] .

(3.35)

In summary, E[g(X ′, f(X ′, U))] = E[g(X,Y )] holds for every measurable function
g, which means (X ′, f(X ′, U)) and (X,Y ) are identically distributed. �

As one consequence of Theorem 3.14, we can replace a pair of random variables
that satisfy a relationship in distribution by a pair which satisfy the same relation-
ship almost surely, without changing the marginal distributions of the variables:

3.15 Theorem. Let X and Y be Borel spaces and f : X→ Y measurable. Let X

and Y be random variables with values in X and Y such that Y
d
= f(X). Then

there exists a X-valued random variable X ′ such that

X ′
d
= X and Y =a.s. f(X ′) . (3.36)

/

Note that, although the marginal distributions of X and Y do not change when
substituting the pair (X ′, Y ), the joint distribution changes.

To prove this result, we have to compute the probability of events of the form
{Y = Y ′}, which means we have to make sure such events are measurable. If Y
and Y ′ are random variables with values in the same space Y, that is the case if
the set {(y, y)|y ∈ Y}, the diagonal of Y2, is measurable in Y2, which we cannot
generally assume in a measurable space Y.

This problem is related to the problem of joint measurability of functions: Re-
call that a function f(x, y) on X×Y of two arguments is called jointly measurable
if it is measurable in the product σ-algebra on X×Y. If we only know it is mea-
surable in each argument (if each of the functions x 7→ f(x, y) and y 7→ f(x, y) is
measurable), we cannot conclude that the function (x, y) 7→ f(x, y) is jointly mea-
surable. One criterion for joint measurability is the following:
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3.16 Fact. Let f : X ×Y → Z be measurable and its first and continuous in its
second argument, where X is a measurable space, Y separable metrizable and Z
metrizable. Then f is jointly measurable. /

Functions of two arguments that are measurable in one and continuous in the
other are also known as Carathéodory functions.2 From the joint measurability
of Carathéodory functions, we conclude:

3.17 Lemma. If Y is metrizable, the diagonal in Y2 is measurable. /

Proof. Let d : Y ×Y → [0,∞) be a compatible metric. Then d is continuous
in each argument, and thus a Carathéodory function. The diagonal in Y2 is the
set d−1{0}, and hence measurable. �

Proof of Theorem 3.15. By Theorem 3.14, there exists a random variable
X ′ in X such that

(X ′, Y )
d
= (X, f(X)) , (3.37)

which implies that also marginally X
d
= X ′, and establishes the first claim in (3.36).

Applying f on both sides of (3.37) yields (f(X ′), Y )
d
= (f(X), f(X)). Since the

diagonal of Y ×Y is measurable, we can compute

P{f(X ′) = Y } = P{f(X) = f(X)} = 1 , (3.38)

which implies f(X ′) = Y almost surely. �

3.5. Conditional independence

If the statisticians among you feel that the previous section was a little far out there,
we now come to a concept of more obvious relevance to statistics, conditional in-
dependence: The fundamental modeling assumption in most Bayesian models is
that there exists a random variable (the parameter) which renders observations
conditionally independent; graphical models are representations of conditional de-
pendence and independence relations; etc.

We again assume that all random variables are defined on a probability space
(Ω,A,P). Recall the definition of independence from [J&P]:

• Two events A,B ∈ A are independent if the probability of them occurring
simultaneously factorizes, i.e. if

P(A ∩B) = P(A)P(B) . (3.39)

• Two σ-algebras C1, C2 ⊂ A are independent if every possible pair of events
A ∈ C1 and B ∈ C2 is independent.

• Two random variables X and Y on Ω are independent if the σ-algebras σ(X)
and σ(Y ) are independent.

Conditional independence is defined in an analogous manner, by substituting P by
a conditional probability:

3.18 Definition. Let (Ω,A,P) be a probability space and G ⊂ A a σ-algebra. Then
two events A,B ∈ A are conditionally independent given G if

P(A ∩B|G) = P(A|G)P(B|G) . (3.40)

2 If you would like to know more about Carathéodory functions, see [A&B, §4.10].
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Similarly, σ-algebras C1, . . . , Cn ⊂ A are conditionally independent given G if

P
[⋂

k≤nAk

∣∣∣G] =
∏
k≤n

P[Ak|G] for all Ak ∈ Ck, k = 1, . . . , n . (3.41)

/

If two σ-algebras C1 and C2 are conditionally independent given G, we write

C1 ⊥⊥G C2 . (3.42)

Conditional independence of random variables is defined in terms of the σ-algebras
they generate, as

X ⊥⊥Z Y iff σ(X) ⊥⊥σ(Z) σ(Y ) . (3.43)

Here is a standard tool for verifying conditional independence:

3.19 Proposition. Let C, F and G be σ-algebras. Then

C ⊥⊥G F ⇔ P[C|F ,G] =a.s. P[C|G] for all C ∈ C . (3.44)

/

In terms of random variables X, Y and Z, this means

X ⊥⊥Z Y ⇔ P[X ∈ A|Y, Z] =a.s. P[X ∈ A|Z] PZ-a.s. (3.45)

For the proof, let me recall two fundamental properties of conditional expec-
tations: One is the fact that a C-measurable random variable can be pulled out of
any conditional expectation given C, to wit

E[XY |C] =a.s. X E[Y |C] if X is C-measurable. (3.46)

The second one, also known as the law of total probability, says that conditioning
first on C and then on a coarser σ-algebra D amounts to conditioning only on D:

E
[
E[X|C]

∣∣D] =a.s. E[X|D] if C ⊂ D . (3.47)

Since a conditional probability can be represented as a conditional expectation of
an indicator function, we can in particular expand P[A|D] as

P[A|D] =a.s. E
[
P[A|C]

∣∣D] if C ⊂ D . (3.48)

Recall also that the defining property of conditional expectation E[X|C], namely∫
C
E[X|C]dP =

∫
C
XdP for all C ∈ C, can be written as

E
[
E[X|C] · IC

]
= E[X · IC ] for all C ∈ C . (3.49)

(Indeed, this is how some authors define conditional expectation.)

Proof of Proposition 3.19.
Step 1: “⇐”. Suppose the right-hand side of (3.44) holds. We have to show that
the joint conditional distribution of C ∩ F factorizes for all C ∈ C and F ∈ F .

P[F ∩ C|G]
(3.47)
= E

[
P[F ∩ C|σ(F ∪ G)]

∣∣G]
(3.46)
= E

[
P[C|σ(F ∪ G)] · IF

∣∣G]
(3.44)
= E

[
P[C|G] · IF

∣∣G]
(3.46)
= P[C|G] · E[IF |G] = P[C|G] · P[F |G] .

(3.50)

Step 2: “⇒”. Now assume C ⊥⊥G F holds. Let us clarify what we have to show: On
the right-hand side of (3.44), think of P[C|G] as a random variable. Then P[C|G,F ]
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is its conditional expectation E[P[C|G]|F ]. To show that the two are equal almost
surely, we have to show that, for any A ∈ σ(F ∪ G),∫

A

P[C|G]dP =

∫
A

P[C|G,F ]dP = P(A ∩ C) , (3.51)

where the second equality is by definition of conditional probabilities. Suppose first
that A is in particular of the form F ∩G for some F ∈ F and G ∈ G. Then∫

F∩G
P[C|G]dP = E

[
P[C|G] · IF IG

]
(3.49)

= E
[
P[C|G]P[F |G] · IG

]
C⊥⊥GF

= E
[
P[C ∩ F |G] · IG

]
(3.46)

= E
[
P[C ∩ F ∩G|G]

]
(3.47)

= P(C ∩ F ∩G) .

(3.52)

All that is left to do is to generalize from the case A = F ∩G to any A ∈ A, which
is an application of the monotone class theorem. �

Conditioning on multiple σ-algebras can be broken down into steps:

3.20 Proposition [Chain rule for conditional independence]. If C, G, and
F1,F2, . . . are σ-algebras, then

C ⊥⊥G σ(F1,F2, . . .) ⇔ C ⊥⊥σ(G,F1,...,Fn) Fn+1 for all n ∈ N . (3.53)

In particular,

C ⊥⊥G (F ,F ′) if and only if C ⊥⊥G F and C ⊥⊥G,F F ′ . (3.54)

/

Proof. Homework. �

Proposition 3.19 checks for conditional independence by formulating a require-
ment on the conditional distributions. Here is an alternative check using an inde-
pendent randomization:

3.21 Theorem [Randomization criterion for conditional independence].
Let X, Y and Z be random variables with values in Borel spaces X, Y and Z. Then
X ⊥⊥Y Z iff X =a.s. f(Y,U) for some measurable function f : Y × [0, 1]→ X and
a uniform variable U ∼ Uniform(0, 1) which is independent of (Y,Z). /

Proof. By application of Theorem 3.12. See [K, Proposition 6.13]. �

3.6. Application: Sufficient statistics

This section is optional.

One of the many applications of conditioning and conditional independence in sta-
tistics is sufficiency. Recall that a statistical model on a sample space X is any set
P ⊂ PM(X) of probability measures on X. A statistic is a measurable function
S : X→ S into some (typically Polish) space S. A statistic S is called sufficient
for a model P if all measures in the model have the same conditional distribution
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given S. As we have seen above, this means for a Borel sample space X: The
statistic is sufficient if there exists a probability kernel p : S→ PM(X) such that

P [ • |S = s] = p( • , s) for all P ∈ P . (3.55)

If we parametrize the model by a parameter θ with values in a parameter space T,
i.e. if P = {Pθ|θ ∈ T}, the equation above takes the (perhaps more familiar) form

Pθ[ • |S = s] = p( • , s) for all θ ∈ T . (3.56)

As we have learned in this chapter, we can not only condition on random variables
(such as the statistics S), but more generally on σ-algebras. Therefore, a σ-algebra
S ⊂ A in the underlying probability space (Ω,A,P) is called sufficient for the
model P if there is a probability kernel Ω→ PM(X)

P [ • |S](ω) = p( • , ω) for all P ∈ P . (3.57)

Some rather surprising things can happen when the spaces and σ-algebras we
work with are not benign. For example, an often useful intuition is that σ-algebras
“represent information”. This intuition fails dismally if the σ-algebra is not count-
ably generated. In the particular case of sufficiency, consider two σ-algebras S and
T . If T ⊂ S, the “information” interpretation tells us that S in particular contains
all information contained in T . If T is sufficient, we would hence expect S to be
sufficient also. It need not be: A classic result by Burkholder constructs an explicit
counter-example. However, Burkholder also proved that things do work as expected
if the larger σ-algebra S is countably generated:

3.22 Theorem. If a σ-algebra S ⊂ A is countably generated and contains a suffi-
cient σ-algebra, then S is sufficient. /

Proof. See Burkholder, Sufficiency in the undominated case, Ann. Math.
Statist., Vol. 32 (1961) pp. 1191-1200, Theorem 5. �

I advocate to think of sufficiency not in terms of the statistic S, but always in
terms of the pair (S,p). For example, a fairly common mistake is to assume that,
if a statistic S is sufficient for two models P and P ′, then it is also sufficient for
P ∪ P ′. That is not generally the case, since even if the mapping S in (3.56) is the
same for P and P ′, the kernels p and p′ may differ. If the two kernels are identical,
then S is indeed sufficient for the union. If we specify both S and p, there is a
uniquely defined set

M(S,p) := {P ∈ PM(X)|P [ • |S] = p} . (3.58)

In particular, this is the (uniquely determined) largest statistical model for which
the pair (S,p) is sufficient.

