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GAUSSIAN DISTRIBUTION

Gaussian density in one dimension

p(x;µ, σ) :=
1√
2πσ

exp
(
− (x− µ)2

2σ2

)

• µ = expected value of x, σ2 = variance, σ = standard deviation

• The quotient x−µ
σ

measures deviation of x from its expected value in
units of σ (i.e. σ defines the length scale)

The Gaussian Distribution

Chris Williams, School of Informatics, University of Edinburgh
Overview

• Probability density functions

• Univariate Gaussian

• Multivariate Gaussian

• Mahalanobis distance

• Properties of Gaussian distributions

• Graphical Gaussian models

• Read: Tipping chs 3 and 4

Continuous distributions
• Probability density function (pdf) for a continuous random variable X

P (a ≤ X ≤ b) =

∫ b

a
p(x)dx

therefore
P (x ≤ X ≤ x + δx) " p(x)δx

• Example: Gaussian distribution

p(x) =
1

(2πσ2)1/2
exp−

{
(x− µ)2

2σ2

}

shorthand notation X ∼ N(µ, σ2)

• Standard normal (or Gaussian) distribution Z ∼ N(0,1)

• Normalization ∫ ∞

−∞
p(x)dx = 1
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• Cumulative distribution function

Φ(z) = P (Z ≤ z) =

∫ z

−∞
p(z′)dz′

• Expectation

E[g(X)] =

∫
g(x)p(x)dx

• mean, E[X]

• Variance E[(X − µ)2]

• For a Gaussian, mean = µ, variance = σ2

• Shorthand: x ∼ N(µ, σ2)

Recall: Standard deviation around the mean
• Recall that the interval [µ− σ, µ+ σ] (“one standard deviation”) always contains the

same amount of probability mass (ca. 68.27%), regardless of the choice of µ and σ.
• Similarly, the intervall [µ− 2σ, µ+ 2σ] contains ∼ 95.45% of the mass, and

[µ− 3σ, µ+ 3σ] contains ∼ 99.73%.
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COMPONENTS OF A 1D GAUSSIAN

µ = 2, σ = 2
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• Red: x 7→ x

• Green: x 7→ x− µ
• Blue: x 7→ − 1

2 (x− µ)2

• Brown: x 7→ − 1
2

(
x−µ
σ

)2

• Black: x 7→ exp
(
− 1

2

(
x−µ
σ

)2)
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COVARIANCE MATRICES

Recall: Covariance
The covariance of two random variables X1,X2 is

Cov[X1,X2] = E[(X1 − E[X1])(X2 − E[X2])] .

If X1 = X2, the covariance is the variance: Cov[X,X] = Var[X].

Covariance matrix
If X = (X1, . . . ,Xm) is a random vector with values in Rm, the matrix of all covariances

Cov[X] := (Cov[Xi,Xj])i,j =




Cov[X1,X1] · · · Cov[X1,Xm]
...

...
Cov[Xm,X1] · · · Cov[Xm,Xm]




is called the covariance matrix of X.

Notation
It is customary to denote the covariance matrix Cov[X] by Σ.
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GAUSSIAN IN MULTIPLE DIMENSIONS

Gaussian density in m dimensions
The quadratric function

− (x− µ)2

2σ2
= −1

2
(x− µ)(σ2)−1(x− µ)

is replaced by a quadratic form:

p(x;µµµ,Σ) :=
1√

2π det(Σ)
exp
(
−1

2

〈
(x−µµµ),Σ−1(x−µµµ)

〉)

Covariance matrix of a Gaussian
If a random vector X ∈ Rm has Gaussian distribution with density p(x;µ,Σ), its covariance
matrix is Cov[X] = Σ. In other words, a Gaussian is parameterized by its covariance.
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GAUSSIAN DENSITY: EXAMPLE

p(x;µµµ,Σ) with µµµ = (0, 0) with Σ =

(
2 1
1 2

)

Density Contour lines 1000 sample points
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CONTOUR LINES

Intersect density with a horizontal plane, draw intersection
as a curve, and project it down onto the plane.

Each elliptical line is such a contour,
for planes at different heights.

Contours and standard deviation
• Each ellipse consists of all points x ∈ R2 that satisfy the equation

〈
x,Σ−1x

〉
= c for some fixed c > 0 .

Changing c changes the size of the ellipse.
• The ellipses play the same role as intervals around the mean for 1D Gaussians: The ellipse

with
〈

x,Σ−1x
〉

= 1 contains ∼ 68.27% of the probability mass, etc.

• That is: The area within the ellipse given by
〈

x,Σ−1x
〉

= k corresponds to k standard
deviations.
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TOOLS: MAXIMUM LIKELIHOOD



PARAMETRIC MODELS

Models
A model P is a set of probability distributions. We index each distribution by a parameter value
θ ∈ T ; we can then write the model as

P = {Pθ|θ ∈ T } .
The set T is called the parameter space of the model.

