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SAMPLING ALGORITHMS

In general

I A sampling algorithm is an algorithm that outputs samples x1, x2, . . . from a
given distribution P or density p.

I Sampling algorithms can for example be used to approximate expectations:

Ep[f (X)] ≈ 1
n

n∑
i=1

f (xi)

Inference in Bayesian models
Suppose we work with a Bayesian model whose posterior Q̂n := Q[dθ|X1:n] cannot
be computed analytically.

I We will see that it can still be possible to sample from Q̂n.

I Doing so, we obtain samples θ1, θ2, . . . distributed according to Q̂n.

I This reduces posterior estimation to a density estimation problem
(i.e. estimate Q̂n from θ1, θ2, . . .).
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PREDICTIVE DISTRIBUTIONS

Posterior expectations
If we are only interested in some statistic of the posterior of the form EQ̂n

[f (Θ)] (e.g.
the posterior mean), we can again approximate by

EQ̂n
[f (Θ)] ≈ 1

m

m∑
i=1

f (θi) .

Example: Predictive distribution
The posterior predictive distribution is our best guess of what the next data point
xn+1 looks like, given the posterior under previous observations:

P[dxn+1|x1:n] :=

∫
T

p(dxn+1|θ)Q[dθ|X1:n = x1:n] .

This is one of the key quantities of interest in Bayesian statistics.

Computation from samples
The predictive is a posterior expectation, and can be approximated as a sample
average:

p(xn+1|x1:n) = EQ̂n
[p(xn+1|Θ)] ≈ 1

m

m∑
i=1

p(xn+1|θi)
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BASIC SAMPLING: AREA UNDER CURVE

Say we are interested in a probability density p on the interval [a, b].

x

p(x)

a b

A

yi

xi

Key observation
Suppose we can define a uniform distribution UA on the blue area A under the curve.
If we sample

(x1, y1), (x2, y2), . . . ∼iid UA

and discard the vertical coordinates yi, the xi are distributed according to p,

x1, x2, . . . ∼iid p .

Problem: Defining a uniform distribution is easy on a rectangular area, but difficult
on an arbritrarily shaped one.
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REJECTION SAMPLING ON THE INTERVAL

Solution: Rejection sampling
We can enclose p in box, and sample uniformly from the box B.

x

p(x)

a b

c

B

I We can sample (xi, yi) uniformly on B by sampling

xi ∼ Uniform[a, b] and yi ∼ Uniform[0, c] .

I If (xi, yi) ∈ A (that is: if yi ≤ p(xi)), keep the sample.
Otherwise: discard it ("reject" it).

Result: The remaining (non-rejected) samples are uniformly distributed on A.
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SCALING

This strategy still works if we scale the vertically by some constant k > 0:

x
a b

c

B

x
a b

k · c

B

We simply sample yi ∼ Uniform[0, kc] instead of yi ∼ Uniform[0, c].

Consequence
For sampling, it is sufficient if p is known only up to normalization
(i.e. if only the shape of p is known).
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DISTRIBUTIONS KNOWN UP TO SCALING

Sampling methods usually assume that we can evaluate the target distribution p up to
a constant. That is:

p(x) =
1
Z̃

p̃(x) ,

and we can compute p̃(x) for any given x, but we do not know Z̃.

We have to pause for a moment and convince ourselves that there are useful
examples where this assumption holds.

Example 1: Simple posterior
For an arbitrary posterior computed with Bayes’ theorem, we could write

Π(θ|x1:n) =

∏n
i=1 p(xi|θ)q(θ)

Z̃
with Z̃ =

∫
T

n∏
i=1

p(xi|θ)q(θ)dθ .