3.23 Remark [Sufficiency and symmetry]. The beautiful work of Lauritzen
(see e.g. Extremal families and systems of sufficient statistics, Springer 1988) shows
that M(S,p) is a convex set. Under suitable conditions, it also has much stronger
properties: The extreme points of M(S,p) are precisely those measures which are
of the form of the form p( • , s) for some s. Every measure P in M(S,p) has a
representation of the form

P =

∫
S

p( • , s)νP(ds) (3.59)
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for some probability measure νP on S. Lauritzen calls the set {p( • , s)|s ∈ S} an
extremal family. For example, the famous representation theorem of de Finetti
can be obtained as a special case of (3.59). If S is chosen to take values in a
finite-dimensional space, the set of extreme points is an exponential family (and all
exponential families can be obtained in this way). The deeper meaning behind this
is that sufficiency can be interpreted as a statistical notion of symmetry. /

3.7. Conditional densities

Let X and Y be random variables with values in Borel spaces X and Y. Now
choose a σ-finite measure µ on X. Since the conditional probability of X given Y
is a probability measure on X for every y ∈ Y, we can ask whether it has a density
with respect to a suitable measure µ:

3.24 Definition. Let X and Y be random variables, where X takes values in a
Borel space X. Let µ be a σ-finite measure on X. Any measurable function p
satisfying

P[X ∈ dx|Y = y] = p(x|y)µ(dx) PY-a.s. (3.60)

is called a conditional density of X given Y . /

As a probability measure, each distribution P[X ∈ dx|Y = y] is of course abso-
lutely continuous with respect to some σ-finite measure, but the question is whether
a single µ can be found for all values of y. We formulate a sufficient condition in
terms of the joint distribution:

3.25 Theorem. Let X and Y be random variables with values in Borel spaces X
and Y. Require that there are σ-finite measures µ on X and ν on Y such that the
joint distribution P := L(X,Y ) satisfies P � µ⊗ ν. Then P[X ∈ dx|Y = y]� µ(dx)
holds L(Y )-a.s., i.e. the conditional density p(x|y) exists. If we define

p(x, y) :=
P (dx× dy)

µ(dx)ν(dy)
and f(y) :=

∫
X

p(x, y)µ(dx) , (3.61)

then p(x|y) is given by

p(x|y) =
p(x, y)

f(y)
, (3.62)

and f is a density of PY with respect to ν. /



CHAPTER 4

Pushing forward and pulling back

Before moving on to stochastic processes, I will briefly discuss the concepts of
pushforwards and pullbacks of measures. Consider two measures, µ on a space X
and ν on Y. Suppose φ : X→ Y is a mapping, and consider the equation

φ(µ) = ν . (4.1)

Given this equation, we can ask for different types of solutions:

• If µ and φ are given, we can ask whether there exists a measure ν satisfying
(4.1). Provided φ is measurable, that is always the case, and ν is called the
image measure or the pushforward of µ. In probability theory, it is usually
denoted φ(µ), or simply φµ. In some other branches of mathematics, the
notation φ#µ is more common.

• If instead ν and φ are given, a measure µ satisfying (4.1) is called the pullback
of ν, denoted φ#ν. The pullback need not exist, even if φ is measurable.

In this chapter, we discuss (1) how we integrate with respect to a pushforward and
(2) how to guarantee the existence of pullback measures. We will need pullbacks to
construct stochastic processes with regular paths; discussing pullbacks in tandem
with pushforwards also gives me an excuse to state the change of variables theorem,
which does not really fit in properly anywhere else. First, more formally:

4.1 Definition. Let (X ,AX) and (Y,AY) be two measurable spaces and φ : X → Y
a measurable mapping.

(1) If µ is a measure on (X ,AX), the measure φ#µ defined by

φ#µ(A) := µ(φ−1A) for A ∈ AX (4.2)

is called the pushforward or image measure of µ under φ.
(2) Let ν be a measure on (Y,AY). If there exists a measure φ#ν satisfying

φ#(φ#ν) = ν , (4.3)

then φ#ν is called the pullback of ν under φ.

/

4.1. Integration with respect to image measures

The pushforward φ#µ is well-defined whenever φ is measurable. Whenever it exists,
we can without further difficulties compute integrals:

4.2 Theorem [Integration with respect to an image measure]. Let (X ,AX)
and (Y,AY) be measurable spaces, φ : X → Y measurable, and µ a measure on X .
Let g be a measurable, real-valued function on Y. Then g is φ#µ-integrable if and

61
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only if g ◦ φ is µ-integrable, and the integral is given by∫
B

g(y)φ#µ(dy) =

∫
φ−1B

g ◦ φ(x)µ(dx) for all B ∈ AY . (4.4)

/

Proof. See e.g. [3, Theorem 16.12]. �

This theorem is useful in proofs and on a conceptual level. When we try to
perform specific computations, µ is often defined in terms of a density. The most
important case is of course if X is Rd, and the density is defined with respect to
Lebesgue measure λd. If φ is a mapping from Rd to itself, we can then ask whether
we can directly obtain the image measure φ#µ in terms of its density (again with
respect to λd). More generally: If we transform µ to φ#µ, can we express the
transformation of the integral

∫
fdµ as a transformation of f , rather than of µ as

in the previous result? This is indeed possible, provided that X is Euclidean and
φ sufficiently smooth. The notion of smoothness we need is the following:

4.3 Definition. A mapping φ : V →W between open sets in Rd is called diffeo-
morphism if it is bijective, continuously differentiable, and if Jφ(x) 6= 0 for each
x ∈ V . /

The definition implies in particular that φ is a homeomorphism (a continuous bijec-
tion with continuous inverse). If φ is a diffeomorphism, the requisit transformation
of f can be expressed in terms of the derivative of φ. Since the domain and range
of φ are both d-dimensional, the derivative is given by the Jacobian matrix Jφ:

4.4 Theorem [Change of variables]. Let X and Y be Borel subsets of Eu-
clidean space Rd. Assume there exist open sets V ⊂ X and W ⊂ Y such that
λ(X \ V ) = λ(Y \W ) = 0, and let φ : V →W be a diffeomorphism. Then for each
integrable function f on Y, the function (f ◦ φ) · |Jφ| on A is integrable, an∫

Y

fdλd =

∫
X

(f ◦ φ) · |Jφ|dλd . (4.5)

/

In the one-dimensional case Rd = R, this reduces to the substitution-of-variables
rule of highschool calculus fame. A common application in probability and statistics
is the problem of finding the density of a transformed random variable: Suppose Y
is a real-valued random variable with known density p. We want to determine the
density of pτ of X = τ(Y ), for some invertible and sufficiently smooth τ : R→ R.
In this case, the function f in Theorem 4.4 is the density p. We hence have to
use the theorem “backwards” (since f = p lives on Y, and the transformation in
the theorem is of the form φ : X→ Y): Choose φ := τ−1, so Y = φ(X). Then we
can express p as a function of x, since J is in this case just the derivative φ′, and
Theorem 4.4 gives∫

R
p(y)dy =

∫
R
p(φ(x))d(f(x)) =

∫
R
p(φ(x))φ′(x)dx . (4.6)

It helps to remember that what we are really looking for in such a problem is p(y)
as a function of x. The recipe for finding pτ is hence:

(1) Determine τ such that x = τ(y).
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(2) Then pτ as a function of x is

pτ (x) = p(φ(x))φ′(x) where φ = τ−1 . (4.7)

4.5 Example. Suppose Y is a positive random variables, p its density (with respect
to Lebesgue measure), t a constant, and we want to find the density px of X = Y

t
(again with respect to Lebesgue measure). We set τ(y) := y/t, and hence φ(x) = xt,
so we obtain pτ (x) = tp(tx). /

4.6 Exercise. Recall the gamma distribution with parameters (α, λ) is the law on
(0,∞) with Lebesgue density p(x) = Γ(λ)−1αλxλ−1e−αx. Suppose X and Y are
independent gamma variables with parameters (α, λy) and (α, λx). Show that

X
X+Y ⊥⊥ Y

X+Y and X
X+Y ⊥⊥ Y . (4.8)

/

4.2. Pullback measures

The image measure φ#µ is well-defined whenever φ is measurable. Matters are more
complicated for pullbacks: In principle, we would like to define φ#ν in terms of ν
by setting

φ#ν(φ−1A) := ν(A) . (4.9)

However:

• The preimage φ−1A of a set A is determined only by the points in A ∩ φ(X ).
Points in A outside φ(X ) do not correspond to any points in the preimage.

• Therefore, even if two sets A 6= B differ, they nonetheless have identical preim-
ages φ−1A = φ−1B if they coincide inside the subset φ(X ).

• That means a set in X can simultanuously be the preimage of two different
sets A and B in Y, with different values of ν(A) and ν(B), so it is not clear
which of those values should be assigned in (4.9).

We note that this is not a problem if A and B have the same measure under ν. One
way to ensure that is to require that ν concentrates all its mass on φ(X )—in that
case, even if A and B differ outside φ(X ), these distinct sets have measure 0, and
so ν(A) = ν(B). We could hence require ν(φ(X )) = 1 if ν is a probability measure,
or more generally ν(φ(X )) = ν(Y).

