GRADIENT DESCENT AND LOCAL MINIMA
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e Suppose for both functions above, gradient descent is started at the point marked red.
e [t will “walk downhill” as far as possible, then terminate.

e For the function on the left, the minimum it finds is global. For the function on the right, it
is only a local minimum.

e Since the derivative at both minima is 0, gradient descent cannot detect whether they are
global or local.

For smooth functions, gradient descent finds /ocal minima. If the function is complicated,
there may be no way to tell whether the solution is also a global minimum.
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OUTLOOK

Summary so far

e The derivative/gradient provides local information about how a function changes around a
point x.

e Optimization algorithms: If we know the gradient at our current location x, we can use this
information to make a step in “downhill” direction, and move closer to a (local) minimum.

What we do not know yet
That assumes that we can compute the gradient. There are two possibilities:

 For some functions, we are able to derive Vf(x) as a function of x. Gradient descent can
evaluate the gradient by evaluating that function.

e Otherwise, we have to estimate Vf(x) by evaluating the function f at points close to x.

For now, we will assume that we can compute the gradient as a function.
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RECAP: OPTIMIZATION AND LEARNING

Given
e Training data (X1,y1), ..., (Xn, Vn).

The data analyst chooses

e A class ‘H of possible solutions (e.g. H = all linear classifier).

e A loss function L (e.g. 0-1 loss) that measures how well the solution represents the data.

Learning from training data

e Define the empirical risk of a solution f € H on the training data,
Ru(f) = Z L(f(X:),

e Find an optimal solution f* by minimizing the empirical risk using gradient descent (or
another optimization algorithm).
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THE PERCEPTRON ALGORITHM



TASK: TRAIN A LINEAR CLASSIFIER

We want to determine a linear classifier in R? using 0-1 loss.

Recall

e A solution is determined by a normal vy € R4 and an offset ¢ > 0.

e For training data (X1,y1),- .., (Xn, Yn), the empirical risk is
1 n
Ra(visc) = — S Isen((v, %)) = ©) # )

i=1

e The empirical risk minimization approach would choose a classifer given by (v, c¢*) for
which

(v, c™) = arg rvnin Ry (v, ¢)
H,C

Idea

Can we use gradient descent to find the minimizer of R,,?
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PROBLEM

Example

e In the example on the right, the two dashed classifiers both
get a single (blue) training point wrong. A

e Both of them have different values of (vy, c), but for both of . L oo
these values, the empirical risk is identical. . © N .

» Suppose we shift one of the to dashed lines to obtain the N
dotted line. On the way, the line moves over a single red ° o
point. The moment it passes that point, the empirical risk o o '

. 1 2 :
jumps from _ to . .: N

Conclusion

Consider the empirical risk function R, (v, ¢):

o If (vu, c) defines an affine plain that contains one of the training points, Ry is
discontinuous at (vy, ¢) (it “jumps”). That means it is not differentiable.

At all other points (vy, ¢), the function is constant. It is differentiable, but the length of
the gradient is O.
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Peter Orbanz -

The empirical risk of a linear classifer under 0-1 loss is piece-wise constant.

J(a)

or W

solution
region
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CONSEQUENCES FOR OPTIMIZATION

Formal problem

Even if we can avoid points where R,, jumps, the gradient is always 0. Gradient descent never
moves anywhere.

Intuition

e Remember that we can only evaluate local information about R, around a given point
(VH, C ) .
e In every direction around (vy, c), the function looks identical.

e The algorithm cannot tell what a good direction to move in would be.

e Note that is also the case for every other optimization algorithm, since optimization
algorithms depend on local information.

Solution idea
Find an approximation to R, that is not piece-wise constant, and decreases in direction of an
optimal solution. We try to keep the approximation as simple as possible.
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We replace the empirical risk Ry, (Vy, c) = % v I{sgn({vu, x;)) — c¢) # yi} by the
piece-wise linear function

measures distance to plane

A
r ~N

n

Sulvis ) = = > Efsen((ve, %)) — ©) £ i} - | (%) —

i=1
N - .

“switches off” correctly classified points

S, is called the perceptron cost function.

S
\\\\
S
RNy
U
S it
T
AN NN NN NN
AR
ANNNNNN

Peter Orbanz - Applied Data Mining 93



THE PERCEPTRON

Training

o Given: Training data (X;,y1), ..., (Xn, Yn)-

e Training: Fix a precision € and a learning rate «, and run gradient descent on the
perceptron cost function to find an affine plane (v;;, ¢*)

* Define a classifier as f(x) := sgn({vu,X) — ).

(If the gradient algorithm returns ¢ < 0, flip signs: Use (—vj;, —c*).)

Prediction
o For a given data point x € RY, predict the class label y := f(x).

This classifier is called the perceptron. It was first proposed by Rosenblatt in 1962.
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One can show that the gradient of the cost function is

VSn(Vi, €) = — zn:]l{f(ii) # yi} - Vi (fi’) :

i=1

This is an example of gradient descent where we do not have to approximate the derivative
numerically. Gradient descent steps then look like this:

(k+1) (k) 3.
A\ N ~ [ Xi
(C?k-i—l)) = (ﬁk)) - E Vi (1)

i|X; misclassified
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(k+1) (k) 3.
A N ~ [ X
e ) T ) T D W (1)

i|X; misclassified

Effect for a single training point

Step k: X (in class -1) classified incorrectly Stepk + 1
gk 32X X
Vi
.
S vitlh = vk — %

Simplifying assumption: H contains origin, so ¢ = 0.
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DOES THE PERCEPTRON WORK?

Theorem: Perceptron convergence

If the training data is linearly separable, the Perceptron learning algorithm (with fixed step size)
terminates after a finite number of steps with a valid solution (vy, ¢) (i.e. a solution which
classifies all training data points correctly).

Issues
The perceptron selects some hyperplane between the two classes. The choice depends on
initialization, step size etc.

The solution on the right will probably predict better than the one on the left, but the perceptron may return either.
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