BACKPROPAGATION

Neural network training optimization problem

min J(w)
w

The application of gradient descent to this problem is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

Deriving backpropagation

e We have to evaluate the derivative VyJ(W).

e Since J is additive over training points, J(w) = > J,(w), it suffices to derive VyJ,(W).

Peter Orbanz - Applied Data Mining 292

The next few slides were written for a different class, and you are not expected to know their content. I show them only to
illustrate the interesting way in which gradient descent interleaves with the feed-forward architecture.

Deriving backpropagation

e We have to evaluate the derivative VywJ(W).

e Since J is additive over training points, J(w) = > J,(w), it suffices to derive VyJ,(W).

Peter Orbanz - Applied Data Mining Not examinable. 293

CHAIN RULE

Recall from calculus: Chain rule
Consider a composition of functions f o g(x) = f(g(x)).

d(fog) dfdg
dx dg dx

If the derivatives of f and g are f” and g’, that means: % (x) = f'(g(x))g’ (x)

Application to feed-forward network

Let wk) denote the weights in layer k. The function represented by the network is

K (1 K 1
fax) = S 0o i) = £ oo ()
To solve the optimization problem, we have to compute derivatives of the form
d dD(e, d
—D(fw(Xn),Yn) — (yn) fW
dw dfw dw

Peter Orbanz - Applied Data Mining Not examinable. 294

DECOMPOSING THE DERIVATIVES

e The chain rule means we compute the derivates layer by layer.

e Suppose we are only interested in the weights of layer k, and keep all other weights fixed.

The function f represented by the network is then
k _
foty (X) = FK) oo plktD) Ofv(v(lz) ofk=Do. .. of(l)(x)
e The first k — 1 layers enter only as the function value of x, so we define

and get
Fyo () = f8) oo pltD) o f0) (00

o If we differentiate with respect to W(k), the chain rule gives

@O = G T m T qw®

Peter Orbanz - Applied Data Mining Not examinable.

295

WITHIN A SINGLE LLAYER

e Eachf (k) is a vector-valued function f () . Rk — R+,
e [t is parametrized by the weights w(k) of the kth layer and takes an input vector z € R%.
o We write (%) (z, wik)),

Layer-wise derivative

Since f (k) and f (k=1) are vector-valued, we get a Jacobian matrix

(8f(k+1) oy th
k o o o —k
(k+1) " 8f0§k)
‘ ® : f = A (z,wltD)
4 f<k+1) (kD
dr 41 dr41
f1(k) af;k)

e A ig a matrix of size dr41 X dy.

e The derivatives in the matrix quantify how f (k+1) reacts to changes in the argument of
£ if the weights w1 and wk) of both functions are fixed.

Peter Orbanz - Applied Data Mining Not examinable. 296

BACKPROPAGATION ALGORITHM

Let wi) | ... w&) be the current settings of the layer weights. These have either been
computed in the previous iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass

We start with an input vector x and compute

Z(k) :f(k) O+« - Of(l)(X)
for all layers k.
Step 2: Backward pass

o Start with the last layer. Update the weights w(K) by performing a gradient step on
D(f(K) (Z(K) , W(K)),y)

regarded as a function of w(&) (so z(X) and y are fixed). Denote the updated weights w(K),

e Move backwards one layer at a time. At layer k, we have already computed updates

w&) . wktD Update w*) by a gradient step, where the derivative is computed as
AEK=D gE=D FEy AR (K W(k+1))ﬂ(z w(h)
) s) dW(k))

On reaching level 1, go back to step 1 and recompute the z(K) using the updated weights.

Peter Orbanz - Applied Data Mining Not examinable.

297

SUMMARY: BACKPROPAGATION

e Backpropagation is a gradient descent method for the optimization problem

man ZD(fW Xi), i)

D must be chosen such that it is additive over data points.

e [t alternates between forward passes that update the layer-wise function values z(K) given
the current weights, and backward passes that update the weights using the current z(K)

e The layered architecture means we can (1) compute each z%) from z*—1) and (2) we can
use the weight updates computed in layers K, . . . , k 4+ 1 to update weights in layer k.

Peter Orbanz - Applied Data Mining Not examinable.

298

FEATURE EXTRACTION

Features

e Raw measurement data is typically not used directly as input for a learning algorithm.
Some form of preprocessing is applied first.

e We can think of this preprocessing as a function, e.g.
F: raw data space — R?