That, again, is problematic, since even if φ is measurable, the image of a mea-
surable set such as X need not be measurable, in which case ν(φ(X )) is not defined.
We sidestep the problem by defining the so-called outer measure ν∗ of ν, which is
a set function defined on all subsets of Y:

4.7 Definition. Let (X , C, µ) be a measure space. The set function

µ∗ : 2X → [0,∞] µ∗(M) := inf{µ(A)|A ∈ C,M ⊂ A} (4.10)

is called the outer measure defined by µ. /

This definition is reminiscent of definitions we have seen before (regularity and
tightness). Clearly, µ∗(A) = µ(A) whenever A ∈ C. If a (not necessarily measur-
able) subset M of Y satisfies

ν∗(M) = ν(Y) , (4.11)

we say M has full outer measure under ν. If ν is a probability measure, this
means of course that ν∗(φ(X )) = 1. It is not hard to deduce the following properties
from the definition of outer measure:
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4.8 Lemma. Let (Y, C, ν) be a measure space.

(1) For every subset M of Y there is a measurable set A ∈ C such that M ⊂ A and
ν∗(M) = ν(A).

(2) A measurable set A is a null set under ν iff ν∗(A) = 0.
(3) A set M ⊂ Y has full outer measure if and only if ν(A) = 0 for every measur-

able set A ⊂ (Y \M).

/

Proof. Homework. �

Using outer measure, we can formulate a condition which prevents ambiguity
in the definition (4.9), even if φ(X ) is not measurable: Instead of demanding that
ν assigns all its mass to φ(X ), we require only that the outer measure does so:

4.9 Theorem [Existence of pullbacks]. Let X be a set, (Y,AY) a measurable
space and φ : X → Y a mapping. If ν is a measure on Y such that φ(X ) has full
outer measure under ν, there exists a measure µ on the σ-algebra φ−1AY in X
satisfying such that φ(µ) = ν. /

Proof. Since φ−1AY is the preimage of a σ-algebra, it is itself a σ-algebra.
We have to show that (4.9) is well-defined: To this end, consider two measurable
sets A,B ∈ AY with identical preimages φ−1A = φ−1B. Since the preimages are
identical, A ∩ φ(X ) and B ∩ φ(X ) are identical. Hence, the symmetric difference
A4B and φ(X ) are disjoint. As φ(X ) has full outer measure under ν, this means
(by Lemma 4.8) A4B is a null set under ν, and so ν(A) = ν(B). Therefore, (4.9)
defines a set function φ#ν : φ−1AY → [0,∞). What remains to be shown is that
this set function is a measure, which is straightforward to verify. �



CHAPTER 5

Stochastic processes

A stochastic process is a random mapping—a random function, random prob-
ability measure, random operator, etc. Its law is a probability measure on the
space of mappings. Perhaps the most common case are random functions N→ R
(in which case the elements of N are often interpreted as points in time) or R+ → R
(where R+ is a time axis).

5.1 Definition. A stochastic process is a random mapping U → V , where U
is a set and V a measurable space. That is, the process is a random variable
X : Ω→ {x|x is mapping U → V }; we also write X : U → V . We call U the index
set and V the state space of X. It is customary to write

Xu := X(u) , (5.1)

and X is often denoted (Xu)u∈U . A realization X(ω) of the process is called a path
or a trajectory of X. /

The set of all mappings U → V , for any given sets U and V , is the product
set V U . Although we have to work with this product set, we will not necessarily
work with the product space—for the moment, we will leave open which topology
or σ-algebra we choose on V U .

Suppose a stochastic process X : R+ → R is given. For any point u ∈ R+, the
function value X(u) is then a random variable with values in R (see Figure 5.1).
More generally, if we pick a finite set {u1, . . . , un}, we can ask for the joint distribu-
tion of (X(u1), . . . , X(un)). Such distributions play a central role in this chapter.

5.2 Definition. Let X : U → V be a random mapping. For any finite subset
{u1, . . . , un} ⊂ R, define

µu1,...,un := L(X(U1), . . . , X(Un)) . (5.2)

Figure 5.1. A random function X : R+ → R defines a random scalar X(u) for every u ∈ R.

R+

x

u1 u2

X(u1)

65
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The laws µu1,...,un , for all finite {u1, . . . , un}, are called the finite-dimensional
distributions (FDDs) of the process X. /

Here is a brief overview of questions addressed in this chapter:

• The set of all mappings U → V is the product space V U . A random mapping
is a random variable with values in V U , and its law is a measure on V U .
The construction of stochastic processes hence amounts to the definition of
probability measures (with nice properties) on such spaces.

• Since V U is typically infinite-dimensional, the law of X does not usually have a
useful density representation (cf. Remark 2.47). We hence have to find another
way to represent the law of X. One of the key ideas of stochastic process
theory is that L(X) can be uniquely represented by the family of all FDDs of X.
Roughly speaking, we use an infinite number of finite-dimensional distributions
to represent a single infinite-dimensional one. Theorems which establish these
representations are usually called extension theorems; the most important
ones are due to Kolmogorov, to Bochner, and to Prokhorov.

• If U is uncountable (which it often is), the space V U typically does not have
nice properties. For example, even if U and V are both Polish, V U is not,
unless U is countable. On the other hand, we are not really interested in all
elements of this space: For example, if V U is the set of all functions R+ → R
as above, the lion’s share of these functions jumps at almost every point. We
are typically interested only in a subset X ⊂ V U of mappings that are regular
in some sense—for example, that are continuous or piece-wise continuous (if
X is a random function on the line), that are countably additive (if X is a
random set function), etc.

• The basic extension theorem (of Kolmogorov) constructs a measure on V U , but
that is only the first step in the construction of a stochastic process. We have
to complement the extension theorem by results that restrict the constructed
measure on V U to a measure on a subset of interest, e.g. to C(R+,R) ⊂ RR+ .

5.1. Constructing spaces of mappings

We will first discuss how to construct a bespoke set X ⊂ V U of possible paths for
a process, which is better adapted to our purposes than the product set V U , using
a so-called inverse limit. The extension theorems in the following section will then
show how to put a probability distribution on X , to define a stochastic process with
paths in X .

5.3 Definition. Fix the following components:

(1) A directed set (T,�) (cf. Section 1.1).
(2) For each t ∈ T, a topological space Xt.
(3) For every pair s, t ∈ T that satisfies s � t, a surjective, continuous mapping

prts : Xt → Xs such that prsr ◦ prts = prtr whenever r � s � t.
The inverse limit of lim (Xt) of the sets Xt with respect to the mappings prts is
the set of all nets (xt)t∈T satisfying

xt ∈ Xt and prts(xt) = xs whenever s � t . (5.3)

/
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Note that lim (Xt) ⊂
∏
t∈T Xt by definition. Many authors refer to inverse

limits as projective limits. Once we have constructed an inverse limit set lim (Xt),
we can define a map prt : lim (Xt)→ Xt, simply by defining

prt
(
(xs)s∈T

)
= xt . (5.4)

That is: The inverse limit is constructed by regarding each sequence or net satisfying
(5.3) as a point, and defining lim (Xt) as the set of all these points. The mapping
prt then takes each point x to the entry xt of the corresponding net. With the help
of these mappings, we can turn X into a topological space X:

5.4 Definition. The inverse limit topology on lim (Xt) is the weak topology
generated by the mappings prt, t ∈ T. /

We will next look at a few examples of inverse limit sets. The most straight-
forward example of an inverse limit is a product space of the form XU

0 . That may
seem a bit pointless—of course, we do not need an inverse limit to construct a
product set. However, we will see below that the construction of a probability
measure on the product does use the inverse limit structure, so it is useful to look
at this construction first.

5.5 Example [Product space]. Suppose we want to construct the product space
RR+ . We choose T as the set of all finite subset of R+, ordered by inclusion, i.e.

(T,�) :=
({
{u1, . . . , un} |n ∈ N, u1, . . . , un ∈ R

}
,⊂
)
. (5.5)

Let Xt = Rt for all t ∈ T. For s � t, we define prts as the mapping

prts : Rt → Rs (xu)u∈t 7→ (xu)u∈s . (5.6)

which, from the finite sequence (xu)u∈t, deletes all elements whose indices are not
in s ⊂ t. The mapping (5.6) is called a product space projection1. Now consider
all sequences satisfying (5.3); it will not be hard to convince yourself that each such
sequence defines a point in RR+ , and conversely, that each point in RR+ defines one
and only one such sequence. The inverse limit is therefore

lim (Xt) =
∏
u∈R+

R = RR+ . (5.7)

By applying the definition (5.4) of the mappings prt, we find that each mapping
prt is the projection to the subspace Xt, i.e. the mapping

prt : RR+ → Rt (xu)u∈R+
7→ (xu)u∈t , (5.8)

which deletes all elements from the infinite sequence (xu)u∈R+ whose indices u are
not contained in t. /

5.6 Example [Set functions]. Let U be a Borel space. As index set, choose the
set of all partitions of U into a finite number of Borel sets, i.e.

T := {(A1, . . . , An) |n ∈ N, Ai ∈ B(U) and (A1, . . . , An) partition of U} . (5.9)

We order T by defining

s � t :⇔ t is refinement of s . (5.10)

1In the Euclidean spaces used in this example, this is precisely the orthogonal projection
onto the subspace Rs, where the direction of projection is parallel to all axes indexed by u ∈ t \ s.
Orthogonal projections are only defined on spaces with scalar products. The product space pro-
jector (5.6) is well-defined even in spaces without a scalar product, since axes-parallel projection

only requires deletion of entries from a sequence.
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A2

A3

A1

Xt

xt

A1 ∪A2

A3

Xs

prtsxt

prts

Figure 5.2. The set function construction, for t = (A1, A2, A3) and s = (A1 ∪A2, A3).

The set Xt contains all probability measures on the events A1, A2 and A3, i.e. all vectors

xt ∈ R3 with xt(Ai) ≥ 0 and xt(A1) + xt(A2) + xt(A3) = 1.

The directed set (T,�) is precisely the index set we already used in Section 1.11. For
each t = (A1, . . . , An) ∈ T, let Xt be the set of all probability measures σ(t)→ [0, 1],
defined on the finite σ-algebra σ(t) generated by the sets Ai in t. In other words,

Xt :=
{
xt ∈ Rn |xt(Ai) ≥ 0 for i = 1, . . . , n and

∑n
i=1xt(Ai) = 1

}
. (5.11)

To define the mapping prts, suppose t is a refinement of s. Then some of the
sets in s are unions of sets in t, e.g. t = (A1, . . . , An) and s = (A1 ∪A2, A3, . . . , An).
If xt ∈ Xt is a measure on σ(t), we define a measure on σ(s) as

prts(xt) := (xt(A1 ∪A2), xt(A3), . . . , xt(An)) . (5.12)

Obviously, this generalizes to arbitrary coarsenings s of t, but notation becomes
pretty cumbersome, so I will not write it out.

