FINDING THE DERIVATIVE
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e We fix a constant ¢ > 0 and draw a straight line through the points (x, f(x)) and
(x + ¢,f(x 4 ¢)). The slope of that line is

fx+c) —f)

C

e Now make ¢ smaller and smaller: Choose c; > ¢; > ..., for example ¢, = %

e We then ask what happens as ¢ gets infinitely small, i.e. we try to find the limit

lim f(x + Cn) _f(x)

n— oo Cn

e If f is differentiable, this limit exists, and its slope is exactly that of the best possible linear
approximation. That is, the limit is f” (x).

e If the limit does not exist, f is not differentiable at x.
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The derivative of a function f at a point x is the the slope of the locally best linear
approximation to f around x.

If you are not familiar with calculus, keep in mind:

e The derivative f(x) exists if f is “sufficiently smooth” at x.

o Sign: The derivative is positive if f increases at x, negative if it decreases, and O if f is a
maximum or minimum.

e Magnitude: The absolute value | f’(x)| is the larger the more rapidly f changes around x.
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BACK TO OPTIMIZATION

Recall that we had asked: How can would we find a minimum if we had access to the entire

function in a small neighborhood around points x, x7, . . . that we are allowed to choose?
A
X1 X2 g

If we can compute the derivatives f” (x;) and f’ (x; ), we have (the slope of) linear
approximations to f at both points that are locally exact.

That is: We can substitute the derivatives for the two short blue lines in the figure.

We can tell from the sign of the derivative in which direction the function decreases.

We also know that f/(x) = 0 if x is a minimum.
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MINIMIZATION STRATEGY

Basic idea

Start with some point xy. Compute the derivative f’ (xg) at x. Then:

e “Move downhill”: Choose some ¢ > 0, and set x; = xo + ¢ if f’(x9) < 0 and
x1 =x9 — ciff'(xg) > 0.

e Compute f/(x7). If it is O (possibly a minimum), stop.

e Otherwise, move downhill from x1, etc.

Observations

e Since the sign of f’ is determined by whether f increases or decreases, we can summarize
the case distinction above by setting

x1 = xo — sign(f’(x0)) - ¢

e If f changes rapidly, it may be a good strategy to make a large step (choose a large c), since
we presumably are still far from the minimum. If f changes slowly, ¢ should be small.

e One way of doing so is to choose c as the magnitude of f”, since |f/| has exactly this
property. In that case:

x1 = xo — sign(f’(x0)) - | f"(x0)| = x0 — f' (x0)

The algorithm obtained by replying this step repeatedly is called gradient descent.
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Gradient descent searches for a minimum of a differentiable function f.

Algorithm

Start with some point xg € R and fix a precision € > 0.
Repeat forn = 1,2, .. .
1. Check whether | f'(x,)| < e. If so, report the solution x* := x, and terminate.

2. Otherwise, set
Xn41 ‘= Xn _f/ (xn)
f(x)
A
f(x)

f(x)

X2 X1 X0
Xopt
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DERIVATIVES IN MULTIPLE DIMENSIONS

f(x)

e We now ask how to define a derivative in multiple dimensions.
e Consider a function f : RY — R. What is the derivative of f at a point x?

e For simplicity, we assume d = 2 (so that we can plot the function).
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DERIVATIVES IN MULTIPLE DIMENSIONS

X2 f(x)

> X1

e We fix a point x = (x1, x5) in R?, marked red above.

e We will try to turn this into a 1-dimensional problem, so that we can use the definition of a
derivative we already know.
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REDUCING TO ONE DIMENSION

X2

/X
X+v
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e To make the problem 1-dimensional, fix some vector v € R,, and draw a line through x in
direction of v.

e Then intersect f with a plane given by this line: In the coordinate system of f, choose the
plane that contains the line and is orthogonal to R?.

e The plane contains the point x.

e Note we can do that even if d > 2. We still obtain a plane.
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REDUCING TO ONE DIMENSION

X2

/'x
X + v

X1
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e To make the problem 1-dimensional, fix some vector v € R,, and draw a line through x in
direction of v.

e Then intersect f with a plane given by this line: In the coordinate system of f, choose the
plane that contains the line and is orthogonal to R?.

e The plane contains the point x.

e Note we can do that even if d > 2. We still obtain a plane.
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REDUCING TO ONE DIMENSION

e The intersection of f with the plane is a 1-dimensional function fy, and x corresponds to a
point xg in its domain.

e We can now compute the derivative f}; of fi at xy. The idea is to use this as the derivative
of f at x.
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BACK TO MULTIPLE DIMENSIONS

X2

> X1

e In the domain of f, we draw a vector from x in direction of H such that:

1. The vector is oriented to point in the direction in which fy increases.
2. Its length is the value of the derivative f}, (x).

e That completely determines the vector (shown in red above).

e There is one problem still to be solved: fyz depends on H, that is, on the direction of the
vector v. Which direction should we use?
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e We now rotate the plane H around x. For each position of the plane, we get a new
derivative f};(x), and a new red vector.

e We choose the plane for which f}, is largest:

H* := ar max ! (x
& all rotations of H fH( )

Provided that fy 1s differentiable for all H, one can show that this is always unique (or
f#;(x) is zero for all H).

e We then define the vector
Vf(x) := vector given by H* as above
The vector Vf(x) is called the gradient of f at x.
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PROPERTIES OF THE GRADIENT

The gradient Vf(x) of f : R? — R at a point x € R? is a vector in the domain R? in the
direction in which f most rapidly increases at x.

e The length of the gradient measures steepness: The more rapidly f increases at x, the
larger ||Vf(x)]].

e The gradient has length O if x is a maximum or minimum of f. A constant function has
gradient of length O at every point x.

e The gradient operation is linear:

V(af(x) + Bg(x)) = aVf(x) + BVg(x)
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GRADIENTS AND CONTOUR LINES

e Recall that a contour line (or contour set) of f is a set of points along which f remains
constant,
Clf,c] .= {x e R |f(x) = ¢} for some ¢ € R.

e One can show that if C[f, c| contains x, the gradient at x is orthogonal to the contour:
Vf(x) L CIf, ] if x € C[f, ] .

e Intuition: The gradient points in the direction of maximal local change, whereas C|f, c| is
a direction in which there is no change. Locally, these two are orthogonal.

Gradients are orthogonal to contour lines.
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e For this parabolic function, all contour lines are concentric circles around the minimum.

e The picture above shows the gradients plotted at various points in the plane.
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f:RY SR

Algorithm

Start with some point xo € R and fix a precision € > 0.
Repeat forn = 1,2, .. .:

1. Check whether ||Vf(x,)|| < €. If so, report the solution x* := x, and terminate.

2. Otherwise, set

Xnt1 :=Xn — Vf(xn)
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f:RY SR

Algorithm

Start with some point xo € R and fix a precision € > 0.
Repeat forn =1,2,.. .
1. Check whether ||Vf(x,)|| < €. If so, report the solution x* := x, and terminate.
2. Otherwise, set
Xpg1 = xn — a(n)Vf(x,)

Here, a(n) > 0 is a coefficient that may depend on n. It is called the step size in optimization,
or the learning rate in machine learning.
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