Provided that we can compute the numerator, we can sample without computing the
normalization integral Z̃.
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DISTRIBUTIONS KNOWN UP TO SCALING

Example 2: Bayesian Mixture Model
Recall that the posterior of the BMM is (up to normalization):

q̂n(c1:K , θ1:K |x1:n) ∝
n∏

i=1

( K∑
k=1

ckp(xi|θk)
)( K∏

k=1

q(θk|λ, y)
)

qDirichlet(c1:K)

We already know that we can discard the normalization constant, but can we evaluate
the non-normalized posterior q̃n?

I The problem with computing q̃n (as a function of unknowns) is that the term∏n
i=1

(∑K
k=1 . . .

)
blows up into Kn individual terms.

I If we evaluate q̃n for specific values of c, x and θ,
∑K

k=1 ckp(xi|θk) collapses to
a single number for each xi, and we just have to multiply those n numbers.

So: Computing q̃n as a formula in terms of unknowns is difficult; evaluating it for
specific values of the arguments is easy.
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REJECTION SAMPLING ON Rd

If we are not on the interval, sampling uniformly from an enclosing box is not
possible (since there is no uniform distribution on all of R or Rd).

Solution: Proposal density
Instead of a box, we use another distribution r to enclose p:

x

p(x)

a b

B

To generate B under r, we apply similar logic as before backwards:

I Sample xi ∼ r.

I Sample yi ∼ Uniform[0, r(xi)].

r is always a simple distribution which we can sample and evaluate.
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REJECTION SAMPLING ON Rd

x

p(x)

a b

B

I Choose a simple distribution r from which we know how to sample.

I Scale p̃ such that p̃(x) < r(x) everywhere.

I Sampling: For i = 1, 2, . . . ,:

1. Sample xi ∼ r.
2. Sample yi ∼ Uniform[0, r(xi)].
3. If yi < p̃(xi), keep xi.
4. Else, discard xi and start again at (1).

I The surviving samples x1, x2, . . . are distributed according to p.
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INDEPENDENCE

If we draw proposal samples xi i.i.d. from r, the resulting sequence of accepted
samples produced by rejection sampling is again i.i.d. with distribution p. Hence:

Rejection samplers produce i.i.d. sequences of samples.

Important consequence
If samples x1, x2, . . . are drawn by a rejection sampler, the sample average

1
m

m∑
i=1

f (xi)

(for some function f ) is an unbiased estimate of the expectation Ep[f (X)].
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EFFICIENCY

The fraction of accepted samples is the ratio |A||B| of the areas under the curves p̃ and r.

x

p(x)

a b

If r is not a reasonably close approximation of p, we will end up rejecting a lot of
proposal samples.
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AN IMPORTANT BIT OF IMPRECISE INTUITION

Example figures for sampling methods tend to look

like this.
A high-dimensional distribution of correlated RVs will

look rather more like this.

Sampling is usually used in multiple dimensions. Reason, roughly speaking:

I Intractable posterior distributions arise when there are several interacting
random variables. The interactions make the joint distribution complicated.

I In one-dimensional problems (1 RV), we can usually compute the posterior
analytically.

I Independent multi-dimensional distributions factorize and reduce to
one-dimensional case.

Warning: Never (!!!) use sampling if you can solve analytically.
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WHY IS NOT EVERY SAMPLER A REJECTION SAMPLER?

We can easily end up in situations where we accept only one in 106 (or 1010, or
1020,. . . ) proposal samples. Especially in higher dimensions, we have to expect this
to be not the exception but the rule.
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IMPORTANCE SAMPLING

The rejection problem can be fixed easily if we are only interested in approximating
an expectation Ep[f (X)].

Simple case: We can evaluate p
Suppose p is the target density and q a proposal density. An expectation under p can
be rewritten as

Ep[f (X)] =

∫
f (x)p(x)dx =

∫
f (x)

p(x)

q(x)
q(x)dx = Eq

[
f (X)p(X)

q(X)

]

Importance sampling
We can sample x1, x2, . . . from q and approximate Ep[f (X)] as

Ep[f (X)] ≈ 1
m

m∑
i=1

f (xi)
p(xi)

q(xi)

There is no rejection step; all samples are used.

