
GRADIENT DESCENT AND LOCAL MINIMA

-3 -2 -1 1 2

-5

5

-2 2 4

-10

-5

5

10

15

20

25

• Suppose for both functions above, gradient descent is started at the point marked red.
• It will “walk downhill” as far as possible, then terminate.
• For the function on the left, the minimum it finds is global. For the function on the right, it

is only a local minimum.
• Since the derivative at both minima is 0, gradient descent cannot detect whether they are

global or local.

For smooth functions, gradient descent finds local minima. If the function is complicated,
there may be no way to tell whether the solution is also a global minimum.

Peter Orbanz · Applied Data Mining 85

OUTLOOK

Summary so far
• The derivative/gradient provides local information about how a function changes around a

point x.
• Optimization algorithms: If we know the gradient at our current location x, we can use this

information to make a step in “downhill” direction, and move closer to a (local) minimum.

What we do not know yet
That assumes that we can compute the gradient. There are two possibilities:

• For some functions, we are able to derive∇f (x) as a function of x. Gradient descent can
evaluate the gradient by evaluating that function.

• Otherwise, we have to estimate∇f (x) by evaluating the function f at points close to x.
For now, we will assume that we can compute the gradient as a function.

Peter Orbanz · Applied Data Mining 86

RECAP: OPTIMIZATION AND LEARNING

Given
• Training data (x̃1, ỹ1), . . . , (x̃n, ỹn).

The data analyst chooses
• A classH of possible solutions (e.g. H = all linear classifier).
• A loss function L (e.g. 0-1 loss) that measures how well the solution represents the data.

Learning from training data
• Define the empirical risk of a solution f ∈ H on the training data,

R̂n(f) =
1
n

n∑

i=1

L(f (x̃i), ỹi)

• Find an optimal solution f ∗ by minimizing the empirical risk using gradient descent (or
another optimization algorithm).

Peter Orbanz · Applied Data Mining 87

THE PERCEPTRON ALGORITHM

TASK: TRAIN A LINEAR CLASSIFIER

We want to determine a linear classifier in Rd using 0-1 loss.

Recall
• A solution is determined by a normal vH ∈ Rd and an offset c > 0.
• For training data (x̃1, ỹ1), . . . , (x̃n, ỹn), the empirical risk is

R̂n(vH, c) =
1
n

n∑

i=1

I{sgn(〈vH, xi)〉 − c) 6= yi}

• The empirical risk minimization approach would choose a classifer given by (v∗H , c∗) for
which

(v∗H , c
∗) = arg min

vH,c
R̂n(vH, c)

Idea
Can we use gradient descent to find the minimizer of R̂n?

Peter Orbanz · Applied Data Mining 89

PROBLEM

Example

• In the example on the right, the two dashed classifiers both
get a single (blue) training point wrong.

• Both of them have different values of (vH, c), but for both of
these values, the empirical risk is identical.

• Suppose we shift one of the to dashed lines to obtain the
dotted line. On the way, the line moves over a single red
point. The moment it passes that point, the empirical risk
jumps from 1

n to 2
n .

Conclusion
Consider the empirical risk function R̂n(vH, c):

• If (vH, c) defines an affine plain that contains one of the training points, R̂n is
discontinuous at (vH, c) (it “jumps”). That means it is not differentiable.

• At all other points (vH, c), the function is constant. It is differentiable, but the length of
the gradient is 0.

Peter Orbanz · Applied Data Mining 90

The empirical risk of a linear classifer under 0-1 loss is piece-wise constant.

16 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

-2

0

2

4

-2

0

2

4

0

100

-2

0

2

4

0

100

-2

0

2

4

-2

0

2

4

0

5

-2

0

2

4

0

5

-2

0

2

4

-2

0

2

4

0
1
2
3

-2

0

2

4

0
1
2
3

-2

0

2

4

-2

0

2

4

0

5

10

-2

0

2

4

0

5

10

y1
y1

y1y1

y2
y2

y2 y2

y3 y3

y3 y3

solution
region

solution
region

solution
region

solution
region

a2a2

a2a2

a1 a1

a1 a1

Jp(a)

Jq(a) Jr(a)

J(a)

Figure 5.11: Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant
and hence unacceptable for gradient descent procedures. At the upper right is the
Perceptron criterion (Eq. 16), which is piecewise linear and acceptable for gradient
descent. The lower left is squared error (Eq. 32), which has nice analytic properties
and is useful even when the patterns are not linearly separable. The lower right is
the square error with margin (Eq. 33). A designer may adjust the margin b in order
to force the solution vector to lie toward the middle of the b = 0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”batch

training to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and η(k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.

Peter Orbanz · Applied Data Mining 91

CONSEQUENCES FOR OPTIMIZATION

Formal problem
Even if we can avoid points where R̂n jumps, the gradient is always 0. Gradient descent never
moves anywhere.

