Introduction

COURSE WEBPAGE

http://stat.columbia.edu/~porbanz/UN3106S18.html

THIS CLASS

What to expect

- This class is an introduction to machine learning.
- Topics: Classification; "learning"; basic neural networks; etc

Homework

- Programming + "theoretical" questions.
- All programming will be done in R.

What this class is not

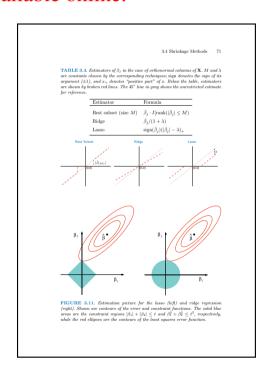
• Applied.

The purpose of this class is to understand how some of the most important machine learning methods work.

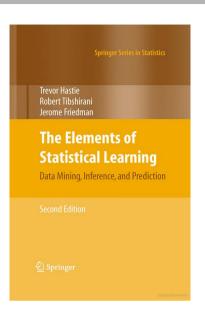
BOOKS

T. Hastie, J. Friedman and R. Tibshirani: "The Elements of Statistical Learning". 2nd Edition, Springer, 2009.

Available online.



← It's much prettier inside.



Links to this book and other potentially useful references will be added to the class homepage as they become relevant. All of these are optional; the relevant material are the course slides.

BACKGROUND KNOWLEDGE

- Euclidean space; vectors
- Scalar products
- Derivatives and gradients of functions
- Probability distributions and densities. Example:

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$
 or $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$

- Gaussian distribution on \mathbb{R} and \mathbb{R}^d
- (Eigenvalues and eigenvectors)
- Regression

CLASSIFICATION

Problem setting

Classification methods subdivide data into several, distinct classes. More formally:

- Data $x_1, x_2,$
- Each observations falls into one of K categories (the *classes*).
- Learning task: Find a classification function

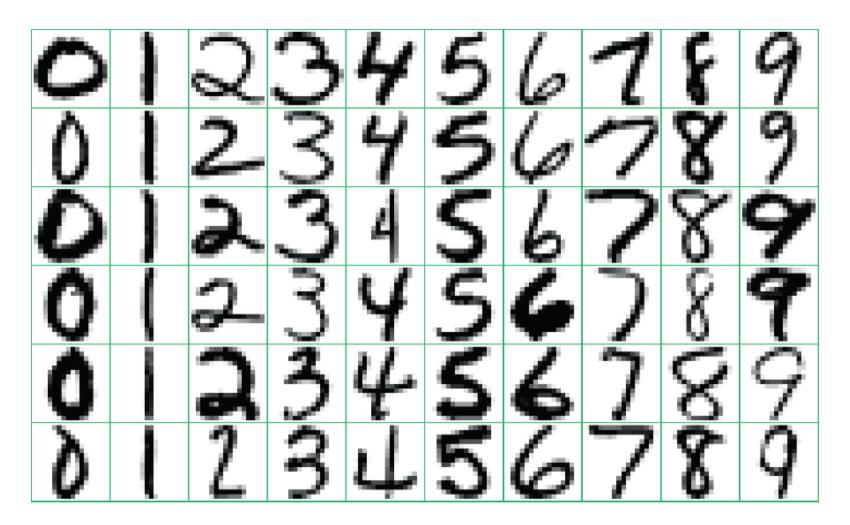
$$f: \mathbf{X} \to \{1, \dots, K\}$$
.

• Input of the learning problem: Correctly categorized examples $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n$.

Approach

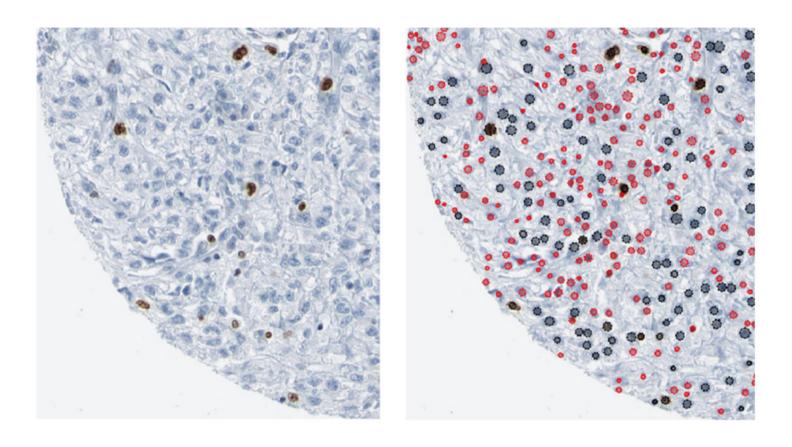
- Define:
 - 1. A set of possible classification functions f (the hypothesis set).
 - 2. A *cost function* which assumes a large value when mistakes are made.
- To find a good classifier, search the hypothesis class for the f which keeps costs as small as possible.
- Different types of errors can be more or less expensive.

USPS DATA



Each digit: 16×16 pixels, i.e. $x \in \mathbb{R}^{256}$

CANCER DIAGNOSIS



CLASSIFICATION

Previous examples as classification problems

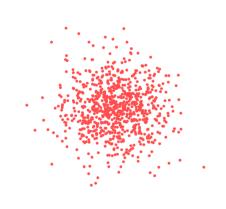
- USPS data: 10 classes (+ one "outlier class")
- Cancer diagnosis: 4 classes

Face recognition

- Hard problem, but much recent progress.
- Deployable systems can now have around 90+% accuracy on people in their database.
- 1 class per person in data base + 1 class for "none of those".

