
Peter Orbanz

porbanz@stat.columbia.edu

Phyllis Wan

pw2348@columbia.edu

Applied Data Mining (UN3106)
Spring 2018
http://stat.columbia.edu/∼porbanz/UN3106S18.html

Homework 5

Due: 26 April 2018

Homework submission: We will collect your homework at the beginning of class on the due date. If you
cannot attend class that day, you can leave your solution in Phyllis Wan’s postbox in the Department of Statistics,
10th floor SSW, at any time before then.

We do not accept homework submitted late. There will be no exceptions.

Problem 1

The purpose of this homework to understand how neural networks combine simple functions to represent more
complicated ones. To do so, we look at a few simple networks, and use R to plot the functions they represent
for different settings of the constituent functions (sigmoid functions and the “ramp function” or “rectified linear
unit” φ(x) = max{0, x}).

We first consider the following network, for four different settings of the weights in the upper layer as listed in
the table on the right:

w1 w2

1 1

x

φ1 φ2

σ

f(x)

Plot w1 w2

(i) 1 1
(ii) 1 1

2
(iii) 1 −1
(iv) 1 − 1

2

In each of the following two cases, plot the function f represented by the network on the interval [−10, 10], for
each setting (i)–(iv) of the weights:

1. φ1(x) = φ2(x) = σ(x).

2. φ1(x) = φ2(x) = max{0, x}.

Hints:

• Here σ denotes the sigmoid function σ(x) = 1
1+e−x .

• To plot a function f(x), you can use the following codes.

specify your function

f <- function(x){}

generate a sequence of x values

x.vec <- seq(-10,10,length.out=1001)

generate a vector of f(x) for each x in x.vec

fx.vec <- sapply(x.vec,f)

plot each pair (x,f(x)), connect them into a line

plot(x.vec,fx.vec,type=’l’)

• For each case, produce a big plot with 4 subplots using the following codes.

par(mfrow=c(2,2))

plot(...)

plot(...)

plot(...)

plot(...)

Problem 2

Now we increase the dimension of the input space to two (that is, we use two input units), and try to visualize
how the number of inner units affects the expressiveness of the network. We consider networks with one, two and
three inner units. That requires quite a lot of weights, so instead of hand-tuning these weights, we randomize
them and plot the resulting (random) functions.

wx1 wy1

1

x y

φ1

σ

f(x)

wx1

wy1wx2

wy2

1 1

x y

φ1 φ2

σ

f(x)

wx1

wx2

wx3 wy1

wy2

wy3

1 1 1

x y

φ1 φ2 φ3

σ

f(x)

• Generate the six weights wx1, wx2, wx3, wy1, wy2, wy3 randomly from a standard normal distribution.

• For these settings of the weights, plot the function represented by each of the three neural networks above
above on [−10, 10]2. Use the same list of weights for all networks, i.e. the first network uses only two of
the six random numbers, and the second one only four.

1. Plot the three networks as described above, with φ1 = φ2 = φ3 = σ. Repeat for 4 sets of random weights.

2. Plot the three networks again, this time for φ1(z) = φ2(z) = φ3(z) = max{0, z}. Repeat for 4 sets of
random weights.

Hints:

• To plot a function f(x, y) in 3D:

2

specify your function

f <- function(x,y){}

generate a sequence of x

x.vec <- seq(-10,10,length.out=51)

generate a sequence of y

y.vec <- seq(-10,10,length.out=51)

generate a matrix of f(x,y) with each comibination of (x,y) in x.vec and y.vec

fxy.mat <- matrix(NA,51,51)

for (i in 1:51){

for (j in 1:51){

fxy.mat[i,j] <- f(x.vec[i],y.vec[j])

}

}

plot each triple (x,y,f(x,y)) in 3D, connect them into a surface

persp(x.vec,y.vec,fxy.mat, theta = 45, phi = 15, col = "lightblue")

• For each set of weights, put your 3 plots on the same line:

par(mfrow=c(1,3))

plot(...)

plot(...)

plot(...)

3

