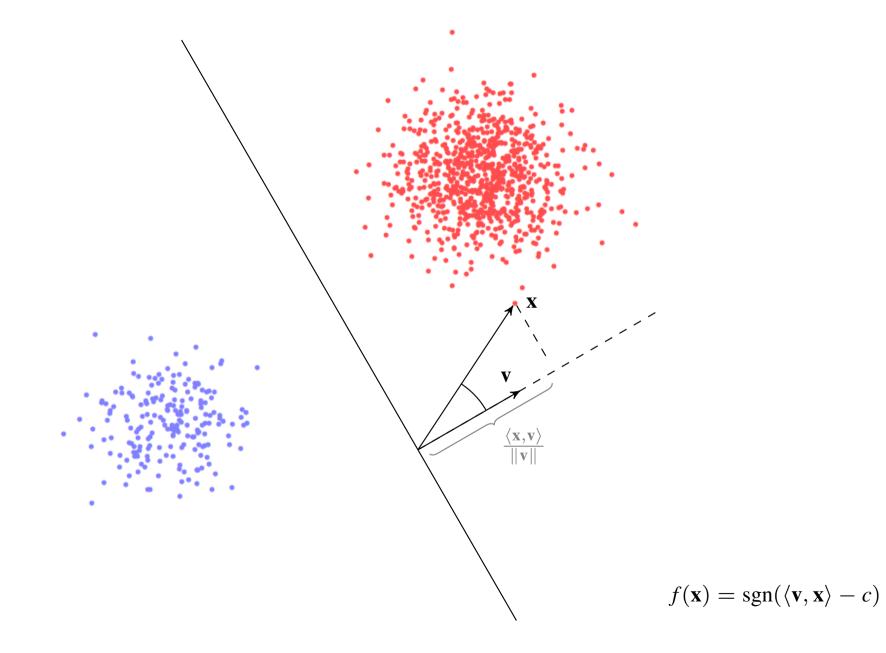
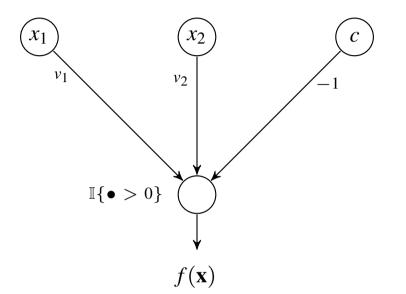
RECALL: LINEAR CLASSIFICATION



Linear Classifier in \mathbb{R}^2 as Two-Layer NN



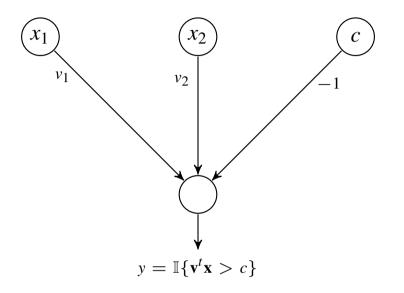
$$f(\mathbf{x}) = \mathbb{I}\{v_1x_1 + v_2x_2 + v_3x_3 + (-1)c > 0\} = \mathbb{I}\{\langle \mathbf{v}, \mathbf{x} \rangle > c\}$$

Equivalent to linear classifier

The linear classifier on the previous slide and f differ only in whether they encode the "blue" class as -1 or as 0:

$$\operatorname{sgn}(\langle \mathbf{v}, \mathbf{x} \rangle - c) = 2f(\mathbf{x}) - 1$$

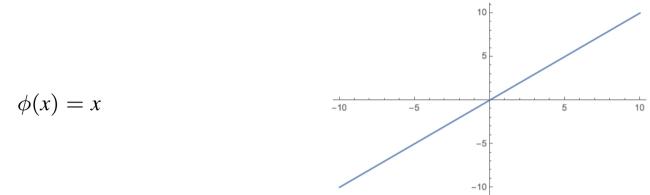
REMARKS



- This neural network represents a linear two-class classifier (on \mathbb{R}^2).
- We can more generally define a classifier on \mathbb{R}^d by adding input units, one per dimension.
- It does not specify the training method.
- To train the classifier, we need a cost function and an optimization method.