What is the inverse limit set? An element x of lim (Xt) is certainly some
form of set function. We can evaluate it on any A ∈ B(U) by choosing some t =
(A1, . . . , An) which contains A as one of the sets Ai; then x(A) = (prtx)(A). This
also means that x is finitely additive: To evaluate x(A1) + x(A2), choose a t that
contains both A1 and A2, and use the finite additivity of the probability measure
xt. However, x lives on the infinite set system B(U), so to be a probability measure,
it would have to be countably additive. That need not be the case, since we cannot
formulate countable additivity as a property on any t ∈ T.

The inverse limit set we obtain is hence the set of probability charges on
B(U), i.e. all of finitely additive probability measures,

lim (Xt) =
{
x : B(U)→ [0, 1]

∣∣x(∅) = 0, x(U) = 1 and x finitely additive
}
.

It contains the probability measures (the charges which are also countably additive)
as a subset. Each mapping prt takes a charge x to its values on the partition t, i.e.
to (x(A1), . . . , x(An)). An example of a subset of regular functions we might be
interested in would be the subset of those x which are even countably additive. /

5.7 Example [Graphs]. This final example illustrates that we do not necessar-
ily have to interpret the elements of the inverse limit set as mappings. Suppose
our index set is (T,�) := (N,≤), and for each n, Xn is the set of all undirected,
simple graphs on the vertex set {1, . . . , n}. For m ≤ n, we define the map prnm
as the mapping from a graph on n vertices to its induced subgraph on the vertices
{1, . . . ,m}. Then lim (Xn) is the set of all undirected, simple graphs on the vertex
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set N, and prn the mapping from an infinite graph to its induced subgraph on the
vertices {1, . . . , n}. An example of a subset of “regular” elements would be the set
of all graphs on N for that each vertex has finite degree. /

5.8 Remark [Warning]. An inverse limit set can be empty (if (5.3) cannot be
satisfied by any net). This can happen even though we assume the mappings
prts to be surjective—the assumption does not necessarily imply the maps prt are
surjective. /

If the index set T is countable, the inverse limit is particularly well-behaved.
Any properties that hold for a countable index set also hold in a slightly more
general case: A subset T′ of a directed set T is called cofinal if, for every t ∈ T,
there is a t′ ∈ T′ such that t � t′. Clearly, the projective limit of a family of spaces
indexed by T is exactly the same as the inverse limit constructed only from those
spaces indexed by T′. Hence, whenever T contains a cofinal subset that is countable,
it behaves like a countable set for all purposes of inverse limit constructions.

5.9 Lemma [Inverse limits with countable index sets]. Let lim (Xt) be an
inverse limit set. Suppose T contains a countable cofinal subset.

(1) If each of the mappings prts is surjective, so are the mappings prt. In partic-
ular, the inverse limit set is not empty.

(2) If additionally each of the spaces Xt is Polish, the inverse limit set is a Polish
space in the inverse limit topology.

/

5.2. Extension theorems

If we construct the set of paths using an inverse limit, the index set U of the
process and the index set T of the inverse limit are not necessarily indentically;
they may coincide, but more generally, T is derived from U—recall the product
space example, where each element of T is a subset of U .

Now consider an inverse limit of topological spaces Xt, with index set (T,�),
and suppose we define a probability measure Pt on each space Xt (that is, on the
Borel sets of Xt). Each mapping prts is continuous, hence measurable. The family
(Pt)t∈T is called projective (or an inverse family) if

prts(Pt) = Ps whenever s � t . (5.13)

Under suitable conditions, a projective family of measures defines a measure P on
the inverse limit set—more precisely, on the inverse limit σ-algebra.

Product spaces, as in Example 5.5, are by far the most important case. Recall
each point in a product space can be thought of as a (possibly uncountable) sequence
or list (xu)u∈U of elements, one for each dimension, and the mappings prts in this
case are the product space projections, i.e. the mappings

prts :
∏
u∈t

V→
∏
u∈s

V (xu)u∈t 7→ (xu)u∈s . (5.14)

which delete some of the elements in the list.

5.10 Kolmogorov’s extension theorem. Let U be an infinite set and V a Polish
space. For each finite subset t = {u1, . . . , un} of U , let Pt be a probability measure
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on the product space V{u1,...,un}. Require that

prtsPt = Ps whenever s ⊂ t (5.15)

for the product space projections prts. Then there exists a uniquely defined proba-
bility measure on VU satisfying

prtP = Pt for all finite t ⊂ U . (5.16)

/

Formulated in terms of random variables, this means: For each u ∈ U , let Xu

be a random variable with values in the Polish space V. Suppose that for each finite
t ⊂ U , the joint distribution Pt = L(Xu1

, . . . , Xun) known, and that for s ⊂ t, Ps
is precisely the marginal distribution under Pt of those Xu for which u ∈ s. Then
the joint distribution of {Xu|u ∈ U} exists and is uniquely determined.

5.11 Remark [Interpretation of finite-dimensional distributions]. The FDDs
of a process are not just an abstract device of mathematical convenience, but have a
concrete modeling interpretation: Suppose we observe samples from some physical
process in an experiment, say over time. Our mathematical model of this physical
process is a stochastic process X, and since it depends on time, we model the index
set as continuous. In any given experiment, we can only observe a finite number of
samples from this process. The law of the random variables modeling these samples
is a FDD (a single FDD, indexed by the set of observation times). To say that two
processes have the same FDDs is to say that their laws cannot be distinguished
from each other by any experiment. Kolmogorov’s theorem tells us that these con-
ditions are sufficient to determined the law of the process, even on an uncountable
index set. /

Our next task is the proof of Kolmogorov’s theorem. The inverse limit measure
P in the theorem lives on the product σ-algebra B(V)U . By definition, the product
σ-algebra is generated by all sets of the form

pr−1
{u}A{u} where u ∈ U and A{u} ∈ B(X{u}) = B(V) . (5.17)

I will call such sets mono-cylinders. If A{u} ⊂ V{u} and A{v} ⊂ V{v}, for two
distinct elements u 6= v of U , are measurable sets, the intersection of the corre-
sponding cylinders is evidently

(pr−1
{u}A{u}) ∩ (pr−1

{v}A{v}) = pr−1
{u,v}(A{u} ×A{v}) . (5.18)

Thus, the intersection of two mono-cylinders with bases in distinct dimensions is
non-empty. The same is true if we intersect any finite or even countable number
of mono-cylinders with bases in mutually distinct dimensions. For the σ-algebras
with this property, the following auxiliary result—which, as far as I can tell, is due
to Marczewski—will save us a lot of lengthy diagonalization arguments.

5.12 Lemma [Unions of compact classes]. Let X be a set and U an arbitrary
index set. For each u ∈ U , let Cu be a σ-algebras in X , and Ku ⊂ Cu a compact
class. Require that (Cu)u∈U has the property: For every countable subset U0 ⊂ U ,

Au ∈ Cu and Au 6= ∅ for all u ∈ U0 ⇒ ⋂
u∈U0

Au 6= ∅ . (5.19)

(1) Let K be the closure of ∪u∈UKu under finite unions and intersections. Then
K is a compact class.
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u2

u3

u1

As

pr−1
ts As

Vt

V s

Figure 5.3. A cylinder in Vt with base As in Vs, where t = {u1, u2, u3} and s = {u1, u2}:
The cylinder is the preimage pr−1

ts As. The cylinder sets in the proof of Kolmogorov’s theorem
are the infinite-dimensional analogues, where t is replaced by the entire set U , and preimages

are taken under the mappings prs rather than prts.

(2) Let µ be a finitely additive probability measure on the smallest algebra contain-
ing ∪u∈UCu. If each restriction µ|Cu is tight with respect to Ku, then µ is tight
with respect to K.

/

Proof. This is Lemma 6.1 in [9]. �

More generally, a set of the form

pr−1
t At where t ⊂ U is finite and At ∈ B(Xt) (5.20)

it is called a cylinder set with base At, for obvious reasons (see Figure 5.3).
Note the mono-cylinders satisfy condition (5.19), whereas the cylinders do not.

Proof of Theorem 5.10. The inverse limit set is the product space X := VU ,
and the inverse limit σ-algebra is the product σ-algebra B(V)U . For each finite
subset t ⊂ U , the mapping prt is a product space projection, and hence surjec-
tive. Therefore, prtX has outer measure 1 under Pt. By Theorem 4.9, the pullback
µt := prt

#Pt exists and is a probability measure on pr−1
t B(Vt), i.e. on the cylinders

with base in Vt.
Let Z denote the set of all cylinders (for all t). It is not hard to show that Z

is an algebra. Define a set function µ on Z as

µ(A) := µt(pr−1
t A) for any t with A ∈ pr−1

t B(Vt) . (5.21)

Since (Pt) is projective, the values µt(pr−1
t A) coincide for all such t. Since each Pt

is a probability measure, it follows immediately that µ is finitely additive (take a
finite union of finite index sets t), with µ(∅) = 0. and µ(X ) = 1. What remains
to be shown is that µ extends to a countably additive measure on the product
σ-algebra.

Now let α be the smallest algebra containing all mono-cylinders. Since the
mono-cylinders are contained in Z, and Z is an algebra, α ⊂ Z. Hence, the restric-
tion µ|α is a finitely additive probability on α. Let Ku be the set of compact sets
in V{u}, and define

K := closure under finite unions and intersections of
⋃
u∈U

pr−1
{u}Ku . (5.22)
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By Lemma 5.12(i), K is a compact class. Since V is Polish, P{u} is tight with
respect to Ku, and the restriction of µ to the {u}-mono-cylinders is hence tight
with respect to pr−1

{u}Ku. By Lemma 5.12(ii), µ|α is tight with respect to K. By

Lemma 2.52, that makes it countably additive on α.
Since the mono-cylinders generate the product σ-algebra, so does α. Therefore,

µ|α is a countably additive probability measure on an algebra that is also a gen-
erator, and hence has a unique extension to a probability measure on the product
σ-algebra by [J&P, Theorem 6.1]. �

5.13 Remark [The extension theorem as a regularity result]. One inter-
pretation of Kolmogorov’s theorem is as a regularity result: Since the measures Pt
determine the values of P on the cylinder sets (and only on those), the theorem
says that P is completely determined by its values on subset (the algebra Z of
cylinder sets) of its domain (the σ-algebra C). This type of property—a mapping is
completely determined by its values on a suitable subset—is a hallmark of regular
mappings. For example, recall that a continuous function is completely determined
by its values on a dense subset of its domain. In Kolmogorov’s theorem, the function
is a set function and the relevant regularity property is countable additivity. /

Kolmogorov’s theorem can in particular be applied to construct random se-
quences (Xn)n∈N, where each Xn takes values in V, by choosing U = N:

5.14 Corollary [Random sequences]. Let (Xn)n∈N be a sequence of random
variables, each with values in a Borel space V. Assume the joint distribution
L(X1, . . . , Xn) is known for each finite n. Then the joint distribution P of the
infinite sequence (Xn) exists, is uniquely determined, and satisfies

prnP = L(X1, . . . , Xn) (5.23)

for every n ∈ N. /

The proof of Kolmogorov’s theorem is already quite lengthy, and we have a
lot left to discuss, so I will not look at other inverse limit results in detail. In the
case of a countable index set (or one with a countable cofinal subset), the general
inverse limit theorem does not involve any complicated conditions, so I just state
this result here without proof.

