
LOGISTIC REGRESSION FOR MULTIPLE CLASSES

Bernoulli and multinomial distributions
• The mulitnomial distribution of N draws from K categories with parameter vector

(θ1, . . . , θK) (where
∑

k≤K θk = 1) has probabililty mass function

P(m1, . . . ,mK |θ1, . . . , θK) =
N!

m1! · · ·mK !

K∏

k=1

θ
mk
k where mk = # draws in category k

• Note that Bernoulli(p) = Multinomial(p, 1− p; N = 1).

Logistic regression
• Recall two-class logistic regression is defined by P(Y|x) = Bernoulli(σ(〈v, x〉 − c)).
• Idea: To generalize logistic regression to K classes, choose a separate weight vector vk

and offset ck for each class k, and define P(Y|x) by

Multinomial
(
σ̃(〈v1, x〉 − c1), . . . , σ̃(〈vK , x〉 − cK)

)

where σ̃(〈vk, x〉 − ck) =
σ(〈vk,x〉−ck)∑K
j=1 σ(〈vj,x〉−cj)

. This definition ensures the σ̃-values add up

to 1 over all classes.
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LOGISTIC REGRESSION FOR MULTIPLE CLASSES

Logistic regression for K classes
The label y now takes values in {1, . . . ,K}.

P(y|x) =

K∏

k=1

σ̃(〈vk, x〉 − ck)
I{y=k}

The negative log-likelihood becomes

L(v1, c1, . . . , vK , cK) = −
∑

i≤n, k≤K

I{y = k} log σ̃(〈vk, x̃i〉 − ck)

This can again be optimized numerically.

Comparison to two-class case
• Recall that 1− σ(x) = σ(−x), and

Bernoulli(p) = Multinomial(p, 1− p) (with N = 1 draws)
• That means

Bernoulli
(
σ(〈v, x〉 − c)

)
≡ Multinomial

(
σ(〈v, x〉 − c, σ(〈−v, x〉+ c)

)

• That is: Two-class logistic regression as above is equivalent to multiclass logistic
regression with K = 2 provided we choose w2 = −w1.
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MAXIMUM MARGIN CLASSIFIERS



MAXIMUM MARGIN IDEA

Setting
Linear classification, two linearly separable classes.

Recall Perceptron
• Selects some hyperplane between the two classes.
• Choice depends on initialization, step size etc.

Maximum margin idea
To achieve good generalization (low prediction error), place the hyperplane “in the middle”
between the two classes.

More precisely
Choose plane such that distance to closest point in each class is maximal. This distance is called
the margin.
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GENERALIZATION ERROR

Possible Perceptron solution
Good generalization under a specific distribution

(here: Gaussian) Maximum margin solution

Example: Gaussian data
• The ellipses represent lines of constant standard deviation (1 and 2 STD respectively).

• The 1 STD ellipse contains∼ 68.3% of the probability mass (∼ 95.5% for 2 STD;∼ 99.7% for 3 STD).

Optimal generalization: Classifier should cut off as little probability mass as possible from
either distribution.

Without distributional assumption: Max-margin classifier
• Philosophy: Without distribution assumptions, best guess is symmetric.
• In the Gaussian example, the max-margin solution would not be optimal.
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NEXT: TWO TOOLS

Convex sets
• There is an inherent relationship between linear classification and a geometric property of

shapes called convexity.
• Convex shapes have very useful properties, and we can use those for classification.

Constrained optimization
• The optimization problems we have considered before asked: What is the value of x for

which f (x) is as small as possible?
• A constrained optimization problem asks: Among all x which satisfy the property, which

value makes f (x) as small as possible?
• We use that to formulate the maximum margin problem as: Among all classifiers that

separate the two classes, which one makes the margin as large as possible?
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CONVEX SETS

Definition
A set A ⊂ Rd is called convex if, for every two points x, y ∈ A, the straight line connecting x
and y is completely contained in A.

Examples

convex convex not convex
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EXTREME POINTS

Extreme points
Let A be a convex set and x ∈ A. If x can be removed from A and A \ {x} is still convex, then x
is called an extreme point of A.

Examples
Extreme points are marked black.

infinitely many extreme pointsfinitely many extreme points removing a point from the straight part of
the boundary would leave a “hole”, and
the set would not be convex anymore.

Informally
• If all segments of the boundary are straight lines or planes, the extreme points are exactly

the “corner points” of the set.
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CONVEX HULLS

Definition
If C is a finite set of points in Rd , the convex hull conv(C) of C is the smallest convex set that
contains all points in C.

Note
• Each extreme point of conv(C) is a point in the original set C.
• The convex hull is uniquely determined by C. (Every other convex in Rd either contains

conv(C), or does not contain all points in C.)
• Think of the convex hull as the shape we get by connecting the “outer” point of C.
• The importance of the convex hull for classification is that it defines which points in each

training class are “outer” points (namely those which are extreme points of the convex
hull).

Peter Orbanz · Applied Data Mining 119



LINEAR CLASSIFICATION AND CONVEXITY

Observation
Where a separating affine plane may be placed depends on the "outer" points of the sets. Points
in the center do not matter.