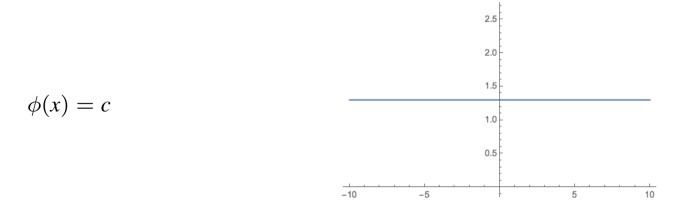
TYPICAL COMPONENT FUNCTIONS

Linear units



This function simply "passes on" its incoming signal. These are used for example to represent inputs (data values).

Constant functions



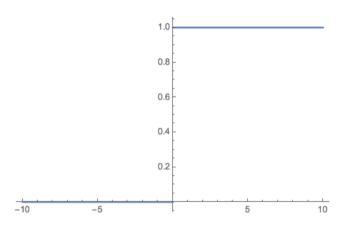
These can be used e.g. in combination with an indicator function to define a threshold, as in the linear classifier above.

Peter Orbanz · Applied Data Mining

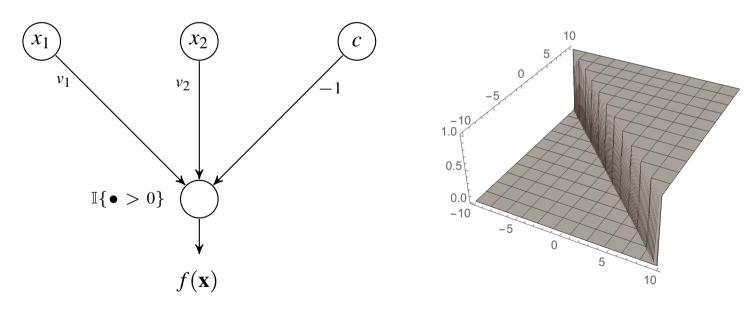
TYPICAL COMPONENT FUNCTIONS

Indicator function

$$\phi(x) = \mathbb{I}\{x > 0\}$$



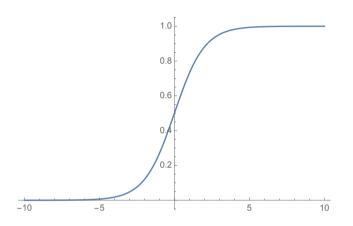
Example: Final unit is indicator



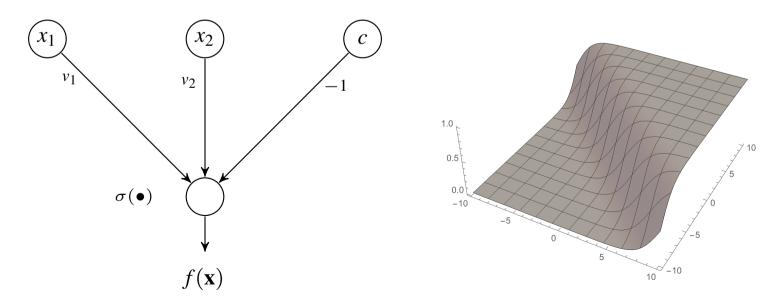
TYPICAL COMPONENT FUNCTIONS

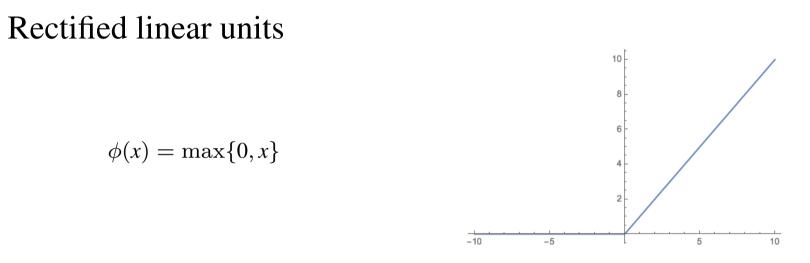
Sigmoids

$$\phi(x) = \frac{1}{1 + e^{-x}}$$



Example: Final unit is sigmoid