5.15 Theorem [Extension theorem for countable index sets]. Let (T,�) be
a directed set containing a countable cofinal sequence. Let (Xt)t∈T be a family of
topological spaces and prts, for s � t, continuous surjective maps. For every t ∈ T,
let Pt be a probability measure on Xt. If the family (Pt)t∈T is projective with respect
to the mappings prts, there exists a uniquely determined probability measure P on
the inverse limit σ-algebra satisfying prt(P ) = Pt for all t. /

The set of all finite subsets of a set U , ordered by inclusion, contains a cofinal
subset if and only if U is countable. Hence, Kolmogorov’s extension theorem is a
special case of this result if U is countable, but not otherwise.

5.3. Processes with regular paths

In Kolmogorov’s theorem, we construct a probability measure P on the set of all
mappings U → V . This measure P lives on the product σ-algebra. Since U is
usually uncountable, the product σ-algebra is very coarse: It contains precisely
those sets which are cylinders with base in a countable-dimensional subspace. If
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we think of events in this σ-algebra as properties of mappings x : U → V , this
means that an event is measurable if it can be expressed in terms of the values of
the random mapping X at a countable number of points, but not otherwise. For
instance:

• {X(u) < X(v)}, for a fixed pair u, v ∈ U , is measurable.
• {X(u) is positive at all integers u} is measurable.
• {X is continuous} (or differentiable, or strictly monotone) is not measurable.

If we intend to construct a process with, say, almost surely continuous paths, we
cannot simply require its law to concentrate on the subset of continuous functions
in V U , since this set is not measurable. The next theorem lets us to restrict a law P
on an inverse limit space to a law on a subset X consisting of “interesting” objects
(such as continuous mappings), even if that subset is not measurable.

5.16 Theorem [Processes with regular paths]. Let X be an inverse limit
lim (Xt) of topological spaces Xt with respect to mappings prts, C the inverse limit
σ-algebra, and P the inverse limit of a projective family (Pt) of probability mea-
sures. Let X be a topological space which is contained in X as a subset. Then there
exists a probability measure P̂ on X such that

prt
∣∣
X

(P̂ ) = Pt for all t (5.24)

if

(1) B(X) = C ∩X := {A ∩X|A ∈ C}
(2) X has outer measure P ∗(X) = 1.

If so, P̂ is uniquely determined. /

Recall the canonical inclusion map I from Definition 2.5: For a given subset C
of a set A, the inclusion map I = IC maps each point in C to itself, and is undefined
on points in A \ C; hence, we can regard I as a mapping I : C ↪→ A that “embeds”
C into A. A mapping that takes points to themselves may not seem like a great
idea. Its utility is that the restriction of a measure to a subset can be represented
as a pullback under I.

Proof. Let I : X ↪→ X be the canonical inclusion of X into the inverse limit
space. By assumption (2), we have

P ∗(I(X)) = P ∗(X) = 1, (5.25)

so by Theorem 4.9, P has a unique pullback measure P̂ := I#P on X, defined on the
σ-algebra I−1C. Since I−1C = C ∩X, assumption (1) implies B(X) = I−1C. What

remains to be shown is that P̂ satisfies (5.24). By definition of the inverse limit,
each Pt is the image measure of P under prt, and by definition of the pullback, P

is in turn the image measure of P̂ under I. Since the restriction prt
∣∣
X

of prt to X

is precisely prt ◦ I, we have for any set A ∈ B(Xt)

Pt(A) = P (pr−1
t A) = P̂ (I−1 ◦ pr−1

t A) , (5.26)

and hence (5.24). �

We can now summarize the construction of stochastic processes as a checklist:
Our objective is to construct random mappings U → V that satisfy a given regu-
larity property (continuity, countable additivity, etc). Let X ⊂ V U be the set of
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all mappings which satisfy this property. To construct a stochastic process X with
law P̂ whose paths are almost surely elements of X, we:

(1) Define a family of candidate finite-dimensional distributions Pt, for all finite
t ⊂ U , as in Theorem 5.10.

(2) Show that the family is projective; then the inverse limit measure P exists by
Theorem 5.10.

(3) Show that the Borel σ-algebra of X is C ∩X, where C is the inverse limit
σ-algebra.

(4) Show that X has outer measure P ∗(X) = 1 under the inverse limit measure P .
The existence of X then follows by Theorem 5.16.

Arguably the most important case is the construction of processes with paths in
C(R+,V), the space of continuous functions R+ → V, where V is a metric space.
The standard topology on this space is the topology of compact convergence,
in which a sequence (xn) of continuous functions converges if and only if it con-
verges uniformly on every compact set in R+. To guarantee that a process almost
surely takes value in C(R+,V), we need sufficient conditions for the hypothesis in
Theorem 5.16 to hold.

Such conditions are provided by a famous result of Kolmogorov and Chentsov
for the case where V = Rd and the paths of X are locally Lipschitz continuous (i.e.
slightly smoother than just continuous). We denote by Cγ(R+,Rd) the topological
subspace of C(R+,Rd) consisting of all functions locally Lipschitz of order γ. 2

5.17 Theorem. In the setup of Theorem 5.10, let V be a metric space and choose
U = R+. Then the following holds:

(1) The space C(R+,V) is Polish, and

B(C(R+,V)) = (C(R+,V)) ∩ B(V)R+ , (5.30)

where B(V)R+ denotes the product σ-algebra.
(2) If specifically V = Rd, require there exist constants α > 0, β > 0 and c > 0

such that

E
[
|Xu −Xv|α

]
≤ c|u− v|d+β for all u, v ∈ R+ , (5.31)

where, for each u, v ∈ R+, Xu and Xv are any random variables with joint dis-
tribution L(Xu, Xs) = P{u,s}. Then Cβ/α(R+,R) has outer measure 1 under
the inverse limit P = lim (Pt).

2 Recall that a function f : R+ → R is Lipschitz continuous of order γ if there is a constant
c > 0 such that

|f(v)− f(w)| ≤ c|v − w|γ for all v, w ∈ R+ . (5.27)

We can weaken the Lipschitz condition by making allowing the constant c to vary with location:
We require only that, for every point u ∈ R+, there exists an open neighborhood Uε(u) and a
constant cu > 0 such that

|f(v)− f(w)| ≤ cu|v − w|γ for all v, w ∈ Uε(u) . (5.28)

Then f is called locally Lipschitz of order γ. We write

Cγ(R+,Rd) := {f : R+ → Rd|f locally Lipschitz of order γ} . (5.29)

Clearly, the local Lipschitz condition becomes strictly stronger with increasing γ, and hence
Cγ2 (R+,Rd) ⊂ Cγ1 (R+,Rd) whenever γ1 ≤ γ2. Local Lipschitz continuity (of any order) implies

continuity, so these spaces are always contained in C(R+,Rd). As for general continuous func-
tions, the topology on Cγ(R+,Rd) is that of uniform convergence on compact sets, so Cγ(R+,Rd)

is in fact a topological subspace of C(R+,Rd).
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/

Since Cγ(R+,V) is a topological subspace of C(R+,V), (5.30) remains true if
Cγ(R+,V) is substituted for C(R+,V), for any γ > 0.

Proof. The proof is fairly lengthy, and I omit it here. Statements of this
result under slightly varying assumptions can be found in almost every introductory
textbook, for example in [K, Theorem 3.23], [B, Theorem 39.3], or [7, Theorem
21.6]. �

The statement is of course rather technical, but note that (1) and (2) correspond
precisely to the conditions (1) and (2) of Theorem 5.16. By combining the result
with Theorem 5.16 and Theorem 5.10, we can rephrase it more concretely:

5.18 Corollary [Kolmogorov-Chentsov criterion]. Let X = (Xu)u∈R+
be a

stochastic process with values in Rd. If there exist constants α > 0, β > 0 and
c > 0 such that

E
[
|Xu −Xv|α

]
≤ c|u− v|d+β for all u, v ∈ R+ , (5.32)

there exists a process X ′ that has the same finite-dimensional distributions as X
and whose paths are almost surely locally Lipschitz continuous of order β/α. /

Note that the statement of Eq. (5.32) expresses equivalence between the pro-
cesses X and X ′ in terms of their FDDs (cf. Remark 5.11). We have refrained from
saying that X and X ′ have the same distribution, even though their FDDs define
the same inverse limit measure. The point is that the inverse limit measure lives
on the product space, which is not actually the space of interest, and we think of
X ′ as a random variable whose distribution lives on Cβ/α(R+,R).

Although local Lipschitz continuity is a stronger requirement than continuity, it
is considerably weaker than Lipschitz continuity; in particular, the paths of Brow-
nian motion are not Lipschitz, but they are locally Lipschitz, and hence within the
remit of Theorem 5.17.

5.4. Brownian motion

The most important continuous-time process is, with little doubt, Brownian motion.

5.19 Definition. A stochastic process X = (Xu)u∈R+
with values in R is called

Brownian motion or a Wiener process if:

(1) All FDDs are centered Gaussian distributions, and

Cov[Xu, Xv] = min{u, v} u, v ∈ U . (5.33)

(2) With probability 1, each path of X is continuous.

/

5.20 Theorem. Brownian motion exists. Its paths are almost surely locally Lips-
chitz of every order γ < 1

2 . /

Recall for the proof that, if Y is a Gaussian variable with law N (0, σ2), then scaling
Y by a positive constant c defines a variable cY with law N (0, c2σ2).