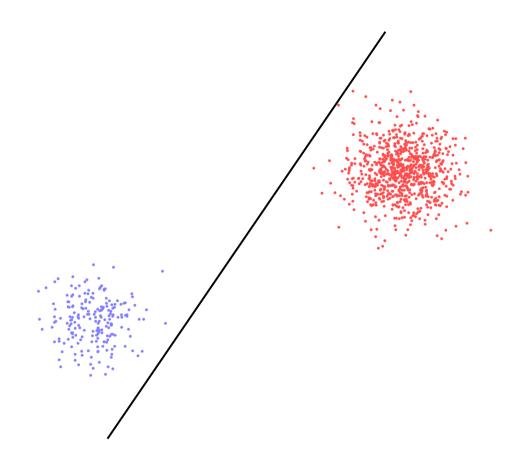
Fingerprint recognition

- Again: 1 class per person in data base + 1 class for "none of those".
- Deployable systems have been available for ca. 15 years.
- Development of computer systems lead to reassessment of human error rates.



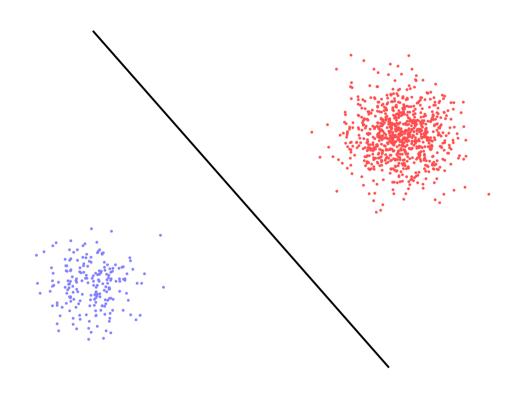
- Represent each object as a point; axes = measurements
 (→ vector spaces)
- 2. Separate classes by hyperplane $(\rightarrow scalar\ products)$

- 3. Define a function that measures how well the plane separates classes; small values indicate a good fit.
- 4. Find "good" hyperplane by minimizing function (→ *derivatives*, *gradients*, *Hessians*, *etc*)



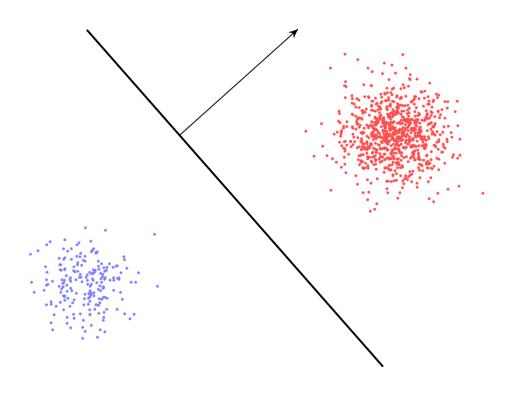
- Represent each object as a point; axes = measurements
 (→ vector spaces)
- 2. Separate classes by hyperplane $(\rightarrow scalar\ products)$

- 3. Define a function that measures how well the plane separates classes; small values indicate a good fit.
- 4. Find "good" hyperplane by minimizing function (→ *derivatives*, *gradients*, *Hessians*, *etc*)



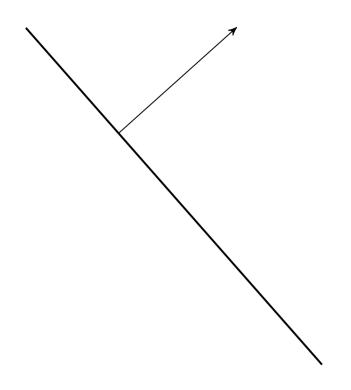
- Represent each object as a point; axes = measurements
 (→ vector spaces)
- 2. Separate classes by hyperplane $(\rightarrow scalar\ products)$

- 3. Define a function that measures how well the plane separates classes; small values indicate a good fit.
- 4. Find "good" hyperplane by minimizing function (→ *derivatives*, *gradients*, *Hessians*, *etc*)



- Represent each object as a point; axes = measurements
 (→ vector spaces)
- 2. Separate classes by hyperplane $(\rightarrow scalar\ products)$

- 3. Define a function that measures how well the plane separates classes; small values indicate a good fit.
- 4. Find "good" hyperplane by minimizing function (→ *derivatives*, *gradients*, *Hessians*, *etc*)



- Represent each object as a point; axes = measurements
 (→ vector spaces)
- 2. Separate classes by hyperplane $(\rightarrow scalar\ products)$

- 3. Define a function that measures how well the plane separates classes; small values indicate a good fit.
- 4. Find "good" hyperplane by minimizing function (→ *derivatives*, *gradients*, *Hessians*, *etc*)

PENDULUM

(WORK OF MARC DEISENROTH AND CARL EDWARD RASMUSSEN)

Task

Balance the pendulumn upright by moving the sled left and right.

- The computer can control *only* the motion of the sled.
- Available data: Current state of system (measured 25 times/second).

Formalization

State = 4 variables (sled location, sled velocity, angle, angular velocity)
Actions = sled movements

The system can be described by a function

$$f: \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$$
 (state, action) \mapsto state

ABOUT MACHINE LEARNING

Historical origins: Artificial intelligence and engineering

Machines need to...

- recognize patterns (e.g. vision, language)
- make decisions based on experience (= data)
- predict
- cope with uncertainty

Today

- There is no clear dividing line between machine learning and statistics anymore.
- Engineering aspects (such as software development and specialized hardware) have become much more important as machine learning systems get deployed.

Modern applications: (A few) Examples

- medical diagnosis
- face detection/recognition
- speech and handwriting recognition
- web search

- recommender systems
- bioinformatics
- natural language processing
- computer vision