CLASSIFICATION



ASSUMPTIONS AND TERMINOLOGY

In a classification problem, we record measurements Xx;, Xy, . . ..

We assume:

1. All measurements can be represented as elements of a Euclidean R?.

2. Each x; belongs to exactly one out of K categories, called classes. We express this using
variables y; € [K], called class labels:

vi=k << "x;inclass k"

3. The classes are characterized by the (unknown!) joint distribution of (X, Y), whose
density we denote p(x, y). The conditional distribution with density p(x|y = k) is called
the class-conditional distribution of class k.

4. The only information available on the distribution p is a set of example measurements
with labels,

(ilaj}l)a ceey (inaj}n> ’
called the training data.
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CLASSIFIERS

Definition
A classifier is a function
f:RY —> K],

1.e. a function whose argument is a measurement and whose output is a class label.

Learning task

Using the training data, we have to estimate a good classifier. This estimation procedure is also
called training.

A good classifier should generalize well to new data. Ideally, we would like it to perform with
high accuracy on data sampled from p, but all we know about p is the training data.

Simplifying assumption
We first develop methods for the two-class case (K=2), which is also called binary
classification. In this case, we use the notation

ye{—-1,+1} instead of y € {1,2}
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SUPERVISED AND UNSUPERVISED LEARNING

Supervised vs. unsupervised

Fitting a model using labeled data is called supervised learning. Fitting a model when only
X1, ..., Xy are available, but no labels, is called unsupervised learning.

Types of supervised learning methods

e Classification: Labels are discrete, and we estimate a classifier f : RY — [K],

e Regression: Labels are real-valued (y € R), and we estimate a continuous function
f : R?® —— . This functions is called a regressor.
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Algorithm

I. On training data, fit a Gaussian into each class (by MLE).
Result: Densities g(x|ua, X ) and g(xX|puo, Xo)

2. Classify a new point x according to which density assigns larger value:

- +1  if g(x[ug,Xe) > g(x|pe, Xe)
b —1 otherwise

Resulting classifier

e Hyperplane if > g5=% = constant - diag(1, ..., 1) (“isotropic” Gaussians).

e Curved surface otherwise.
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DISCUSSION

Possible weakness

1. Distributional assumption.

2. Density estimates emphasize main bulk of data. Critical region for classification is at
decision boundary, i.e. region between classes.

Consequence

e (Classification algorithms focus on class boundary.

e Technically, this means: We focus on estimating a good decision surface (e.g. a
hyperplane) between the classes; we do not try to estimate a distribution.

Our program in the following

e First develop methods for the linear case, 1.e. separate two classes by a hyperplane.

e Then: Consider methods that do not require the decision surface (= the boundary between
classes) to be linear (= a straight line or plane).

e Dealing with more than two classes.
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MEASURING PERFORMANCE: LLOSS FUNCTIONS

Definition
A loss function is a function

L:[K] x [K] —>[0,00) ,
which we read as

L : (true class label y, classifier output f(x)) — loss value .

Example: The two most common loss functions

1. The 0-1 loss is used in classification. It counts mistakes:

L (3, (x)) = {‘f 2

2. Squared-error loss is used in regression:

L*(y,f(x)) := [ly = f(x)]I5

Its value depends on how far off we are: Small errors hardly count, large ones are very
expensive.
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RISK

Motivation
It may be a good strategy to allow (even expensive) errors for values of x which are very
unlikely to occur

Definition
The risk R(f) of a classifier f is its expected loss under p. If you prefer equations:

K
R(f) == Ep[L(y,f(x)] = / L(y,f(x))p(x,y)dxdy = > / L(y,f(x))p(x,y)dx .
y=1

When we train f, we do not know p, and have to approximate R using the data:

The empirical risk R, (f) is the plug-in estimate of R(f), evaluated on the training sample
(ibi}l)a SR (inai}n)

Ru(f) := % > LG f(%))
i=1
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