Proof. It is not hard to check that the normal FDDs satisfying (5.33) form
a projective family, so a probability measure P on the product σ-algebra exists by
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Theorem 5.10. We apply Corollary 5.18 to show almost sure continuity. Equation
(5.33) implies Xs is marginally normal, and in particular Var[X1] = 1. Hence,

Xv −Xu
d
=
√
v − uX1 ∼ N (0, v − u) whenever u < v . (5.34)

That implies

E
[
(Xv −Xu)2n

]
= E

[
(
√
v − uX1)2n

]
= cn|v − u|n , (5.35)

where cn := E[X2n
1 ] <∞. Hence, (5.32) holds, regardless of the choice of n. The

specific constants are α = 2n, d = 1 (since the process takes values in one dimen-
sion), and hence β = n− 1. Therefore, local Lipschitz continuity holds for every
positive γ < n−1

2n . Since that is true for any n, it holds for every positive γ < 1
2 . �

5.21 Exercise [Scaling Brownian motion]. Let X = (Xu)u∈R+ be Brownian
motion. Show that, for any c > 0, (c−1Xc2u)u∈R+

is also Brownian motion. /

Brownian motion is a process with independent increments (see below), which
implies it is with probability 1 nowhere differentiable. The study of Brownian mo-
tion is an extensive subfield of probability, but we can summarize the fundamental
properties:

(1) Each Xu is Gaussian.
(2) With probability 1, each path is continuous at every point u ∈ U .
(3) With probability 1, each path is not differentiable at every point u ∈ U .

5.22 Remark [Modeling with Brownian motion]. Let me add a few imprecise
remarks about using Brownian motion as a model. Roughly speaking, it is a model
for problems in which we assume that:

(1) At each time, a large number of events takes place on a microscopic scale—that
is, the effect of each individual event is too small to be observed.

(2) These events aggregate into an effect on a macroscopic scale, i.e. which can be
observed. This observed effect, over a time interval [u, u + ∆u] is the change
in value of our process X on the interval [u, u+ ∆u].

(3) The events aggregate by summation.
(4) We assume that the process is not predictable, i.e.

In a finance problem, for example, the microscopic events could be the values of
individual shares. Between two fixed times, these values can change, and we hence

Figure 5.4. A path of Brownian motion on the index set [0, 1].
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consider them to be random variables. However, on the macroscopic scale of, say,
the entire economy, they are too small to be noticeable. Now suppose we observe
the sum of all these variables at each time u (e.g. the value of all shares in a given
market). This is our observed process. Its value is much larger than the values of
individual shares, so it lives on a macroscopic scale. Since it is a sum of a large
number of random variables, it is essentially Gaussian by the central limit theorem
(if we assume the individual variables to be independent).
Continuity. Why should the process be continuous? Suppose it is not, i.e. at
some time u, the random function exhibits a jump. This would mean that either:
(1) Many more of the microscopic events in the sum had positive values than had
negative values, or vice versa. (More precisely: The sum of many small events
deviated strongly from its expected value one way or another.) For a sufficiently
large sum, that does not happen. (2) One of the constituent events had an effect
large enough to be visible on a macroscopic scale. Thus, if our modeling assumption
is that the constituent events are always microscopic, a process with a continuous
path (such as Brownian motion) is an adequate model.3

Non-differentiability. From the discussion above, we can conclude that we are
looking for a process with Gaussian FDDs and continuous paths, but there processes
matching that description which have very smooth, differentiable paths. Suppose
our model process has differentiable paths. Differentiability means that the best
approximation of the process in a point u by a straight line is locally exact, i.e.
the approximation error on a neighborhood of u can be made arbitrarily small
by making the the neighborhood sufficiently small (which is just the definition of
differentiability). That means that, if a differentiable model is accurate, we can
predict future values of the process—and we can make the prediction arbitrarily
accurate by making the time interval over which we predict sufficiently short. Thus,
if we have reason to assume that the process is not predictable, we need a model
whose paths are not differentiable. /

5.5. Markov processes

A discrete-time stochastic process (Xn) is called a Markov process if the distribution
of each Xn depends on the “past” (X1, . . . , Xn−1) of the process only through the
value Xn−1 at the previous time step. Such a discrete-time Markov process is often
called a Markov chain. More generally, a Markov chain of order k is a process
where Xn depends on the past only through the k previous values Xn−k, . . . , Xn−1.
Formally, (Xn) is a Markov chain if

Xn ⊥⊥Xn−1
Xm for all m < n . (5.36)

Using this formulation, we can immediately generalize the idea to continuous time,
or to any totally ordered index set U : The process (Xu)u∈U is Markov if

Xu ⊥⊥Xt Xs whenever s < t < u ∈ U . (5.37)

3If we want to permit drastic events that generate discontinuities, we could use a process
which behaves like a Brownian motion, but jumps at some random times. The standard model of

this type is a Lévy process.
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If we denote the σ-algebra generated by all Xs up to time t as σt := σ(Xs, s ≤ t),
we can express this more concisely as

Xu ⊥⊥Xt σt whenever t < u ∈ U . (5.38)

Clearly, the family {σu|u ∈ U} is a filtration, and the family (Xu) is adapted to
this filtration. For the general definition of a Markov process, it is customary to
generalize a little further, and permit the filtration {σu|u ∈ U} to be substituted
by any filtration F to which (Xu) is adapted (i.e. which satisfies σu ⊂ Fu for all
u). That allows us, for example, to substitute each σu by its completion.

5.23 Definition. Let X = (Xu)u∈U be a stochastic process indexed by a totally
ordered set U , whose state space is a Borel space V. Let F = (Fu)u∈U be a filtration
to which X is adapted. Then X is called a Markov process (or a F-Markov
process) if

Xu ⊥⊥Xt Ft whenever t < u ∈ U . (5.39)

/

The Markov property (5.39) can be stated in terms of conditional distributions as

P[Xu ∈ • |Ft] =a.s. P[Xu ∈ • |Xt] whenever t < u . (5.40)

Since V is Borel, there is a probability kernel representing each conditional dis-
tribution by Theorem 3.6: For each pair s < u, there exists a probability kernel
psu : V→ PM(V) with

P[Xu ∈ • |Xt = xt] =a.s. ptu( • , xt) whenever t < u . (5.41)

Suppose X is a Markov process and psu is the conditional distribution above
for two indices s < u. If we pick a third index t in between, s < t < u, we can
condition Xt on Xs, and Xu in turn on Xt, which yields kernels pts and put. If we
marginalize out Xt, we must recover the conditional distribution of Xu given Xs,
which means the kernels must satisfy

psu( • , xs) =

∫
V

ptu( • , x)pst(dx, xs) (5.42)

It is customary to denote this marginalization as a product of kernels: For two
kernels p and q, write

(p · q)(A, x) :=

∫
p(A, y)q(dy, x) . (5.43)

Hence, the product of two probability kernels V→ PM(V) is again a probability
kernel V→ PM(V). Using the product notation, (5.42) becomes

psu = ptu · pst whenever s < t < u . (5.44)

This identity is called the Chapman-Kolmogorov equation.
It is not hard to show that the product operation on kernels is associative. If

P is the family of kernels psu for a given Markov process, the product of any two
elements is again a kernel in P. Thus, P is a set that is closed under an associative
binary operation (the product), and hence a semigroup of probability kernels.
(Note that this product operation is not commutative, i.e. in general p · q 6= q · p.)

So far, we have seen that the conditional probabilities of a Markov process
form a semigroup satisfying the Chapman-Kolmogorov equation. This statement
can be strengthened considerably: Essentially, each semigroup of kernels satisfying
the Chapman-Kolmogorov equation defines a Markov process, and vice versa. We
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have to distinguish two cases, however: Index sets U that possess a smallest element
(such as R+) and those which do not. We focus on the former case, since it is much
more common: Suppose U has a smallest element u0. In this case, the kernels
psu are well-defined whenever u > u0, but for u = u0, the process has no past. Its
behavior at u0 is hence characterized by the distribution

P0 := L(Xu0) , (5.45)

which is called the initial distribution of X.

5.24 Theorem [Markov processes and semigroups]. Let V be a Borel space
and U a totally ordered set with smallest element u0. Let

P = {psu : V→ PM(V)|s, u ∈ U and s < u} (5.46)

be a semigroup of kernels satisfying the Chapman-Kolmogorov condition (5.44), and
P0 a probability measure on V. Then there exists a Markov process X with index
set U and state space V that satisfies (5.41) for the kernels in P and has initial
distribution P0. Its law is uniquely determined by P and P0.

Conversely, a Markov process with index set U and state space V uniquely
uniquely determines a family of probability kernels psu via (5.41) that satisfies the
Chapman-Kolmogorov equations. /

Proof. Suppose P and P0 are given. Let u0 be the smallest element of U
and u1 < . . . < un an arbitrary number of points in U . The kernels puiui+1

, for
i = 1, . . . , n− 1, and P0 then uniquely define a probability measure P{u0,...,un} on

Vn+1; we can additionally integrate out the first dimension to obtain a measure
on P{u1,...,un} on Vn. A (somewhat lengthy but straightforward) computation
shows that, if the kernels satisfy the Chapman-Kolmogorov equation, the family
P{u1,...,un}, for all u1, . . . , un ∈ U , is projective. By Theorem 5.10, it uniquely

defines the law of a stochastic process X with values in VU . It is again straightfor-
ward to show that, since the kernels satisfy the Chapman-Kolmogorov equations,
the process X satisfies (5.41), and is hence Markov.

We have already established the converse statement in the derivation above. �

5.6. Processes with stationary and independent increments

We discuss next a particularly important class of Markov processes, namely pro-
cesses with stationary, independent increments. A stochastic processX = (Xu)u∈R+

is called stationary if

(Xu)
d
= (Xu+t) for all t ∈ R+ . (5.47)

Thus, “shifting the time axis” by any finite offset t leaves the law of invariant.
Stationarity is a rather strong requirement: It implies in particular the variables

Xu all have identical marginal distribution L(Xu). This means, for instance, that
Brownian motion is not stationary. In the following, we weaken the assumption
of stationarity from the path of a process to its increments—which are, roughly
speaking, the individual steps of the process. To define the notion of an increment,
we need an addition operation on the state space. These processes are hence usually
defined for Euclidean state spaces V = Rd.
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x
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X[s,t]

Figure 5.5. Increment X[s,t] of a process X over the interval [s, t].

