
NEURAL NETWORKS



THE MOST IMPORTANT BIT

A neural network represents a function f : Rd1 → Rd2 .
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BUILDING BLOCKS

Units
The basic building block is a node or unit:

φ

• The unit has incoming and outgoing arrows. We think of
each arrow as “transmitting” a signal.

• The signal is always a scalar.
• A unit represents a function φ.

We read the diagram as: A scalar value (say x) is transmitted to the unit, the function φ is
applied, and the result φ(x) is transmitted from the unit along the outgoing arrow.

Weights

w

f (x)

x

φ

• If we want to “input” a scalar x, we represent it as a unit, too.
• We can think of this as the unit representing the constant

function g(x) = x.
• Additionally, each arrow is usually inscribed with a (scalar)

weight w.
• As the signal x passes along the edge, it is multiplied by the

edge weight w.

The diagram above represents the function f (x) := φ(wx).
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READING NEURAL NETWORKS

f : R3 → R3 with input x =




x1
x2
x2




w11
w12

w13 w21

w22

w23
w31

w32
w33

f1(x)=φ1(〈w1, x〉) f2(x)=φ2(〈w2, x〉) f3(x)=φ3(〈w3, x〉)

x1 x2 x3

φ1 φ2 φ3

f (x) =




f1(x)
f2(x)
f3(x)


 with fi(x) = φi

( 3∑

j=1

wijxj

)
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FEED-FORWARD NETWORKS

A feed-forward network is a neural network whose units can be arranged into groups
L1, . . . ,LK so that connections (arrows) only pass from units in group Lk to units in group
Lk+1. The groups are called layers. In a feed-forward network:

• There are no connections within a layer.
• There are no backwards connections.
• There are no connections that skip layers, e.g. from Lk to units in group Lk+2.

feed-forward

L1

L2

L3

not feed-forward not feed-forward
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LAYERS

w1
11

w1
12 w1

21

w1
22

w2
11 w2

21

x1 x2

φ1
1 φ1

2

φ2
1

f (x)

• This network computes the function

f (x1, x2) = φ2
1

(
w2

11φ
1
1
(
w1

11x1+w1
21x2

)
+w2

12φ
1
2
(
w1

21x1+w1
22x2

))

• Clearly, writing out f gets complicated fairly quickly as the
network grows.

First shorthand: Scalar products
• Collect all weights coming into a unit into a vector, e.g.

w2
1 := (w2

11,w
2
21)

• Same for inputs: x = (x1, x2)

• The function then becomes

f (x) = φ2
1

(〈
w2

1,

(
φ1

1(
〈

w1
1, x
〉
)

φ1
2(
〈

w1
2, x
〉
)

)〉)
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LAYERS

w1
11

w1
12 w1

21

w1
22

φ1
1 φ1

2 f (2)

• Each layer represents a function, which takes the
output values of the previous layers as its
arguments.

• Suppose the output values of the two nodes at the
top are y1, y2.

• Then the second layer defines the
(two-dimensional) function

f (2)(y) =

(
φ1

1(
〈

w1
1, y
〉
)

φ1
2(
〈

w1
2, y
〉
)

)
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COMPOSITION OF FUNCTIONS

Basic composition
Suppose f and g are two function R→ R. Their composition g ◦ f is the function

g ◦ f (x) := g(f (x)) .

For example:
f (x) = x + 1 g(y) = y2 g ◦ f (x) = (x + 1)2

We could combine the same functions the other way around:

f ◦ g(x) = x2 + 1

In multiple dimensions
Suppose f : Rd1 → Rd2 and g : Rd2 → Rd3 . Then

g ◦ f (x) = g(f (x)) is a function Rd1 → Rd3 .

For example:

f (x) = 〈x, v〉 − c g(y) = sgn(y) g ◦ f (x) = sgn(〈x, v〉 − c)
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LAYERS AND COMPOSITION

w1
11

w1
12 w1

21

w1
22

w2
11 w2

21

x1 x2

φ1
1 φ1

2

φ2
1

f (x)

f (2)

f (3)

• As above, we write

f (2)( • ) =

(
φ1

1(
〈

w1
1, •

〉
)

φ1
2(
〈

w1
2, •

〉
)

)

• The function for the third layer is similarly

f (3)( • ) = φ2
1(
〈

w2
1, •

〉
)

• The entire network represents the function

f (x) = f (3)( f (2)(x)) = f (3) ◦ f (2)(x)

A feed-forward network represents a function as a composition of several functions, each
given by one layer.
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x1 x2

. . .

xd

. . .

. . .

...
...

...

. . .

. . .

= f (1)

= f (2)

= f (K)

f (x) = f (K)(· · · f (2)(f (1)(x))) = f (K) ◦ . . . ◦ f (1)(x)
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LAYERS AND COMPOSITIONS

General feed-forward networks
A feed-forward network with K layers represents a function

f (x) = f (K) ◦ . . . ◦ f (1)(x)

Each layer represents a function f (k). These functions are of the form:

f (k)( • ) =




φ
(k)
1 (
〈

w(k)
1 , •

〉
)

...
φ

(k)
d (
〈

w(k)
d , •

〉
)


 typically: φ(k)(x) =





σ(x) (sigmoid)
I{±x > τ} (threshold)
c (constant)
x (linear)
max{0, x} (rectified linear)

Dimensions
• Each function f (k) is of the form

f (k) : Rdk → Rdk+1

• dk is the number of nodes in the kth layer. It is also called the width of the layer.
• We mostly assume for simplicity: d1 = . . . = dK =: d.
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ORIGIN OF THE NAME

If you look up the term “neuron” online, you will find illustrations like this:

This one comes from a web site called easyscienceforkids.com, which means it is likely to be scientifically more accurate than
typical references to “neuron” and “neural” in machine learning.

Roughly, a neuron is a brain cell that:
• Collects electrical signals (typically from other neurons)
• Processes them
• Generates an output signal

What happens inside a neuron is an intensely studied problem in neuroscience.
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HISTORICAL PERSPECTIVE: MCCULLOCH-PITTS NEURON

A neuron is modeled as a “thresholding device” that combines input signals:

v1 v2 v3

x1 x2 x3

y

I{• > 0}

McCulloch-Pitts neuron model (1943)
• Collect the input signals x1, x2, x3 into a vector x = (x1, x2, x3) ∈ R3

• Choose fixed vector v ∈ R3 and constant c ∈ R.
• Compute:

y = I{〈v, x〉 > 0} for some c ∈ R .

• In hindsight, this is a neural network with two layers, and function φ( • ) = I{〈v, x〉 > 0}
at the bottom unit.
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