These are currently perhaps the most commonly used unit in the "inner" layers of a neural network (those layers that are not the input or output layer).

Hidden units

- Any nodes (or "units") in the network that are neither input nor output nodes are called **hidden**.
- Every network has an input layer and an output layer.
- If there any additional layers (which hence consist of hidden units), they are called **hidden layers**.

Linear and nonlinear networks

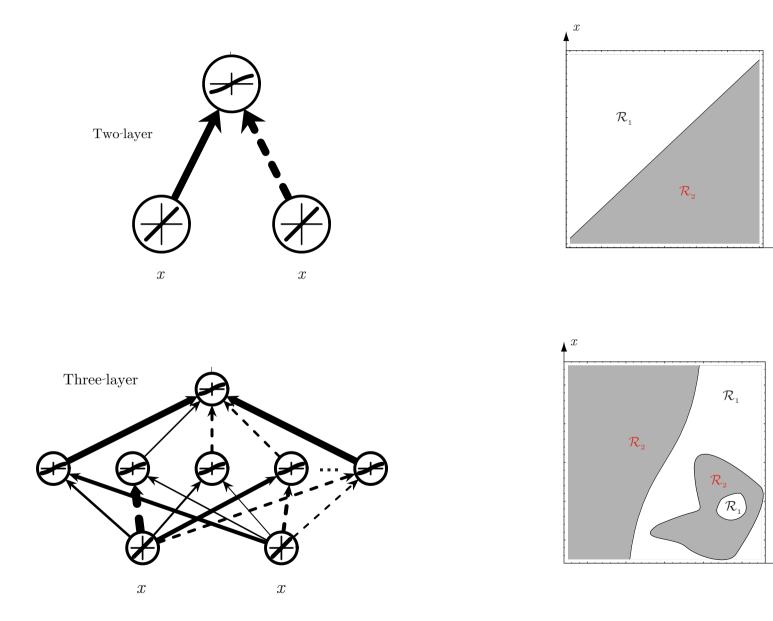
• If a network has no hidden units, then

$$f_i(\mathbf{x}) = \phi_i(\langle \mathbf{w}_i, \mathbf{x} \rangle)$$

That means: f is a linear functions, except perhaps for the final application of ϕ .

- For example: In a classification problem, a two layer network can only represent linear decision boundaries.
- Networks with at least one hidden layer can represent nonlinear decision surfaces.