5.25 Definition. Let X = (Xu)u∈R+
be a stochastic process with state space Rd.

The random variables

X[s,t] := Xt −Xs for s < t , (5.48)

are called the increments of X. A process has independent increments if

X0 and all X[ti,ti+1] are mutually independent for any t1 < . . . < tn, and i ≤ n .
The increments are stationary if

X[s,t]
d
= X[s+u,t+u] for all s < t, u ∈ R+ . (5.49)

/

By the definition of increments, any value Xu of a process X is of the form

Xu =a.s. X[t,u] +Xt for any 0 ≤ t < u . (5.50)

If the increments are independent, we have for any s < t < u

Xu =a.s. X[t,u] +Xt ⊥⊥Xt Xt −X[s,t] =a.s. Xs , (5.51)

so Xu ⊥⊥Xt Xs, which is just the definition (5.39) of a Markov process. Thus,
processes with independent increments are Markov. If a process has stationary
increments, (5.49) implies that for every t ≥ 0, there is a probability measure

µt := L(X[0,t]) with L(X[s,t]) = µt−s for all s < t . (5.52)

Since X[t,t] =a.s. 0, we have µ0 = δ0.
The next theorem below shows that a process with stationary and independent

increments is a Markov process for which all kernels psu are of the form

psu(A, x) = µu−s(A− x) , (5.53)

where µu−s is the measure defined in (5.52). If we substitute (5.53) into the
Chapman-Kolmogorov equation (5.44), the equation takes the form

µs+t = µs ∗ µt for all s, t ∈ R+ , (5.54)

where ∗ denotes the convolution operator.4 A family (µu)u≥0 of probability mea-
sures satisfying (5.54) is called a convolution semigroup of measures.

4 Recall that the the convolution of two probability measures P and Q on Rd is the prob-

ability measure

(P ∗Q)(A) :=

∫
Rd
P (A− x)Q(dx) =

∫
Rd
Q(A− x)P (dx) . (5.55)
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5.26 Theorem [Processes with stationary and independent increments].
A stochastic process (Xu)u∈R+ with values in Rd has stationary and independent
increments if and only if it is a Markov process defined by an initial distribution
P0 = L(X0), and by conditional probabilities

P[Xu ∈ A|Xs = x] =a.s. µu−s(A− x) , (5.56)

for a convolution semigroup of measures (µu)u≥0. /

Proof. We use a simple consequence of Lemma 3.11: For any two random
variables Y and Z, we have

P[Z − Y ∈ A|Y = y] = P[Z ∈ A+ y|Y = y] . (5.57)

To show this, simply set f(y, z) := IA(z − y) in Lemma 3.11. To prove the theorem,
suppose first X is Markov with kernels satisfying (5.56). Then

P[Xt −Xs ∈ A|Xs = x]
(5.57)

= P[Xt ∈ A+ x|Xs = x] = pst(A+ x, x)
(5.56)

= µt−s(A) ,

so the increment X[s,t] = Xt −Xs is independent of Xs (and hence of all previous
increments), so X has independent increments. Additionally, the law of X[s,t]

depends on [s, t] only through (t− s), and the increments are hence stationary.
Conversely, suppose X has stationary and independent increments. We have

already argued above that X is then Markov, and that L(X[s,t]) = µt−s for some
measures µu. According to Theorem 5.24, there is an initial distribution P0 and a
semigroup of kernels defining the process. What remains to be shown is that these
kernels satisfy (5.56). They do:

P[Xt ∈ A|Xs = x] = P[X[s,t] +Xs ∈ A|Xs = x]
(5.57)

= P[X[s,t] ∈ A− x|Xs = x]

ind. incr.
= P[X[s,t] ∈ A− x]

def. of µu
= µt−s(A− x) ,

(5.58)

which is precisely (5.56). �

Textbook versions of this proof tend to be lengthy, often filling several pages.
The argument above owes its simplicity to identity (5.57); to the best of my knowl-
edge, this insight is due to Kallenberg [see K, Proposition 8.5].

5.27 Example [Brownian convolution semigroup]. Brownian motion has sta-
tionary and independent increments, and is hence defined by an initial distribution
and a convolution semigroup (µu)u≥0 of measures: Each µu is the Gaussian distri-
bution on R (or, more generally on Rd) with the centered Gaussian density

gt(x) :=
1

(
√

2πt)d
exp
(
−‖x‖

2

2t

)
. (5.59)

The family (µu)u≥0 is called the Brownian convolution semigroup. As an
exercise, I recommend to convince yourself that this indeed defines Brownian motion
as in Definition 5.19. /

Recall also that the sum X + Y of two independent random variables X and Y in Rd has law
L(X + Y ) = L(X) ∗ L(Y ).
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5.7. Gaussian processes

A Gaussian process is a stochastic process whose FDDs are all Gaussian. Thus,
Brownian motion is a Gaussian process. However, by increasing the covariance be-
tween points, we can force the process to have much smoother paths than Brownian
motion; in particular, the paths of Gaussian processes can be differentiable.

5.28 Definition. A Gaussian process is a stochastic process X with index set
R+ and state space Rd whose finite-dimensional distributions

Pt := L(Xu1
, . . . , Xun) for all finite sets t := {u1, . . . , un} ∈ R+ (5.60)

are Gaussian distributions. /

The form of these FDDs implies we are working in the product space setup:
Each Pt is the image of L(X) under the product space projector prt; the relevant
extension theorem is hence Kolmogorov’s theorem (Theorem 5.10). Each distri-
bution Pt lives on (Rd)t. To avoid a notational nightmare, we will assume d = 1
henceforth, so Pt is a measure on Rt—just keep in mind that the results carry over
immediately to d > 1.

Kolmogorov’s extension theorem requires the measures Pt to be projective for
the process to exist. Since each Pt is Gaussian, it is completely determined by
its mean vector mt ∈ Rt and its covariance matrix Σt. We can hence formulate
a condition for projectivity in terms of the means and variances. Recall that a
function k on R2

+ is positive semidefinite if, for any set t = {u1, . . . , un} ∈ R+,
the matrix (

k(ui, uj)
)
i,j≤n (5.61)

is positive semidefinite.

5.29 Lemma. For each finite subset t ⊂ R+, let Pt be a Gaussian distribution on
Rt with mean mt and covariance matrix Σt. If and only if there exists a function
m : R→ R and a positive semidefinite function k : R+ × R+ → R such that

mt = (m(u1), . . . ,m(un)) and Σt :=
(
k(ui, uj)

)
i,j≤n (5.62)

the family (Pt) is projective, i.e. it satisfies (5.13). /

Every Gaussian process is therefore uniquely determined by a pair of functions
m and k and vice versa. If X is a Gaussian process with mean m and covariance
function k, we generically denote its law by GP(m,k).

5.30 Exercise. Proof the “if” direction of Lemma 5.29. /

We have already encountered the example of Brownian motion, which is contin-
uous but not differentiable. There are various applications and modeling problems
that use random functions, but require more smoothness, for example:

• Spatial statistics: Gaussian processes with index set R2 (often called Gaussian
random fields) are used here to model the distribution of smoothly varying
quantity over a region, i.e. temperature as a function of location on a map.

• Bayesian regression: Gaussian process regression represents the solution of a
regression problem (i.e. a smooth function) as an unknown quantity, which in
a Bayesian approach is modeled as random. A Gaussian process is used as the
prior distribution on functions.



5.7. GAUSSIAN PROCESSES 83

5.31 Example [Squared-exponential covariance function]. Probably the most
widely used covariance function in such problems is a squared exponential,

k(x, y) := exp
(
−1

2

(x− y)2

σ2

)
. (5.63)

The paths of the resulting Gaussian process are infinitely often continuously differ-
entiable (almost surely); each derivative is again a Gaussian process [e.g. 1]. /

For applications such as spatial statistics and regression, it can be useful to
consider Gaussian processes whose paths are almost surely in the space L2(R+) of
functions square-integrable with respect to Lebesgue measure—rather than in the
set C(R+,R) we considered in the case of Brownian motion. (There is a deeper
connection between Gaussian processes and L2-spaces, since L2 spaces are separable
Hilbert spaces; the covariance function of a Gaussian process is a so-called Mercer
kernel, and such kernels define Hilbert spaces.) We hence need an analogue of the
Kolmogorov-Chentsov criterion (Corollary 5.18) for the Hilbert space L(R+). It is
given by a result of Prokhorov, which I just want to mention here without proof:

5.32 Theorem [Gaussian processes with paths in Hilbert space]. Let (Pt)
be a family of Gaussian FDDs defined by a pair (m,k). Then L2(R+) has outer
measure one under P = lim (Pt) if and only if

m ∈ L2(R+) and

∫
R+

k(u, u)du <∞ . (5.64)

/

Thus, a Gaussian process GP(m,k) almost surely has paths in L2 iff its parameter
functions satisfy (5.64).

5.33 Remark [Ornstein-Uhlenbeck process]. Brownian motion is a Gaussian
process, and at the same time Markov. If a Gaussian process has differentiable
paths, it can clearly not be Markov—which raises the question whether there is a
non-Brownian but Gaussian Markov process. If (Xu)u∈R+ is Brownian motion, the
process defined by

Yu := e−uX 1
2 e

2u (5.65)

Figure 5.6. Samples from a Gaussian process with squared-exponential covariance func-

tion. Left: Several sample paths of a Gaussian process with index set R+. Right: A single
path of Gaussian process with index set R2, as used e.g. in spatial statistics. (Illustra-

tions from Rasmussen and Williams, “Gaussian processes for Machine Learning”, MIT Press
2006.)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

1.1 A Pictorial Introduction to Bayesian Modelling 3
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Figure 1.1: Panel (a) shows four samples drawn from the prior distribution. Panel
(b) shows the situation after two datapoints have been observed. The mean prediction
is shown as the solid line and four samples from the posterior are shown as dashed
lines. In both plots the shaded region denotes twice the standard deviation at each
input value x.

1.1 A Pictorial Introduction to Bayesian Mod-
elling

In this section we give graphical illustrations of how the second (Bayesian)
method works on some simple regression and classification examples.

We first consider a simple 1-d regression problem, mapping from an input regression

x to an output f(x). In Figure 1.1(a) we show a number of sample functions
drawn at random from the prior distribution over functions specified by a par- random functions

ticular Gaussian process which favours smooth functions. This prior is taken
to represent our prior beliefs over the kinds of functions we expect to observe,
before seeing any data. In the absence of knowledge to the contrary we have
assumed that the average value over the sample functions at each x is zero. mean function

Although the specific random functions drawn in Figure 1.1(a) do not have a
mean of zero, the mean of f(x) values for any fixed x would become zero, in-
dependent of x as we kept on drawing more functions. At any value of x we
can also characterize the variability of the sample functions by computing the pointwise variance

variance at that point. The shaded region denotes twice the pointwise standard
deviation; in this case we used a Gaussian process which specifies that the prior
variance does not depend on x.

