
MEASURING CLASSIFIER PERFORMANCE



ERROR COUNTING

Error types in a two-class problem
• False positives (type I error): True label is -1, predicted label is +1.
• False negative (type II error): True label is +1, predicted label is -1.

We write TP = # true positives, FP = # false positives, TN = # true negatives,
FN = # false negatives

Error rate

ER =
# wrong predictions

# observations
=

FP + FN
FP + FN + TP + TN

Does not distinguish errors between classes.

Relevance
Distinction between error types is crucial e.g. if:

• Classes differ significantly in size
• One type of error has worse consequences than other
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MATRIX REPRESENTATION

The different types of errors can be summarized in a matrix as

positive label negative label
predicted positive TP/n FP/n
predicted negative FN/n TN/n

where n is the number of observations.

This is called a confusion matrix or contingency table.
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DEPENDENCE ON PARAMETERS

• Suppose a classifier is determined by some parameter θ.
• As we change θ, the number of false positives and false negatives changes.
• We hence have parameter-dependent quantities TP(θ), TN(θ), etc.
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PRECISION AND RECALL

One summary measure of classifier performance are precision and recall:

Precision(θ) :=
TP(θ)

TP(θ) + FP(θ)
Recall(θ) :=

TP(θ)

TP(θ) + FN(θ)

A precision/recall plot eveluates precision and recall on validation/test data for a range of
different values of θ, and plots precision (vertical axis) against recall (horizontal axis):

• Each point in the plot represents a classifier, for one value of θ.
• Ideally, both precision and recall are high, so “good values” are in the upper right corner.
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ROC DIAGRAMS

A plot of the true positive rate (TPR) versus the false positive rate (FPR) is called a receiver
operating characteristic (ROC) curve:

TPR =
TP

# Positives
FPR =

FP
# Negatives

• “Good” region: Upper left
corner. (P/R: Upper right
corner.)

• Classifier below diagonal (lower
left to upper right): Worse than
random decision.
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INTERPOLATION IN ROC CURVES

Linear interpolation of classifiers
• Given: Classifiers fθ1 , fθ2 , interpolation parameter λ ∈ [0, 1].
• Define new classifier fλ as: Randomly choose output of fθ1 with probability λ, output of

fθ2 with probability 1− λ.

Error rates under interpolation

TPR(fλ) = λTPR(fθ1 ) + (1− λ)TPR(fθ2 )

The same holds for FPR, ER (but not for Precision and Recall).

f
θ1

f
θ2 • ROC plot: Every point represents a classifier

performance.
• Consequence: A classifier with performance represented

by a point on a straight line between fθ1 and fθ2 in the
plot can be constructed by linear interpolation.

• The perfomance values constructable from existing
classifiers in this way are called achievable.
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ROC INTERPOLATION: CONVEX HULL

f
θ1

f
θ2

f
θ3

• Suppose classifiers fθ1 , fθ2 , fθ3 are given:
• If the objective is to optimize ROC

performance, fθ3 is worthless.
• We can always obtain a better classifiers

by interpolating fθ1 and fθ2 .

In general
• Recall the interpolation formula λTPR(fθ1 ) + (1− λ)TPR(fθ2 ) is a convex combination.
• If {fθ1 , . . . , fθk} are given: Any convex combination of these is achievable.

For given classifiers {fθ1 , . . . , fθk}, the convex hull of these classifiers in the ROC plot is
achievable.
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