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Homework 3

Due: 5 April 2018

Homework submission: We will collect your homework at the beginning of class on the due date. If you
cannot attend class that day, you can leave your solution in Phyllis Wan’s postbox in the Department of Statistics,
10th floor SSW, at any time before then.

We do not accept homework submitted late. There will be no exceptions.

Problem 1 (A primitive ensemble)

This problem considers a very simple ensemble classifier for a two-class problem, based on the idea of “randomly
throwing out hyperplanes” discussed in class.
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The basic idea is to define a “weak classifier” as follows:

• Choose two training data points x− and x+, one in each class.

• Place an affine plane “in the middle” between the two, i.e. purpendicular to the connecting line. The
connecting line is drawn in the figure as a dotted line, the affine plane as a solid line. In formulas, the plane
is given by a normal vector w and an offset cw computed as

w :=
x+ − x−

‖x+ − x−‖
and cw :=

〈
w,x− +

1

2
(x+ − x−)

〉
• Try out each of the two possible orientations of the plain; select the one with the smaller training error.

That is, the weak classifier is defined as

f( . ) = sgn(〈 . ,v〉 − c)

where

either v := w or v := −w and c :=
〈
v,x− +

1

2
(x+ − x−)

〉
,

depending on which choice achieves smaller error.

We combine many of these weak classifiers into a single ensemble classifier.

More precisely:



• Split the available data into to equally sized parts (training and test).

• Select m pairs of points (x−
1 ,x

+
1 ), . . . , (x

−
m,x+

m), where each x−
i is drawn uniformly at random from class

−1,and x+
1 uniformly from class +1. Sample with replacement, i.e. training data points can appear more

than once.

• For each such pair (x−
i ,x

+
i ), compute the classifer fi given by (vi, ci) as described above.

• The overall classifier gm is defined as the majority vote

gm(x) = sgn
( m∑
j=1

fi(x)
)
= sgn

( m∑
j=1

sgn(〈vi,x〉 − ci)
)
.

We will try to understand how well this classifier performs depending on how many weak classifiers we include in
the computation.

Questions:

1. Implement the classifier gm above in R: Write a training function [V, C] = train g(m, trainingData) that
returns a (m× d)-matrix V and a length m-vector C (d is the length of x), where

V =


v1

v2

· · ·
vm

 and C =


c1
c2
· · ·
cm

 .

2. Write a function classify(x, V, C) that applies the classifier to a new data point x. This function should
return ±1.

We perform experiments on two data sets: The USPS digit data we have already used before, and another data
set often used as an example, the Wisconsin Breast Cancer Data (available on the course page). For each data
set:

3. Randomly and equally separate the data into a training and a test data set. (Subsetting the data does not
perform well in the WBCD dataset. I tried using loops. The time is not that bad. )

4. For each m = 1, 3, . . . , 199:

(a) Train a classifier gm.

(b) Classify each point in the test set.

(c) Compute the error rate on the test set.

5. Record all errors and plot the error rate as a function of m.

Optional:

6. You can also further increase the range of m to see what happens.
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