This method is called importance sampling. The coefficients p(xi)
q(xi)

are called
importance weights.

Peter Orbanz 15 / 37



IMPORTANCE SAMPLING

General case: We can only evaluate p̃
In the general case,

p =
1
Zp

p̃ and q =
1
Zq

q̃ ,

and Zp (and possibly Zq) are unknown. We can write Zp
Zq

as

Zp

Zq
=

∫
p̃(x)dx
Zq

=

∫
p̃(x) q(x)

q(x)dx

Zq
=

∫
p̃(x)

q(x)

Zq · q(x)
dx = Eq

[
p̃(X)

q̃(X)

]
Approximating the constants
The fraction Zp

Zq
can be approximated using samples x1:m from q:

Zp

Zq
= Eq

[
p̃(X)

q̃(X)

]
≈ 1

m

m∑
i=1

p̃(xi)

q̃(xi)

Approximating Ep[f (X)]

Ep[f (X)] ≈ 1
m

m∑
i=1

f (xi)
p(xi)

q(xi)
=

1
m

m∑
i=1

f (xi)
Zq

Zp

p̃(xi)

q̃(xi)
=

m∑
i=1

f (xi)
p̃(xi)
q̃(xi)∑m

i=j
p̃(xj)

q̃(xj)Peter Orbanz 16 / 37



IMPORTANCE SAMPLING IN GENERAL

Conditions
I Given are a target distribution p and a proposal distribution q.

I p = 1
Zp

p̃ and q = 1
Zq

q̃.

I We can evaluate p̃ and q̃, and we can sample q.

I The objective is to compute Ep[f (X)] for a given function f .

Algorithm

1. Sample x1, . . . , xm from q.

2. Approximate Ep[f (X)] as

Ep[f (X)] ≈
∑m

i=1 f (xi)
p̃(xi)
q̃(xi)∑m

i=j
p̃(xj)

q̃(xj)

Peter Orbanz 17 / 37



MARKOV CHAIN MONTE CARLO



MOTIVATION

Suppose we rejection-sample a distribution like this:

region of interest

Once we have drawn a sample in the narrow region of interest, we would like to
continue drawing samples within the same region. That is only possible if each
sample depends on the location of the previous sample.

Proposals in rejection sampling are i.i.d. Hence, once we have found the region
where p concentrates, we forget about it for the next sample.
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MCMC: IDEA

Recall: Markov chain
I A sufficiently nice Markov chain (MC) has an invariant distribution Pinv.

I Once the MC has converged to Pinv, each sample xi from the chain has marginal
distribution Pinv.

Markov chain Monte Carlo
We want to sample from a distribution with density p. Suppose we can define a MC
with invariant distribution Pinv ≡ p. If we sample x1, x2, . . . from the chain, then once
it has converged, we obtain samples

xi ∼ p .

This sampling technique is called Markov chain Monte Carlo (MCMC).

Note: For a Markov chain, xi+1 can depend on xi, so at least in principle, it is
possible for an MCMC sampler to "remember" the previous step and remain in a
high-probability location.
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CONTINUOUS MARKOV CHAIN

For MCMC, state space now has to be the domain of p, so we often need to work
with continuous state spaces.

Continuous Markov chain
A continuous Markov chain is defined by an initial distribution Pinit and conditional
probability t(dy|x), the transition probability or transition kernel.

In the discrete case, t(y = i|x = j) is the entry Tij of the transition matrix T.

Example: A Markov chain on R2

We can define a very simple Markov chain by sampling

xi+1 ∼ g( . |xi, σ
2)

where g(x|µ, σ2) is a spherical Gaussian with fixed
variance. In other words, the transition distribution is

t(xi+1|xi) := g(xi+1|xi, σ
2) .

xi

A Gaussian (gray contours) is

placed around the current point

xi to sample xi+1.
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INVARIANT DISTRIBUTION

Recall: Finite case
I The invariant distribution Pinv is a distribution on the finite state space X of the

MC (i.e. a vector of length |X|).
I "Invariant" means that, if xi is distributed according to Pinv, and we execute a

step xi+1 ∼ t( . |xi) of the chain, then xi+1 again has distribution Pinv.