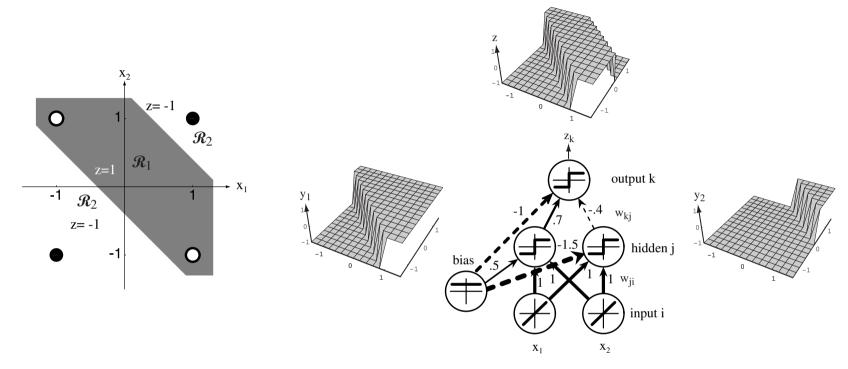
TWO VS THREE LAYERS



x

x

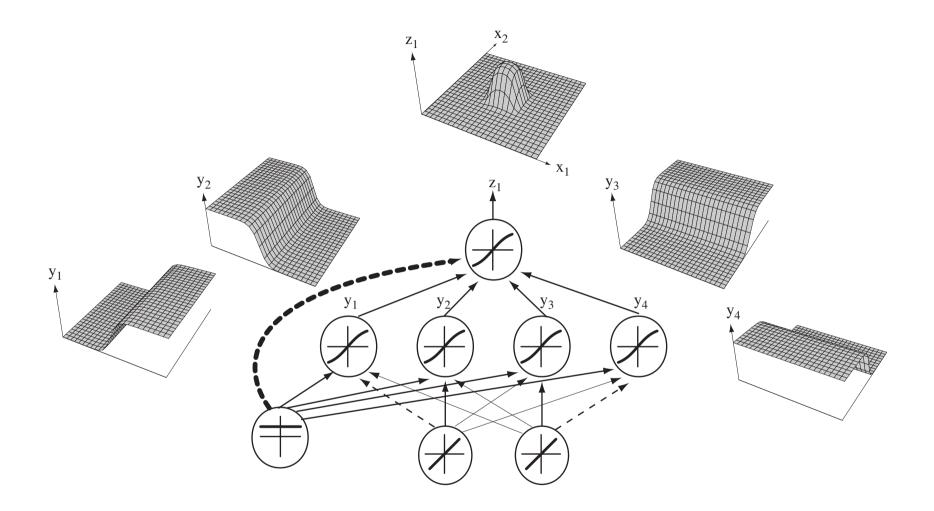
THE XOR PROBLEM



Solution regions we would like to represent

Neural network representation

- Two ridges at different locations are substracted from each other.
- That generates a region bounded on both sides.
- A linear classifier cannot represent this decision region.
- Note this requires at least one hidden layer.



We have observed

- We have seen that two-layer classification networks always represent linear class boundaries.
- With three layers, the boundaries can be non-linear.

Obvious question

• What happens if we use more than three layers? Do four layers again increase expressive power?

WIDTH VS DEPTH

A neural network represents a (typically) complicated function f by simple functions $\phi_i^{(k)}$.

What functions can be represented?

A well-known result in approximation theory says: Every continuous function $f : [0, 1]^d \to \mathbb{R}$ can be represented in the form

$$f(\mathbf{x}) = \sum_{j=1}^{2d+1} \xi_j \left(\sum_{i=1}^d \tau_{ij}(x_i)\right)$$

where ξ_i and τ_{ij} are functions $\mathbb{R} \to \mathbb{R}$. A similar result shows one can approximate *f* to arbitrary precision using specifically sigmoids, as

$$f(\mathbf{x}) \approx \sum_{j=1}^{M} w_j^{(2)} \sigma\left(\sum_{i=1}^{d} w_{ij}^{(1)} x_i + c_i\right)$$

for some finite M and constants c_i .

Note the representations above can both be written as neural networks with three layers (i.e. with one hidden layer).

WIDTH VS DEPTH

Depth rather than width

- The representations above can achieve arbitrary precision with a single hidden layer (roughly: a three-layer neural network can represent any continuous function).
- In the first representation, ξ_j and τ_{ij} are "simpler" than f because they map $\mathbb{R} \to \mathbb{R}$.
- In the second representation, the functions are more specific (sigmoids), and we typically need more of them (*M* is large).
- That means: The price of precision are many hidden units, i.e. the network grows wide.
- The last years have shown: We can obtain very good results by limiting layer width, and instead increasing depth (= number of layers).
- There is no coherent theory yet to properly explain this behavior.