Parametric model
The model is called parametric if the number of parameters (i.e. the dimension of the vector θ)
is (1) finite and (2) independent of the number of data points. Intuitively, the complexity of a
parametric model does not increase with sample size.

Density representation
For parametric models, we can assume that T ⊂ Rd for some fixed dimension d. We usually
represent each Pθ be a density function p(x|θ).
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MAXIMUM LIKELIHOOD ESTIMATION

Setting
• Given: Data x1, . . . , xn, parametric model P = {p(x|θ) | θ ∈ T }.
• Objective: Find the distribution in P which best explains the data. That means we have to

choose a "best" parameter value θ̂.

Maximum Likelihood approach
Maximum Likelihood assumes that the data is best explained by the distribution in P under
which it has the highest probability (or highest density value).

Hence, the maximum likelihood estimator is defined as

θ̂ML := arg max
θ∈T

p(x1, . . . , xn|θ)

the parameter which maximizes the joint density of the data.
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ANALYTIC MAXIMUM LIKELIHOOD

The i.i.d. assumption
The standard assumption of ML methods is that the data is independent and identically
distributed (i.i.d.), that is, generated by independently sampling repeatedly from the same
distrubtion P.

If the density of P is p(x|θ), that means the joint density decomposes as

p(x1, . . . , xn) =

n∏

i=1

p(xi|θ)

Maximum Likelihood equation
The analytic criterion for a maximum likelihood estimator (under the i.i.d. assumption) is:

∇θ
( n∏

i=1

p(xi|θ)
)

= 0

We use the "logarithm trick" to avoid a huge product rule computation.
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LOGARITHM TRICK

Recall: Logarithms turn products into sums

log
(∏

i

fi
)

=
∑

i

log(fi)

Logarithms and maxima
The logarithm is monotonically increasing on R+.

Consequence: Application of log does not change the location of a maximum or minimum:

max
y

log(g(y)) 6= max
y

g(y) The value changes.

arg max
y

log(g(y)) = arg max
y

g(y) The location does not change.
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ANALYTIC MLE

Likelihood and logarithm trick

θ̂ML = arg max
θ

n∏

i=1

p(xi|θ) = arg max
θ

log
( n∏

i=1

p(xi|θ)
)

= arg max
θ

n∑

i=1

log p(xi|θ)

Analytic maximality criterion

0 =

n∑

i=1

∇θ log p(xi|θ) =

n∑

i=1

∇θp(xi|θ)
p(xi|θ)

Whether or not we can solve this analytically depends on the choice of the model!
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EXAMPLE: GAUSSIAN MEAN MLE

Model: Multivariate Gaussians
The model P is the set of all Gaussian densities on Rd with fixed covariance matrix Σ,

P = {g( . |µ,Σ) |µ ∈ Rd} ,
where g is the Gaussian density function. The parameter space is T = Rd .

MLE equation
We have to solve the maximum equation

n∑

i=1

∇µ log g(xi|µ,Σ) = 0

for µ.
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EXAMPLE: GAUSSIAN MEAN MLE

0 =

n∑

i=1

∇µ log
1√

(2π)d|Σ|
exp
(
−1

2

〈
(xi − µ),Σ−1(xi − µ)

〉)

=
n∑

i=1

∇µ
(

log
( 1√

(2π)d|Σ|

)
+ log

(
exp
(
−1

2

〈
(xi − µ),Σ−1(xi − µ)

〉)

=
n∑

i=1

∇µ
(
−1

2

〈
(xi − µ),Σ−1(xi − µ)

〉)
= −

n∑

i=1

Σ−1(xi − µ)

Multiplication by (−Σ) gives

0 =
n∑

i=1

(xi − µ) ⇒ µ =
1
n

n∑

i=1

xi

Conclusion
The maximum likelihood estimator of the Gaussian expectation parameter for fixed covariance
is

µ̂ML :=
1
n

n∑

i=1

xi
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EXAMPLE: GAUSSIAN WITH UNKNOWN COVARIANCE

Model: Multivariate Gaussians
The model P is now

P = {g( . |µ,Σ) |µ ∈ Rd,Σ ∈ ∆d} ,
where ∆d is the set of all possible d × d covariance matrices. The parameter space is
T = Rd ×∆d .

ML approach
Since we have just seen that the ML estimator of µ does not depend on Σ, we can compute µ̂ML

first. We then estimate Σ using the criterion
n∑

i=1

∇Σ log g(xi|µ̂ML,Σ) = 0

Solution
The ML estimator of Σ is

Σ̂ML :=
1
n

n∑

i=1

(xi − µ̂ML)(xi − µ̂ML)t .
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