I In terms of the transition matrix T:

T · Pinv = Pinv

Continuous case
I X is now uncountable (e.g. X = Rd).

I The transition matrix T is substituted by the conditional probability t.

I A distribution Pinv with density pinv is invariant if∫
X

t(y|x)pinv(x)dx = pinv(y)

This is simply the continuous analogue of the equation
∑

i Tij(Pinv)i = (Pinv)j.
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MARKOV CHAIN SAMPLING

We run the Markov chain n for
steps. Each step moves from the
current location xi to a new xi+1.

We "forget" the order and regard
the locations x1:n as a random

set of points.

If p (red contours) is both the
invariant and initial distribution,
each xi is distributed as xi ∼ p.

Problems we need to solve
1. We have to construct a MC with invariant distribution p.

2. We cannot actually start sampling with x1 ∼ p; if we knew how to sample from
p, all of this would be pointless.

3. Each point xi is marginally distributed as xi ∼ p, but the points are not i.i.d.
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CONSTRUCTING THE MARKOV CHAIN

Given is a continuous target distribution with density p.

Metropolis-Hastings (MH) kernel

1. We start by defining a conditional probability r(y|x) on X.
r has nothing to do with p. We could e.g. choose r(y|x) = g(y|x, σ2), as in the previous example.

2. We define a rejection kernel A as

A(xn+1|xn) := min
{

1,
r(xi|xi+1)p(xi+1)

r(xi+1|xi)p(xi)

}
The normalization of p cancels in the quotient, so knowing p̃ is again enough.

3. We define the transition probability of the chain as

t(xi+1|xi) := r(xi+1|xi)A(xi+1|xi)+δxi (xi+1)c(xi) where c(xi) :=

∫
r(y|xi)(1−A(y|xi))dy

Sampling from the MH chain
At each step i + 1, generate a proposal x∗ ∼ r( . |xi) and Ui ∼ Uniform[0, 1].

I If Ui ≤ A(x∗|xi), accept proposal: Set xi+1 := x∗.

I If Ui > A(x∗|xi), reject proposal: Set xi+1 := xi.

total probability that
a proposal is sampled

and then rejected
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PROBLEM 1: INITIAL DISTRIBUTION

Recall: Fundamental theorem on Markov chains
Suppose we sample x1 ∼ Pinit and xi+1 ∼ t( . |xi). This defines a distribution Pi of xi,
which can change from step to step. If the MC is nice (recall: recurrent and
aperiodic), then

Pi → Pinv for i→∞ .

Note: Making precise what aperiodic means in a continuous state space is a bit more technical than in the

finite case, but the theorem still holds. We will not worry about the details here.

Implication

I If we can show that Pinv ≡ p, we do not have to know how to sample from p.

I Instead, we can start with any Pinit, and will get arbitrarily close to p for
sufficiently large i.

Peter Orbanz 25 / 37



BURN-IN AND MIXING TIME

The number m of steps required until Pm ≈ Pinv ≡ p is called the mixing time of the
Markov chain. (In probability, there is a range of definitions for what exactly
Pm ≈ Pinv means.)

In MC samplers, the first m samples are also called the burn-in phase. The first m
samples of each run of the sampler are discarded:

x1, . . . , xm−1, xm, xm+1, . . .

Burn-in;
discard.

Samples from
(approximately) p;

keep.

Convergence diagnostics
In practice, we do not know how large j is. There are a number of methods for
assessing whether the sampler has mixed. Such heuristics are often referred to as
convergence diagnostics.
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PROBLEM 2: SEQUENTIAL DEPENDENCE

Even after burn-in, the samples from a MC are not i.i.d.