Limiting width

- Limiting layer width means we limit the degrees of freedom of each function $f^{(k)}$.
- That is a notion of parsimony.
- Again: There seem to be a lot of interesting questions to study here, but so far, we have no real answers.

Task

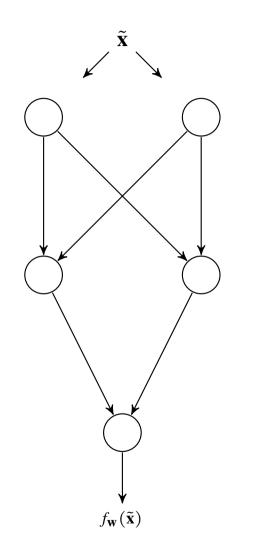
- We decide on a neural network "architecture": We fix the network diagram, including all functions ϕ at the units. Only the weights w on the edges can be changed during by training algorithm. Suppose the architecture we choose has d_1 input units and d_2 output units.
- We collect all weights into a vector **w**. The entire network then represents a function $f_{\mathbf{w}}(\mathbf{x})$ that maps $\mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$.
- To "train" the network now means that, given training data, we have to determine a suitable parameter vector **w**, i.e. we fit the network to data by fitting the weights.

More specifically: Classification

Suppose the network is meant to represent a two-class classifier.

- That means the output dimension is $d_2 = 1$, so $f_{\mathbf{w}}$ is a function $\mathbb{R}^{d_1} \to \mathbb{R}$.
- We are given data $\mathbf{x}_1, \mathbf{x}_2, \ldots$ with labels y_1, y_2, \ldots
- We split this data into training, validation and test data, according to the requirements of the problem we are trying to solve.
- We then fit the network to the training data.

TRAINING NEURAL NETWORKS



- We run each training data point x
 x i through the network *f w* and compare *f w (x
 <i>i*) to *y
 <i>i* to measure the error.
- Recall how gradient descent works: We make "small" changes to **w**, and choose the one which decreases the error most. That is one step of the gradient scheme.
- For each such changed value w', we again run each training data point x
 i through the network fw', and measure the error by comparing fw' (x
 i) to y
 i.

TRAINING NEURAL NETWORKS

Error measure

- We have to specify how we compare the network's output $f_{\mathbf{w}}(\mathbf{x})$ to the correct answer y.
- To do so, we specify a function *D* with two arguments that serves as an error measure.
- The choice of *D* depends on the problem.

Typical error measures

• Classification problem:

 $D(\hat{y}, y) := y \log \hat{y}$ (with convention $0 \log 0 = 0$)

• Regression problem:

$$D(\hat{y}, y) := ||y - \hat{y}||^2$$

Training as an optimization problem

- Given: Training data $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$ with labels y_i .
- We specify an error measure *D*, and define the total error on the training set as

$$J(\mathbf{w}) := \sum_{i=1}^{n} D(f_{\mathbf{w}}(\tilde{\mathbf{x}}_i), \tilde{y}_i)$$

BACKPROPAGATION

Training problem

In summary, neural network training attempts to solve the optimization problem

 $\mathbf{w}^* = \arg\min_{\mathbf{w}} J(\mathbf{w})$

using gradient descent. For feed-forward networks, the gradient descent algorithm takes a specific form that is called *backpropagation*.

Backpropagation is gradient descent applied to $J(\mathbf{w})$ in a feed-forward network.

In practice: Stochastic gradient descent

- The vector **w** can be very high-dimensional. In high dimensions, computing a gradient is computationally expensive, because we have to make "small changes" to **w** in many different directions and compare them to each other.
- Each time the gradient algorithm computes $J(\mathbf{w}')$ for a changed value \mathbf{w}' , we have to apply the network to every data point, since $J(\mathbf{w}') = \sum_{i=1}^{n} D(f_{\mathbf{w}'}(\tilde{\mathbf{x}}_i), \tilde{y}_i)$.

