
FINDING THE DERIVATIVE

x x + c1 x x + c2

• We fix a constant c > 0 and draw a straight line through the points (x, f (x)) and
(x + c, f (x + c)). The slope of that line is

f (x + c)− f (x)

c
• Now make c smaller and smaller: Choose c1 > c2 > . . ., for example cn = 1

n .
• We then ask what happens as c gets infinitely small, i.e. we try to find the limit

lim
n→∞

f (x + cn)− f (x)

cn

• If f is differentiable, this limit exists, and its slope is exactly that of the best possible linear
approximation. That is, the limit is f ′(x).

• If the limit does not exist, f is not differentiable at x.
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SUMMARY

The derivative of a function f at a point x is the the slope of the locally best linear
approximation to f around x.

If you are not familiar with calculus, keep in mind:
• The derivative f ′(x) exists if f is “sufficiently smooth” at x.
• Sign: The derivative is positive if f increases at x, negative if it decreases, and 0 if f is a

maximum or minimum.
• Magnitude: The absolute value | f ′(x)| is the larger the more rapidly f changes around x.
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BACK TO OPTIMIZATION

Recall that we had asked: How can would we find a minimum if we had access to the entire
function in a small neighborhood around points x1, x2, . . . that we are allowed to choose?

x1 x2

• If we can compute the derivatives f ′(x1) and f ′(x2), we have (the slope of) linear
approximations to f at both points that are locally exact.

• That is: We can substitute the derivatives for the two short blue lines in the figure.
• We can tell from the sign of the derivative in which direction the function decreases.
• We also know that f ′(x) = 0 if x is a minimum.
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MINIMIZATION STRATEGY

Basic idea
Start with some point x0. Compute the derivative f ′(x0) at x. Then:
• “Move downhill”: Choose some c > 0, and set x1 = x0 + c if f ′(x0) < 0 and

x1 = x0 − c if f ′(x0) > 0.
• Compute f ′(x1). If it is 0 (possibly a minimum), stop.
• Otherwise, move downhill from x1, etc.

Observations
• Since the sign of f ′ is determined by whether f increases or decreases, we can summarize

the case distinction above by setting

x1 = x0 − sign( f ′(x0)) · c
• If f changes rapidly, it may be a good strategy to make a large step (choose a large c), since

we presumably are still far from the minimum. If f changes slowly, c should be small.
• One way of doing so is to choose c as the magnitude of f ′, since |f ′| has exactly this

property. In that case:

x1 = x0 − sign( f ′(x0)) · | f ′(x0)| = x0 − f ′(x0)

The algorithm obtained by replying this step repeatedly is called gradient descent.
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GRADIENT DESCENT

Gradient descent searches for a minimum of a differentiable function f .

Algorithm
Start with some point x0 ∈ R and fix a precision ε > 0.
Repeat for n = 1, 2, . . .:

1. Check whether | f ′(xn)| < ε. If so, report the solution x∗ := xn and terminate.

2. Otherwise, set
xn+1 := xn − f ′(xn)

x

f (x)

f (x)

f ′(x)

x0x1x2xopt
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DERIVATIVES IN MULTIPLE DIMENSIONS

f (x)

• We now ask how to define a derivative in multiple dimensions.
• Consider a function f : Rd → R. What is the derivative of f at a point x?
• For simplicity, we assume d = 2 (so that we can plot the function).
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DERIVATIVES IN MULTIPLE DIMENSIONS

x1

x2

x

f (x)

• We fix a point x = (x1, x2) in R2, marked red above.
• We will try to turn this into a 1-dimensional problem, so that we can use the definition of a

derivative we already know.
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REDUCING TO ONE DIMENSION

x1

x2

x

x + v

• To make the problem 1-dimensional, fix some vector v ∈ R2, and draw a line through x in
direction of v.

• Then intersect f with a plane given by this line: In the coordinate system of f , choose the
plane that contains the line and is orthogonal to R2.

• The plane contains the point x.
• Note we can do that even if d > 2. We still obtain a plane.
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REDUCING TO ONE DIMENSION

• The intersection of f with the plane is a 1-dimensional function fH , and x corresponds to a
point xH in its domain.

• We can now compute the derivative f ′H of fH at xH . The idea is to use this as the derivative
of f at x.
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BACK TO MULTIPLE DIMENSIONS

x1

x2

x

• In the domain of f , we draw a vector from x in direction of H such that:

1. The vector is oriented to point in the direction in which fH increases.
2. Its length is the value of the derivative f ′H(x).

• That completely determines the vector (shown in red above).
• There is one problem still to be solved: fH depends on H, that is, on the direction of the

vector v. Which direction should we use?
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THE GRADIENT

x1

x2

x

x1
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x

• We now rotate the plane H around x. For each position of the plane, we get a new
derivative f ′H(x), and a new red vector.

• We choose the plane for which f ′H is largest:

H∗ := arg max
all rotations of H

f ′H(x)

Provided that fH is differentiable for all H, one can show that this is always unique (or
f ′H(x) is zero for all H).

• We then define the vector

∇f (x) := vector given by H∗ as above

The vector∇f (x) is called the gradient of f at x.
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PROPERTIES OF THE GRADIENT

The gradient∇f (x) of f : Rd → R at a point x ∈ Rd is a vector in the domain Rd in the
direction in which f most rapidly increases at x.

• The length of the gradient measures steepness: The more rapidly f increases at x, the
larger ‖∇f (x)‖.

• The gradient has length 0 if x is a maximum or minimum of f . A constant function has
gradient of length 0 at every point x.

• The gradient operation is linear:

∇(αf (x) + βg(x)) = α∇f (x) + β∇g(x)
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GRADIENTS AND CONTOUR LINES

• Recall that a contour line (or contour set) of f is a set of points along which f remains
constant,

C[ f , c] := {x ∈ Rd | f (x) = c} for some c ∈ R.
• One can show that if C[f , c] contains x, the gradient at x is orthogonal to the contour:

∇f (x) ⊥ C[f , c] if x ∈ C[f , c] .

• Intuition: The gradient points in the direction of maximal local change, whereas C[f , c] is
a direction in which there is no change. Locally, these two are orthogonal.

Gradients are orthogonal to contour lines.
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GRADIENTS AND CONTOUR LINES

• For this parabolic function, all contour lines are concentric circles around the minimum.
• The picture above shows the gradients plotted at various points in the plane.
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BASIC GRADIENT DESCENT

f : Rd → R

Algorithm
Start with some point x0 ∈ R and fix a precision ε > 0.
Repeat for n = 1, 2, . . .:

1. Check whether ‖∇f (xn)‖ < ε. If so, report the solution x∗ := xn and terminate.

2. Otherwise, set
xn+1 := xn −∇f (xn)
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GRADIENT DESCENT

f : Rd → R

Algorithm
Start with some point x0 ∈ R and fix a precision ε > 0.
Repeat for n = 1, 2, . . .:

1. Check whether ‖∇f (xn)‖ < ε. If so, report the solution x∗ := xn and terminate.

2. Otherwise, set
xn+1 := xn − α(n)∇f (xn)

Here, α(n) > 0 is a coefficient that may depend on n. It is called the step size in optimization,
or the learning rate in machine learning.
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