NEAREST NEIGHBOR CLASSIFICATION

NEAREST NEIGHBOR ALGORITHM

Given: Training data $(\tilde{\mathbf{x}}_1, \tilde{y}_1), \dots, (\tilde{\mathbf{x}}_n, \tilde{y}_n)$.

m-nearest neighbor rule

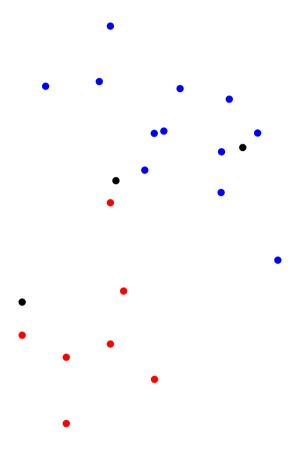
Fix $m \in \mathbb{N}$.

Classify data point **x** as:

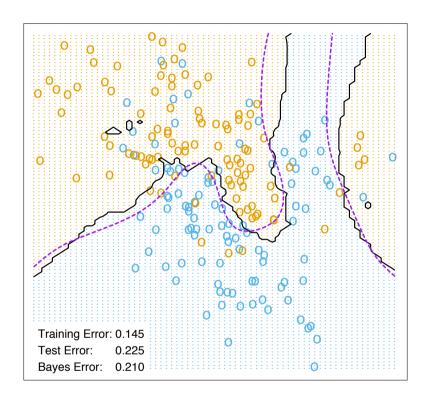
- 1. Find *m* training data points that are closest to \mathbf{x} in \mathbb{R}^d .
- 2. Assign **x** to the class the majority of these *m* points belong to.

Remarks

- Works for any number of classes.
- For two classes, *m* is usually chosen as an odd number to avoid ties. For more than two classes, one has to decide on a tie-breaking strategy in case no single class produces a majority (e.g. choose one of the classes that are in majority at random).
- There is no training algorithm. The training data is used directly to compute the prediction.



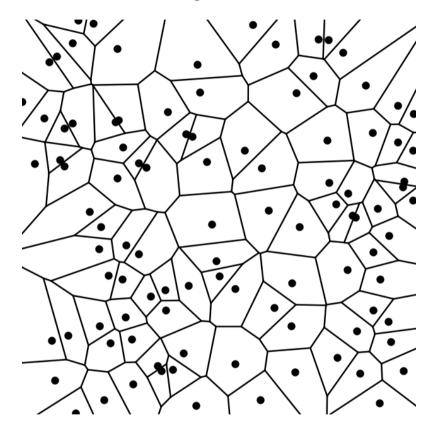
EXAMPLE: TWO CLASSES



7-NN solution

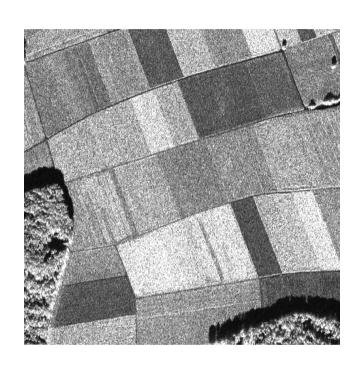
NEIGHBORHOOD REGIONS

For m = 1, one can plot subdivide \mathbb{R}^d into regions closest to each training point:

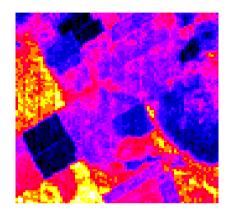


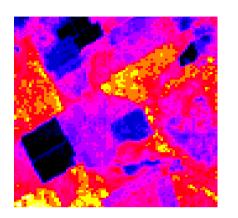
If a data point x falls into one of the cells, the 1-NN rule will assign it to the class label of the point defining the cell.

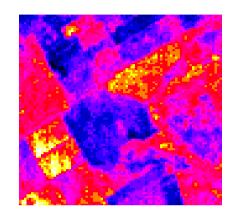
For m > 1, this becomes harder to plot.

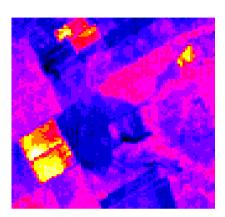


EXAMPLE: LAND USAGE CLASSIFICATION





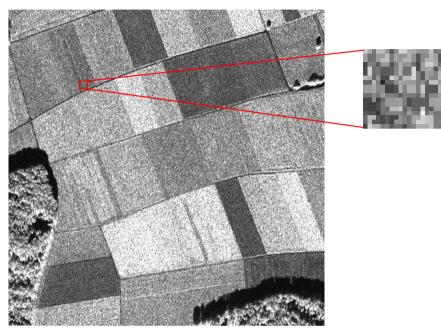




- These are the four "channels" (spectral bands) of a LANDSAT image.
- The land it shows is used for agriculture.
- There are 7 types of land usage (red soil, cotton, ...).
- For some images, training data is available.
- The goal is to build a classifier that can classify land use in new images.