In geometric terms
Substitute each class by its convex hull:
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CONVEX HULLS AND CLASSIFICATION

Key idea
There is an inherent relationship between convexity and linear classification: An affine plane
separates two classes if and only if it separates their convex hulls.

Next
We have to formalize what it means for a hyperplane to be "in the middle" between two classes.
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DISTANCES TO SETS

Definition
The distance between a point x and a set A the Euclidean distance between x and the closest
point in A:

d(x,A) := min
y∈A
‖x− y‖

In particular, if A = H is a hyperplane, d(x,H) := min
y∈H
‖x− y‖.

A

d(x,A)

x

d(x,H)
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MARGIN

The margin of a classifier hyperplane H given two training classes is the shortest distance
between the plane and any point in either set:

margin = min
x∈ training data

d(x,H)

Equivalently: The shortest distance to either of the convex hulls.

Idea in the following: H is "in the middle" when margin maximal.

Peter Orbanz · Applied Data Mining 123



MAXIMUM MARGIN PROBLEM

Basic problem
We want to find the affine plane H(v, c) that maximizes the distance to both data sets:

maximize d(H(v, c), training data) over all v, c

Problem: The optimization algorithm can just move the plane further and further away from the
data. We have to make sure H is “between the classes”.

Maximum margin optimization problem
The problem we actually solve is

maximize d(H(v, c), training data) over all v, c
such that H(v, c) separates the training data classes

We can express that as:

maximize d(H(v, c), training data) over all v, c
such that ỹisgn(〈v, x̃i〉 − c) > 0

This is an example of a so-called constrained optimization problem.
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CONSTRAINED OPTIMIZATION

Recall that a basic optimization problem searches for an argmument x∗ that makes f (x∗)) as
small as possible.

Contstrains
Suppose we fix some property of x that is either true or false (e.g. “x > 0”). The problem

among all x that satisfy the property, find the one that makes f as small as possible

is called a constrained optimization problem. The property is called the constrained.

Customary notation
If we call the property A, say, this is often written as:

minimize f (x)

subject to x satisifies A
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HOW CONSTRAINED PROBLEMS ARE SOLVED

Idea
• An optimization algorithm tries to make f as small as possible.
• We have exclude values of x that violate the constraint.
• Solution: Change the function f so that it is very large at values x that should be excluded.

Implementation
• Choose a function β(x) that is very large for all x that violate the constraint, and 0 at those

x that are permitted.
• Add β to f : Minimize f + β instead of f .
• Remember: We should not introduce jumps, so g should transition smoothly from 0 to

“very large”.

For example
Say we want to minimize f . For another function g, we impose the constraint g(x) < 0.

min f (x) s.t. g(x) < 0

The constraint g(x) < 0 be expressed as an indicator function of g(x) ≥ 0:

min f (x) + const. · I[0,∞)(g(x))

The constant must be chosen large enough to enforce the constraint.
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ADDING A SMOOTH FUNCTION

Choice of the function we add
• The indicator function jumps, which we know is

not useful for optimization. We replace it by a
smooth function.

• A common choice is

βt(x) := −1
t

log(−x) . x

f (x)

I[0,∞)(x)βt(x)

In the example above
To solve min f (x) subject to g(x) < 0, we apply gradient descent to

f (x) + βt(g(x)) .

The value t is a “tuning parameter” of the optimization method.
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CONSTRAINED OPTIMIZATION

Remarks
• If the constraint changes (e.g. to “g(x) > −3”), it is easier to modify g than to tinker with
β.

• The method above is an example of a principle we have seen before: We express what we
want to do in terms of an indicator function, then replace it by something smooth, and
apply graident descent.

• Data mining, statistics and machine learning are only a few examples of applications of
constrained optimization methods. Much of the research on constrained optimization is
driven by operations research and financial engineering.
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SUPPORT VECTOR MACHINE

Maximum margin optimization problem
For n training points (x̃i, ỹi) with labels ỹi ∈ {−1, 1}, solve optimization problem:

maximize d
(
H(v, c), {x̃1, . . . , x̃n}

)

s.t. ỹi(〈vH, x̃i〉 − c) > 0 for i = 1, . . . , n

• The first line says: Make sure the plane is a far away from every data point as possible.
• The second line says: Only planes that classify the training data correctly are permitted.

Remarks
• The classifier obtained by solving this optimization problem is called a support vector

machine.
• If training data is separable: There is a unique solution (in contrast to the perceptron,

whose solution is not unique).
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SUPPORT VECTORS

Definition
Those extreme points of the convex hulls which
are closest to the hyperplane are called the
support vectors.

There are at least two support vectors, one in
each class.

Implications
• The maximum-margin criterion focuses all attention to the area closest to the decision

surface.
• One can show that the computational cost of solving the optimization problem grows

quadratically in the number of data points.
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SUPPORT VECTOR MACHINES

Advantages
• The SVM often works well for high-dimensional classification.
• It can be generalized to non-linear decision boundaries using a method called the kernel

trick.
• It can also be generalized to overlapping classes.

Disadvantages
• The quadratic training cost means SVMs cannot be trained on very large data sets.

The support vector machine (with kernel trick) is, aside from a method called a random forest,
probably the most widely used classifier for non-vision/audio data. For vision and audio data,
neural networks dominate applications.
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