Strategy

I Estimate empirically how many steps L are needed for xi and xi+L to be
approximately independent. The number L is called the lag.

I After burn-in, keep only every Lth sample; discard samples in between.

Estimating the lag
The most commen method uses the autocorrelation
function:

Auto(xi, xj) :=
E[xi − µi] · E[xj − µj]

σiσj

We compute Auto(xi, xi+L) empirically from the sample for
different values of L, and find the smallest L for which the
autocorrelation is close to zero.

Autocorrelation Plots

We can get autocorrelation plots using the autocorr.plot()
function.

> autocorr.plot(mh.draws)
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CONVERGENCE DIAGNOSTICS

There are about half a dozen popular convergence crieteria; the one below is an example.

Gelman-Rubin criterion
I Start several chains at random. For each chain k,

sample xk
i has a marginal distribution Pk

i .

I The distributions of Pk
i will differ between chains in

early stages.

I Once the chains have converged, all Pi = Pinv are
identical.

I Criterion: Use a hypothesis test to compare Pk
i for

different k (e.g. compare P2
i against null hypothesis

P1
i ). Once the test does not reject anymore, assume

that the chains are past burn-in.

Reference: A. Gelman and D. B. Rubin: "Inference from Iterative Simulation Using Multiple Sequences", Statistical Science, Vol. 7 (1992) 457-511.
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STOCHASTIC HILL-CLIMBING

The Metropolis-Hastings rejection kernel was defined as:

A(xn+1|xn) = min
{

1,
r(xi|xi+1)p(xi+1)

r(xi+1|xi)p(xi)

}
.

Hence, we certainly accept if the second term is larger than 1, i.e. if

r(xi|xi+1)p(xi+1) > r(xi+1|xi)p(xi) .

That means:
I We always accept the proposal xi+1 if it increases the probability under p.
I If it decreases the probability, we still accept with a probability which depends

on the difference to the current probability.

Hill-climbing interpretation

I The MH sampler somewhat resembles a gradient ascent algorithm on p, which
tends to move in the direction of increasing probability p.

I However:
I The actual steps are chosen at random.
I The sampler can move "downhill" with a certain probability.
I When it reaches a local maximum, it does not get stuck there.
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SELECTING A PROPOSAL DISTRIBUTION

Everyone’s favorite example: Two Gaussians

red = target distribution p
gray = proposal distribution r

I Var[r] too large:
Will overstep p; many rejections.

I Var[r] too small:
Many steps needed to achieve good
coverage of domain.

If p is unimodal and can be roughly
approximated by a Gaussian, Var[r]
should be chosen as smallest covariance
component of p.

More generally
For complicated posteriors (recall: small regions of concentration, large
low-probability regions in between) choosing r is much more difficult. To choose r
with good performance, we already need to know something about the posterior.

There are many strategies, e.g. mixture proposals (with one component for large
steps and one for small steps).
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SUMMARY: MH SAMPLER

I MCMC samplers construct a MC with invariant distribution p.

I The MH kernel is one generic way to construct such a chain from p and a
proposal distribution r.

I Formally, r does not depend on p (but arbitrary choice of r usually means bad
performance).

I We have to discard an initial number m of samples as burn-in to obtain samples
(approximately) distributed according to p.

I After burn-in, we keep only every Lth sample (where L = lag) to make sure the
xi are (approximately) independent.

x1, . . . , xm−1, xm, xm+1, . . . , xm+L−1, xm+L, xm+L+1, . . . xm+2L−1, xm+2L, . . .

Burn-in;
discard.

Samples correlated
with xm; discard.

Samples correlated
with xm+L; discard.

Keep. Keep. Keep.
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EXAMPLE: BURN-IN MATTERS

This example is due to Erik Sudderth (Brown University).