FEATURE EXTRACTION

Extracting local image statistics

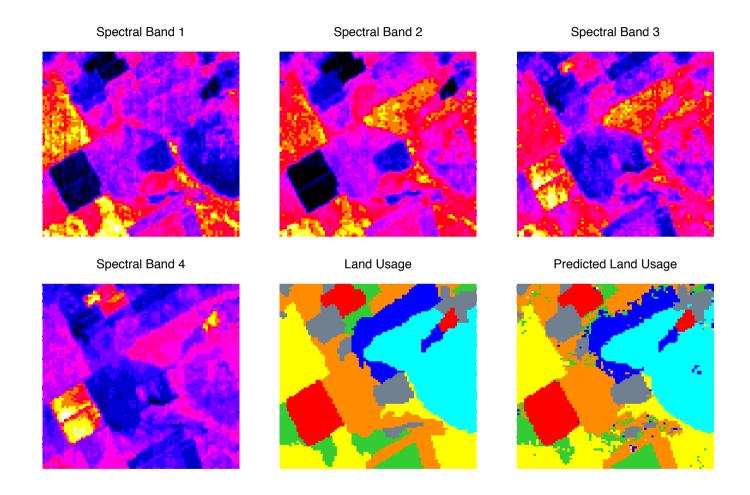


- 1. Place a small window (size $l \times l$) at the location.
- 2. Extract the pixel values inside the window. Write them into a vector $(\rightarrow \text{dimension } l^2)$.

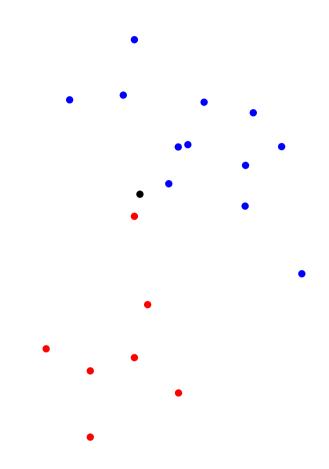
Resulting data

- We use l = 3, so each window contains $3 \times 3 = 9$ pixels.
- Since there are four channels we obtain $9 \times 4 = 36$ scalars characterizing each location.
- We use a nearest neighbor classifier on \mathbb{R}^{36} .
- To classify locations in a new image: Again extract a vector using a window, and feed that vector into the NN classifier.

LAND USAGE PREDICTION

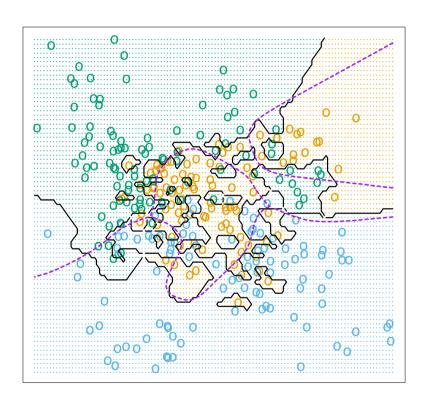


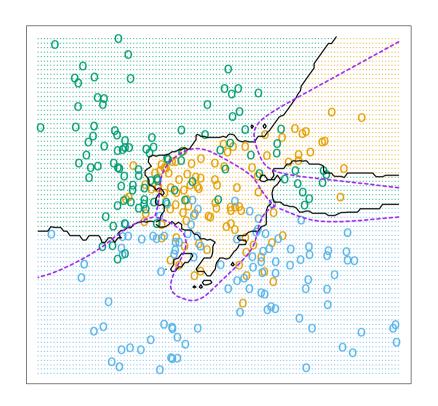
EXAMPLE



- 1-NN: Classified as "red".
- 2-NN: Tie.
- m-NN with m > 2: Classified as "blue".

INFLUENCE OF m





1-NN solution 15-NN solution

NEAREST NEIGBHOR CLASSIFICATION

Advantages

- Simple.
- Can be applied to any number of classes.
- Often works very well.

Disadvantages

For large training data sets:

- Requires a lot of memory.
- The entire training set has to be searched for each decision.

Also:

• We are not "learning" anything, even though we can predict.

EVALUATING AND TUNING A CLASSIFIER

WHAT NEXT

We will consider two problems:

- 1. Once we have trained a classifier, how do we decide whether it is "good"?
- 2. We have already seen classifiers with a tuning parameter (e.g. the number of neighbors *m* in *m*-NN.) How do we choose the parameter?

EVALUATING A CLASSIFIER

Suppose we have trained a classifier f on training data $(\tilde{\mathbf{x}}_1, \tilde{y}_1), \dots, (\tilde{\mathbf{x}}_n, \tilde{y}_n)$. (We use 0-1 loss, so we simply count mistakes.)

Measuring performance

We can measure performance as an "error rate":

error rate of f = percentage of data points produced by the data source that f misclassifies

Note: For 0-1 loss and i.i.d. data, this coincides with the risk of f.

Interpreting the error rate

Consider a two class problem, where each class is equally probable.

• The "baseline" error rate is 50%. Classifiers that do worse than that are irrelevant.

Explanation:

- If we predict by flipping a fair coin (and completely ignore the data), we will achieve 50% error rate.
- If f has error rate > 50%, we can turn it into a classifier with error rate < 50% by swapping the classes.

ASSESSING THE ERROR RATE

How do we measure the error rate in practice?

- We don't have access to the data source itself.
- We only have access to data from the source.
- We can estimate the error rate by measuring it on data: If $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ are data points, we can compute

error rate of
$$f \approx \frac{\sum_{i=1}^{m} \mathbb{I}\{f(\mathbf{x}_i) \neq y_i\}}{m} = \frac{\text{number of misclassified data point}}{\text{number of data points}}$$

• To do so, we need *labeled* data points.

Can we use the training data?