(R? is only an example, but a very common one.)

e [f the raw measurements are my, . .., my, the data points which are fed into the learning
algorithm are the images x, := F(m,,).

Terminology

e F is called a feature map.
e Its dimensions (the dimensions of its range space) are called features.

e The preprocessing step (= application of F to the raw data) is called feature extraction.

Peter Orbanz - Applied Data Mining 299

This is what a typical processing
pipeline for a supervided learning
propblem might look like.

Peter Orbanz - Applied Data Mining

Raw data (measurements)

Feature extraction

(preprocessing)
l
Working data
Mark patterns
Split
Training data Test data
(patterns marked) (patterns marked)

Training
(calibration)

Apply on
test data

l

Error estimate

>

» Trained model

300

FEATURE EXTRACTION VS LEARNING

Where does learning start?

e [t is often a matter of definition where feature extraction stops and learning starts.
e If we have a perfect feature extractor, learning is trivial.
e For example:

e Consider a classfication problem with two classes.

e Suppose the feature extractor maps the raw data measurements of class 1 to a single
point, and all data points in class to to a single distinct point.

e Then classification is trivial.

e That is of course what the classifier is supposed to do in the end (e.g. map to the
points 0 and 1).

Multi-layer networks and feature extraction
e An interesting aspect of multi-layer neural networks is that their early layers can be
intepreted as feature extraction.

e For certain types of problems (e.g. computer vision), features were long “hand-tuned” by
humans.

e Features extracted by neural networks give much better results.

o Several important problems, such as object recognition and face recognition, have
basically been solved in this way.

Peter Orbanz - Applied Data Mining

301

DEEP NETWORKS AS FEATURE EXTRACTORS

xl x2 Xd

e The network on the right is a classifier l

f:RY = {0, 1} Q }:fm
Suppose we subdivide the network into \
the first K — 1 layer and the final layer, by
defining \ /
f (K=1) ¢ .

F(x) := o (x)

e The entire network is then : : :
F(x) = £ o F(x) lm >< l
e The function fX) is a two-class logistic Q e
regression classifier. \

e We can hence think of f as a feature O
extraction F followed by linear

classification f(X).

} _)

FO (o) = a((w),)

Peter Orbanz - Applied Data Mining 302

A SIMPLE EXAMPLE

[

E
L
F

m

L

1%
T

=)
S

®
(2

&)

w11 We4.,2
w12 We4,1

Peter Orbanz - Applied Data Mining

Problem: Classify characters into three
classes (E, F and L).

Each digit given as a 8 X 8 = 64 pixel
image

Neural network: 64 input units (=pixels)
2 hidden units

3 binary output units, where f;(x) = 1
means image is in class i.

Each hidden unit has 64 input weights,
one per pixel. The weight values can be
plottes as 8 X 8 images.

303

~ _

i

training data (with random noise) weight values of 4| and hy plotted as images

Dark regions = large weight values.

Note the weights emphasize regions that distinguish characters.
We can think of weight (= each pixel) as a feature.

The features with large weights for /; distinguish {E,F} from L.
The features for A, distinguish {E,L} from F.

Peter Orbanz - Applied Data Mining Mlustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001 304

EXAMPLE: AUTOENCODERS

An example for the effect of layer are autoencoders.

e An autoencoder is a neural network that is trained on its own input: If the network has
weights W and represents a function fyy, training solves the optimization problem

min [x — fw(x)

or something similar for a different norm.

e That seems pointless at first glance: The network tries to approximate the identity
function using its (possibly nonlinear) component functions.

e However: If the layers in the middle have much fewer nodes that those at the top and
bottom, the network learns to compress the input.

Peter Orbanz - Applied Data Mining 305

AUTOENCODERS

X X
£ £
F2) f@
£ £
f(x) ~x f(x) ~ x
Layers have same width: No effect Narrow middle layel‘:: Compression effect

Train network on many images.

Once trained: Input an image Xx.

Store X’ := f(?)(x). Note x’ has fewer dimensions than x — compression.

To decompress x’: Input it into f (3) and apply the remaining layers of the network
— reconstruction f(x) ~ x of x.

Peter Orbanz - Applied Data Mining 306

\\\

\\\

Wy
00 |
W;
1000
W,
2000

A
A

2000
Wy
1000
A
T
3
00 |
T
4

307

Mlustration: K. Murphy, Machine Learning: A Bayesian perspective, MIT Press 2012

Peter Orbanz - Applied Data Mining