Neural network training optimization problem

 $\min_{\mathbf{w}} J(\mathbf{w})$

The application of gradient descent to this problem is called *backpropagation*.

Backpropagation is gradient descent applied to $J(\mathbf{w})$ in a feed-forward network.

Deriving backpropagation

- We have to evaluate the derivative $\nabla_{\mathbf{w}} J(\mathbf{w})$.
- Since *J* is additive over training points, $J(\mathbf{w}) = \sum_{n} J_n(\mathbf{w})$, it suffices to derive $\nabla_{\mathbf{w}} J_n(\mathbf{w})$.

The next few slides were written for a different class, and you are not expected to know their content. I show them only to illustrate the interesting way in which gradient descent interleaves with the feed-forward architecture.

Deriving backpropagation

- We have to evaluate the derivative $\nabla_{\mathbf{w}} J(\mathbf{w})$.
- Since *J* is additive over training points, $J(\mathbf{w}) = \sum_n J_n(\mathbf{w})$, it suffices to derive $\nabla_{\mathbf{w}} J_n(\mathbf{w})$.

Recall from calculus: Chain rule

Consider a composition of functions $f \circ g(x) = f(g(x))$.

$$\frac{d(f \circ g)}{dx} = \frac{df}{dg}\frac{dg}{dx}$$

If the derivatives of f and g are f' and g', that means: $\frac{d(f \circ g)}{dx}(x) = f'(g(x))g'(x)$

Application to feed-forward network

Let $\mathbf{w}^{(k)}$ denote the weights in layer k. The function represented by the network is

$$f_{\mathbf{w}}(\mathbf{x}) = f_{\mathbf{w}}^{(K)} \circ \cdots \circ f_{\mathbf{w}}^{(1)}(\mathbf{x}) = f_{\mathbf{w}^{(K)}}^{(K)} \circ \cdots \circ f_{\mathbf{w}^{(1)}}^{(1)}(\mathbf{x})$$

To solve the optimization problem, we have to compute derivatives of the form

$$\frac{d}{d\mathbf{w}}D(f_{\mathbf{w}}(\mathbf{x}_n), y_n) = \frac{dD(\bullet, y_n)}{df_{\mathbf{w}}}\frac{df_{\mathbf{w}}}{d\mathbf{w}}$$

Peter Orbanz · Applied Data Mining

DECOMPOSING THE DERIVATIVES

- The chain rule means we compute the derivates layer by layer.
- Suppose we are only interested in the weights of layer *k*, and keep all other weights fixed. The function *f* represented by the network is then

$$f_{\mathbf{w}^{(k)}}(\mathbf{x}) = f^{(K)} \circ \cdots \circ f^{(k+1)} \circ f_{\mathbf{w}^{(k)}}^{(k)} \circ f^{(k-1)} \circ \cdots \circ f^{(1)}(\mathbf{x})$$

• The first k - 1 layers enter only as the function value of **x**, so we define

$$\mathbf{z}^{(k)} := f^{(k-1)} \circ \cdots \circ f^{(1)}(\mathbf{x})$$

and get

$$f_{\mathbf{w}^{(k)}}(\mathbf{x}) = f^{(K)} \circ \cdots \circ f^{(k+1)} \circ f_{\mathbf{w}^{(k)}}^{(k)}(\mathbf{z}^{(k)})$$

• If we differentiate with respect to $\mathbf{w}^{(k)}$, the chain rule gives

$$\frac{d}{d\mathbf{w}^{(k)}}f_{\mathbf{w}^{(k)}}(\mathbf{x}) = \frac{df^{(K)}}{df^{(K-1)}}\cdots\frac{df^{(k+1)}}{df^{(k)}} \cdot \frac{df_{\mathbf{w}^{(k)}}^{(k)}}{d\mathbf{w}^{(k)}}$$

1-1

WITHIN A SINGLE LAYER

- Each $f^{(k)}$ is a vector-valued function $f^{(k)} : \mathbb{R}^{d_k} \to \mathbb{R}^{d_{k+1}}$.
- It is parametrized by the weights $\mathbf{w}^{(k)}$ of the *k*th layer and takes an input vector $\mathbf{z} \in \mathbb{R}^{d_k}$.
- We write $f^{(k)}(\mathbf{z}, \mathbf{w}^{(k)})$.