Intuition
• Remember that we can only evaluate local information about R̂n around a given point

(vH, c).
• In every direction around (vH, c), the function looks identical.
• The algorithm cannot tell what a good direction to move in would be.
• Note that is also the case for every other optimization algorithm, since optimization

algorithms depend on local information.

Solution idea
Find an approximation to R̂n that is not piece-wise constant, and decreases in direction of an
optimal solution. We try to keep the approximation as simple as possible.

Peter Orbanz · Applied Data Mining 92

PERCEPTRON COST FUNCTION

We replace the empirical risk R̂n(vH, c) = 1
n

∑n
i=1 I{sgn(〈vH, xi)〉 − c) 6= yi} by the

piece-wise linear function

Ŝn(vH, c) =
1
n

n∑

i=1

I{sgn(〈vH, xi)〉 − c) 6= yi} · | 〈vH, x〉 − c|

“switches off” correctly classified points

measures distance to plane

Ŝn is called the perceptron cost function.
16 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

-2

0

2

4

-2

0

2

4

0

100

-2

0

2

4

0

100

-2

0

2

4

-2

0

2

4

0

5

-2

0

2

4

0

5

-2

0

2

4

-2

0

2

4

0
1
2
3

-2

0

2

4

0
1
2
3

-2

0

2

4

-2

0

2

4

0

5

10

-2

0

2

4

0

5

10

y1
y1

y1y1

y2
y2

y2 y2

y3 y3

y3 y3

solution
region

solution
region

solution
region

solution
region

a2a2

a2a2

a1 a1

a1 a1

Jp(a)

Jq(a) Jr(a)

J(a)

Figure 5.11: Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant
and hence unacceptable for gradient descent procedures. At the upper right is the
Perceptron criterion (Eq. 16), which is piecewise linear and acceptable for gradient
descent. The lower left is squared error (Eq. 32), which has nice analytic properties
and is useful even when the patterns are not linearly separable. The lower right is
the square error with margin (Eq. 33). A designer may adjust the margin b in order
to force the solution vector to lie toward the middle of the b = 0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”batch

training to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and η(k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.

16 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

-2

0

2

4

-2

0

2

4

0

100

-2

0

2

4

0

100

-2

0

2

4

-2

0

2

4

0

5

-2

0

2

4

0

5

-2

0

2

4

-2

0

2

4

0
1
2
3

-2

0

2

4

0
1
2
3

-2

0

2

4

-2

0

2

4

0

5

10

-2

0

2

4

0

5

10

y1
y1

y1y1

y2
y2

y2 y2

y3 y3

y3 y3

solution
region

solution
region

solution
region

solution
region

a2a2

a2a2

a1 a1

a1 a1

Jp(a)

Jq(a) Jr(a)

J(a)

Figure 5.11: Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant
and hence unacceptable for gradient descent procedures. At the upper right is the
Perceptron criterion (Eq. 16), which is piecewise linear and acceptable for gradient
descent. The lower left is squared error (Eq. 32), which has nice analytic properties
and is useful even when the patterns are not linearly separable. The lower right is
the square error with margin (Eq. 33). A designer may adjust the margin b in order
to force the solution vector to lie toward the middle of the b = 0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”batch

training to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and η(k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.

Peter Orbanz · Applied Data Mining 93

THE PERCEPTRON

Training
• Given: Training data (x̃1, ỹ1), . . . , (x̃n, ỹn).
• Training: Fix a precision ε and a learning rate α, and run gradient descent on the

perceptron cost function to find an affine plane (v∗H , c∗)
• Define a classifier as f (x) := sgn(〈vH, x〉 − c).

(If the gradient algorithm returns c < 0, flip signs: Use (−v∗H ,−c∗).)

Prediction
• For a given data point x ∈ Rd , predict the class label y := f (x).

This classifier is called the perceptron. It was first proposed by Rosenblatt in 1962.

Peter Orbanz · Applied Data Mining 94

THE PERCEPTRON GRADIENT

One can show that the gradient of the cost function is

∇Ŝn(vH, c) =−
n∑

i=1

I{f (x̃i) 6= ỹi} · ỹi

(
x̃i
1

)
.

This is an example of gradient descent where we do not have to approximate the derivative
numerically. Gradient descent steps then look like this:

(
v(k+1)

H

c(k+1)

)
:=

(
v(k)

H

c(k)

)
+

∑

i|x̃i misclassified

ỹi

(
x̃i
1

)

Peter Orbanz · Applied Data Mining 95

ILLUSTRATION

(
v(k+1)

H

c(k+1)

)
:=

(
v(k)

H

c(k)

)
+

∑

i|x̃i misclassified

ỹi

(
x̃i
1

)

Effect for a single training point
Step k: x̃ (in class -1) classified incorrectly

x̃Hk

vk
H

vk
H − x̃

Step k + 1

x̃

vk+1
H = vk

H − x̃

Simplifying assumption: H contains origin, so c = 0.