Suppose that we are then given a dataset D = {(x1, y1), (x2, y2)} consist- functions that agree
with observationsing of two observations, and we wish now to only consider functions that pass

though these two data points exactly. (It is also possible to give higher pref-
erence to functions that merely pass “close” to the datapoints.) This situation
is illustrated in Figure 1.1(b). The dashed lines show sample functions which
are consistent with D, and the solid line depicts the mean value of such func-
tions. Notice how the uncertainty is reduced close to the observations. The
combination of the prior and the data leads to the posterior distribution over posterior over functions

functions.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 1.2: Panel (a) shows a sample from prior distribution on f in a 2-d input
space. Panel (b) is a plot of the logistic function �(z). Panel (c) shows the location
of the data points, where the open circles denote the class label +1, and closed circles
denote the class label �1. Panel (d) shows a contour plot of the mean predictive
probability as a function of x; the decision boundaries between the two classes are
shown by the thicker lines.

this case notice that all of the training points are correctly classified, including
the two “outliers” in the NE and SW corners. By choosing a di↵erent length-
scale we can change this behaviour, as illustrated in section 3.7.1.

1.2 Roadmap

The book has a natural split into two parts, with the chapters up to and includ-
ing chapter 5 covering core material, and the remaining chapters covering the
connections to other methods, fast approximations, and more specialized prop-
erties. Some sections are marked by an asterisk. These sections may be omitted
on a first reading, and are not pre-requisites for later (un-starred) material.
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is called an Ornstein-Uhlenbeck process. This process is indeed Gaussian and
Markov. It is also stationary (unlike Brownian motion, for which only the incre-
ments are stationary), and it can be shown to be essentially the only stationary
Gaussian Markov process. See e.g. [K, Proposition 13.7]. /

5.8. The Poisson process

A point process on an uncountable set X is random countable subset of X :

5.34 Definition. Let (X ,AX ) be an uncountable measurable space, such that the
diagonal of X × X is measurable (cf. page 55). A point process on X is a random
countable subset of X , i.e. a random variable Π with values in the power set 2X

satisfying |Π| ≤ |N| almost surely. /

Note point process is defined as a random set, not as a random multiset. We
cannot distinguish points if they occur more than once: For example,

{x, y, z} and {x, y, y, z} (5.66)

are distinct as multisets, but identical as sets. When we specify the law of a point
process, we therefore typically require that no point occurs more than once, to
avoid inconsistencies. For countably many points, “no point occurs more than
once” comes down to a countable number of conditions of the form “X 6= Y almost
surely”, which is why we have required the diagonal in X to be measurable: X 6= Y
holds almost surely iff the event {X = Y } is a null set, and this event is precisely the
diagonal. Recall that, by Lemma 3.17, the diagonal is automatically meausurable
whenever X is metrizable.

5.35 Definition. A point process Π on X is called a Poisson process if, for every
measurable set A ∈ AX ,

(1) the number of points |Π ∩A| of Π in A is a Poisson random variable5 and
(2) the variables Π ∩A and Π ∩A are stochastically independent,

where A denotes the complement of A. /

We do not know yet whether such an object Π exists, but suppose for the
moment that it does. For each set A ∈ AX , define

µ(A) := E
[
|Π ∩A|

]
. (5.70)

5 Recall that the Poisson distribution is the distribution we obtain from the series expansion
eλ =

∑∞
k=0 λ

k/k! of the exponential function: If we normalize by multiplication with e−λ and
multiply in a point mass δk at each k ∈ N ∪ {0}, we obtain a probability measure

Pλ( • ) :=

∞∑
k=0

e−λ
λk

k!
δk( • ) (5.67)

on N ∪ {0,∞}, called the Poisson distribution with parameter λ. The definition implies

P0 = δ0, and we use the convention P∞({∞}) = 1. Two key properties are:
Additivity: If N1 ∼ Poisson(α1) and N2 ∼ Poisson(α2), then

(N1 +N2) ∼ Poisson(α1 + α2) (5.68)

if and only if N1 and N2 are independent.

Thinning: If N ∼ Poisson(α) and J1, . . . , JN ∼iid Bernoulli(p), then∑N
i=1Ji ∼ Poisson(pα) . (5.69)

In words: The number of successes in a Poisson number of i.i.d. coin flips is Poisson.
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The definition of the Poisson process then implies µ must be a measure on (X ,AX).
It is called the mean measure of Π.

5.36 Exercise. Deduce from Definition 5.35 that µ is a measure. /

Since the Poisson distribution is completely specified by its mean, the law of
the Poisson process Π—if the process exists—is completely determined by µ. We
can hence parametrize Π by µ, and use the notation

Πµ := Poisson process with mean measure µ . (5.71)

You may also encounter references to a Poisson process specified by a “rate”: If
X = Rd and the mean measure is of the form µ = cλ, where λ is Lebesgue measure,
the constant c is called the rate of the process.

5.37 Theorem. Let (X ,Ax) be a measurable space such that X × X has measurable
diagonal, and let µ be an atomless measure on X satisfying

µ =

∞∑
n=1

µn for some sequence of measures µn with µn(X ) <∞ . (5.72)

Then the random set Π generated by Algorithm 5.38 below is a Poisson process on
X with mean measure µ. /

Recall that atomless means µ{x} = 0 for every one-point set {x} in X . Con-
dition (5.72) says that µ can be infinite, but must be decomposable into a superpo-
sition of an at most countably infinite number of finite measures. That is obviously
true if µ is σ-finite, but also includes measures which are not σ-finite; for example,
if λ2 is Lebesgue measure on R2, its projection prλ2 onto R is not σ-finite, but it
does satisfy (5.72). (Why?)

5.38 Algorithm [Sampling a Poisson process].
(a) If µ(X ) is finite:

(i) Generate a random integer N ∼ Poisson(µ).
(ii) Sample N points X1, . . . , XN i.i.d. from the distribution µ/µ(X ).
(iii) Set Π := {X1, . . . , XN}.
(b) If µ(X ) is infinite:

(i) Decompose µ according to (5.72) into finite measures µn.
(ii) Generate a random set Πn independently from each µn as in (a).
(iii) Set Π := ∪n∈NΠn.

Proof. Throughout, A is any measurable set in X , and A its complement.
Case (a): µ finite. We sample Π according to Algorithm 5.38. For each of the
N points in Π, the probability that it ends up in a given measurable set A is
µ(A)/µ(X ). By the thinning property (5.69), with Ji := IA(Xi), the number of
points in A is a Poisson random variable NA with

E[NA] =
µ(A)

µ(X )
E[N ] =

µ(A)

µ(X )
µ(X ) = µ(A) . (5.73)

By the same device, the number of points NĀ in A is Poisson(µ(X )− µ(A)). Since
N = NA +NĀ, the additivity property (5.68) implies NA ⊥⊥ NĀ, which implies
Π ∩A ⊥⊥ Π ∩A. Thus, Π is a Poisson process.
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Case (b): µ infinite. Since each µn in (5.72) is finite, the random sets Πn are
independent Poisson processes, by the argument above. Each Πn is Poisson and

Π ∩A = (∪nΠn) ∩A = ∪n(Πn ∩A) , (5.74)

which implies Π ∩A and Π ∩A are independent. What remains to be shown is that
|Π ∩A| is Poisson(µ(A)). Since the sets Πn each contain an a.s. finite number of
points sampled independently from an atomless distribution, they are almost surely
disjoint. Hence,

|Π ∩A| =a.s.

∑
n |Πn ∩A| . (5.75)

By Borel-Cantelli, a sum of independent variables almost surely diverges if and only
if the sum of its expectations diverges. The variables |Πn ∩A| are independent, each
with expectation µn(A), and

∑
µn(A) = µ(A). We hence distinguish two cases:

(1) If µ(A) <∞, |Π ∩A| is almost surely finite, and Poisson(µ(A)) by additivity.
(2) If µ(A) =∞, then |Π ∩A| is infinite almost surely, and hence Poisson(∞).

Thus, |Π ∩A| is indeed Poisson(µ(A)) for every measurable set A. In summary, Π
is a Poisson process with mean measure µ as claimed. �

Since we have shown how to sample the Poisson process, we have in particular
given a constructive proof of its existence:

5.39 Corollary. Let (X ,AX ) be a measurable space such that X × X has measur-
able diagonal, and let µ be an atomless measure on X satisfying (5.72). Then the
Poisson process Πµ on X exists. /

Poisson processes are remarkably robust; almost regardless of what you do to
them, they remain Poisson:

5.40 Corollary. Let µ be a measure and (νn)n∈N a sequence of measures, all of
which are atomless and satisfy (5.72). Let φ : X → X be a measurable mapping.
Then the following holds:

φ(Πµ) = Πφ(µ) if µ is σ-finite . (5.76)

Πµ ∩A = Πµ( • ∩A) for any set A ∈ AX . (5.77)⋃
nΠνn = Π

∑
n νn (5.78)

/

Proof. Homework. �

Depending on the context, the term Poisson process may also refer to a time-
dependent process, i.e. a random (piece-wise constant) function rather than a ran-
dom set of points. A process X = (Xu) of this form is defined as follows: For a
Poisson process Π on R+ × R+, define a continuous-time process (Xu) on R+ as

Xu :=
∑

(x1,x2)∈Π|x1<u
x2 . (5.79)

In other words, if the random set Π contains a point (x1, x2), then at time u = x1,
the process X increases by x2 (see Figure 5.7). By the independence property of
the Poisson process (Definition 5.35(ii)), the increments of X are independent, so
X is Markov. You can easily verify that its increments are also stationary, and that
the convolution semigroup (µu)u≥0 defining this process according to Theorem 5.26
consists simply of the Poisson distributions with parameter λ = u, that is, µu = Pu
(as defined in (5.67)) for all u ≥ 0.



5.8. THE POISSON PROCESS

Figure 5.7. Sum of counts of Poisson processes on R+.
Left : Mean measure λ (i.e. rate 1). Right : Mean measure 5λ (i.e. rate 5).
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5.41 Remark. We have not discussed regularity of paths for processes with sta-
tionary and independent increments. It can be shown that the only such process
whose paths are almost surely continuous is Brownian motion; for more general
processes, we have to permit jumps. The adequate choice of a set of paths turns
out to be the space of rcll functions, which we have already encountered in Sec-
tion 1.9. A process with stationary and independent increments whose paths are
almost surely rcll is called a Lévy process. The famous Lévy-Khinchine theorem
[K, Corollary 15.7] shows that, roughly speaking, a process is Lévy if and only if it
is of the form
X = non-random linear function + constantly scaled Brownian motion

+ jumps represented by a Poisson process .

In other words, up to a fixed “drift”, a Lévy process is always a superposition of a
(continuous) Brownian component and a (pure-jump) Poisson component. In this
sense, Brownian motion and the Poisson process are the two fundamental Lévy
processes, from which all other Lévy processes can be derived. /
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