Layer-wise derivative

Since $f^{(k)}$ and $f^{(k-1)}$ are vector-valued, we get a Jacobian matrix

$$\frac{df^{(k+1)}}{df^{(k)}} = \begin{pmatrix} \frac{\partial f_1^{(k+1)}}{\partial f_1^{(k)}} & \dots & \frac{\partial f_1^{(k+1)}}{\partial f_{d_k}} \\ \vdots & & \vdots \\ \frac{\partial f_{d_{k+1}}^{(k+1)}}{\partial f_{d_{k+1}}^{(k)}} & \dots & \frac{\partial f_{d_{k+1}}^{(k+1)}}{\partial f_{d_k}^{(k)}} \end{pmatrix} =: \Delta^{(k)}(\mathbf{z}, \mathbf{w}^{(k+1)})$$

- $\Delta^{(k)}$ is a matrix of size $d_{k+1} \times d_k$.
- The derivatives in the matrix quantify how $f^{(k+1)}$ reacts to changes in the argument of $f^{(k)}$ if the weights $\mathbf{w}^{(k+1)}$ and $\mathbf{w}^{(k)}$ of both functions are fixed.

BACKPROPAGATION ALGORITHM

Let $\mathbf{w}^{(1)}, \ldots, \mathbf{w}^{(K)}$ be the current settings of the layer weights. These have either been computed in the previous iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass

We start with an input vector **x** and compute

$$\mathbf{z}^{(k)} := f^{(k)} \circ \cdots \circ f^{(1)}(\mathbf{x})$$

for all layers k.

Step 2: Backward pass

• Start with the last layer. Update the weights $\mathbf{w}^{(K)}$ by performing a gradient step on

$$D(f^{(K)}(\mathbf{z}^{(K)},\mathbf{w}^{(K)}),y)$$

regarded as a function of $\mathbf{w}^{(K)}$ (so $\mathbf{z}^{(K)}$ and y are fixed). Denote the updated weights $\tilde{\mathbf{w}}^{(K)}$.

• Move backwards one layer at a time. At layer k, we have already computed updates $\tilde{\mathbf{w}}^{(K)}, \ldots, \tilde{\mathbf{w}}^{(k+1)}$. Update $\mathbf{w}^{(k)}$ by a gradient step, where the derivative is computed as

$$\Delta^{(K-1)}(\mathbf{z}^{(K-1)}, \tilde{\mathbf{w}}^{(K)}) \cdot \ldots \cdot \Delta^{(k)}(\mathbf{z}^{(k)}, \tilde{\mathbf{w}}^{(k+1)}) \frac{df^{(k)}}{d\mathbf{w}^{(k)}}(\mathbf{z}, \mathbf{w}^{(k)})$$

On reaching level 1, go back to step 1 and recompute the $z^{(k)}$ using the updated weights.

• Backpropagation is a gradient descent method for the optimization problem

$$\min_{\mathbf{w}} J(\mathbf{w}) = \sum_{i=1}^{N} D(f_{\mathbf{w}}(\mathbf{x}_i), y_i)$$

D must be chosen such that it is additive over data points.

- It alternates between forward passes that update the layer-wise function values $\mathbf{z}^{(k)}$ given the current weights, and backward passes that update the weights using the current $\mathbf{z}^{(k)}$.
- The layered architecture means we can (1) compute each $\mathbf{z}^{(k)}$ from $\mathbf{z}^{(k-1)}$ and (2) we can use the weight updates computed in layers $K, \ldots, k+1$ to update weights in layer k.