MRFs as "segmentation" priors

!"#$%&'&!"#$%(&)*+,&

-..&/0"1$023%4&

)-+&5)-+&6127&
+&%"$1"40&%"268931&"76"4&
:&;&<&40$0"4&
=3004&>30"%02$?4@&

).(...&/0"1$023%4&

I MRFs where introduced as tools for image smoothing and segmentation by D.
and S. Geman in 1984.

I They sampled from a Potts model with a Gibbs sampler, discarding 200
iterations as burn-in.

I Such a sample (after 200 steps) is shown above, for a Potts model in which each
variable can take one out of 5 possible values.

I These patterns led computer vision researchers to conclude that MRFs are
"natural" priors for image segmentation, since samples from the MRF resemble
a segmented image.
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EXAMPLE: BURN-IN MATTERS

E. Sudderth ran a Gibbs sampler on the same model and sampled after 200 iterations (as the Geman brothers did),
and again after 10000 iterations:
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200 iterations
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=3004&>30"%02$?4@&

).(...&/0"1$023%4&

10000 iterations

Chain 1 Chain 5

I The "segmentation" patterns are not sampled from the MRF distribution
p ≡ Pinv, but rather from P200 6= Pinv.

I The patterns occur not because MRFs are "natural" priors for segmentations,
but because the sampler’s Markov chain has not mixed.

I MRFs are smoothness priors, not segmentation priors.
Peter Orbanz 33 / 37



GIBBS SAMPLING

By far the most widely used MCMC algorithm is the Gibbs sampler.

Full conditionals
Suppose p is a distribution on RD, so x = (x1, . . . , xD). The conditional probability of
the entry xi given all other entries,

p(xd|x1, . . . , xd−1, xd+1, . . . , xD)

is called the full conditional distribution of xD.

Gibbs sampling
The Gibbs sampler is a special case of the Metropolis-Hastings algorithm which uses
the full conditionals to generate proposals.

I Gibbs sampling is only applicable if we can compute the full conditionals for
each dimension i.

I If so, it provides us with a generic way to derive a proposal distribution.
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THE GIBBS SAMPLER

Proposal distribution
Suppose p is a distribution on RD, so each sample is of the form xi = (xi,1, . . . , xi,D).
We generate a proposal xi+1 coordinate by coordinate as follows:

xi+1,1 ∼ p( . |xi,2, . . . , xi,D)

...

xi+1,d ∼ p( . |xi+1,1, . . . , xi+1,j−1, xi,j+1, . . . , xi,d)

...

xi+1,D ∼ p( . |xi+1,1, . . . , xi+1,D−1)

Note: Each new xi+1,d is immediately used in the update of the next dimension d + 1.

A Metropolis-Hastings algorithms with proposals generated as above is called a
Gibbs sampler.

No rejections
It is straightforward to show that the Metropolis-Hastings acceptance probability for
each xi+1,d+1 is 1, so proposals in Gibbs sampling are always accepted.
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SLICE SAMPLING

x

p(x)

a b

Slice 1

Slice 2

Slice 3

p

Xi−1

Ti

x

p(x)

a bXi

(Xi, Yi)

Start with any x1 ∈ [a, b]. To generate Xi with i > 1:

1. Choose one of the slices which overlap Xi−1 uniformly at random:

Ti ∼ Uniform[0, p(Xi−1)] Select the slice k which contains (Xi−1, Ti) .

2. Regard slice k as a box and sample a point (Xi, Yi) uniformly from this box.

3. Discard the vertical coordinate Yi and keep Xi as the ith sample.
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SLICE SAMPLING

Smooth density: Let slice thickness→ 0.

x

p(x)

a bXi−1Xi

(Xi, Yi)

To generate xi:

1. Choose one of the slices which overlap Xi−1 uniformly at random:

Yi ∼ Uniform[0, p(Xi−1)]

2. Sample Xi uniformly from gray line = p−1([Yi,+∞))
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