Peter Orbanz · Applied Data Mining 96

Peter Orbanz · Applied Data Mining 97

THE PERCEPTION. I

0

0

Retina of
Sensory Units

Associator
Units

Response
Units

FIG. 2. Organization of Perceptron.

structure; "short-term memory" might be stored by
means of a transient state of activity. In any case
many of the conjectures are functionally equivalent to
the rule that when the two ends of a connection are
sequentially active the connection is strengthened,
i.e., the pulse it carries is increased. This description
of the reinforcement rule is intentionally vague; it can be
realized in various ways, some of which are given in
precise terms below.
Parameters which must be specified to delne the

perceptron of Fig. 2 are: The number of sensory
elements, the number (or probability distribution) of
excitatory and inhibitory connections at each level
and the geometrical constraints on them, the number
of associators and the number of responses; the
thresholds, refractory periods, summation intervals,
and transmission times. For studying the behavior of
such a perceptron we would also have to specify the
set of stimulus patterns, the order and times of their
presentation, and the observations to be made on the
responses. The reinforcement rule must, of course,
also be defined.
We shall not pursue further here the arguments

showing that the above model is consistent with the
biological constraints. "4

37 H. D. Block, B. W. Knight, Jr., and F. Rosenblat, t. Revs.
Modern Phys. 34, 135 (1962).

8. Techniques of Investigation

For studying the behavior of perceptrons, three
general techniques are available.
(a) Mathematical anatysis When i.t is successful, this

approach overs many advantages, such as the pre-
dictability of the performance of classes of perceptrons,
the eGects of variations in the parameters, and so
forth. For a model of the complexity of the general
perceptron of Fig. 2 the analysis is quite complicated
(see Sec. 6 of the paper which follows"). For certain
simplified cases as in the simple perceptron of Fig. 4
which is discussed later, the analysis is fairly complete.
In Sec. 9 we prove some theorems and illustrate the
analytical techniques for such systems. In the paper
which follows, a more complicated system is analyzed.
(b) Simnlatioe on a digital comPuler. The principal

advantage of this method is that it can always be done,
subject, of course, to time„storage, and cost limitations.
A considerable amount of data has been obtained in

l

3

I

g (

FIG. 3. Mark I Percep tron
at Cornell Aeronautical labor-
tory. (a) Overall view with
sensory input at left, associa-
tion units in center, and
control panel and response
units at far right. The sensory
to associator plugboard, shown
in (b) is located behind the
closed panel to the right of
the operator. The image of
the letter "C" on the front
panel is a repeater display, for
monitoring sensory inputs.

this way. ' "Some of these will be described in Sec. 9
below.
(c) Construction, of an actual machine This h. as an

enormous advantage in speed over the digital computer,
since essentially all the action goes on in parallel
simultaneously and the response appears almost
immediately, while in the digital simulation all compu-
tations are done in sequence. While an actual machine
enjoys certain types of Qexibility, such as the ease
with which the experimenter can vary the stimulus
patterns, it is a serious task to change the wiring
diagram (in the digital computer this can be generated
quickly by a suitable program) and it is impossible to
alter certain basic features of the network. There is
also the complicating factor of the inexact performance
of hardware. A machine of the complexity of Fig. 2
has not yet been built, but one having the organization
of Fig. 4 (but with eight binary-response units) has
been built, and is known as the Mark I, (Fig. 3)." "
The retina is a 20&&20 grid of photocells mounted in
the picture plane of a camera to which the stimulus
pictures are shown. There are 512 associator units and
eight binary-response units. Each sensory unit can
have up to forty connections to the associator units.

38 F. Rosenblatt, Proc. I.R.E. 48, 301 (1960)."J.C. Hay, F. C. Martin, and C. W. Wightman, Record of
I.R.E. 1960 National Convention, Part 2, New York, (1960).
'0 C. W. Wightman, Cornell Aeronautical Laboratory, Project

PARA Technical Memorandum No. 4 (February, 1959).' J.C. Hay and A. E.Murray, Cornell Aeronautical Laboratory
Report VG-1196-6-5 (February, 1960).

Peter Orbanz · Applied Data Mining 98

Peter Orbanz · Applied Data Mining 99

DOES THE PERCEPTRON WORK?

Theorem: Perceptron convergence
If the training data is linearly separable, the Perceptron learning algorithm (with fixed step size)
terminates after a finite number of steps with a valid solution (vH, c) (i.e. a solution which
classifies all training data points correctly).

Issues
The perceptron selects some hyperplane between the two classes. The choice depends on
initialization, step size etc.

The solution on the right will probably predict better than the one on the left, but the perceptron may return either.

Peter Orbanz · Applied Data Mining 100

