LINEAR CLASSIFICATION

SCALAR PRODUCTS

Definition

For two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^d , the scalar product of \mathbf{x} and \mathbf{y} is

$$\langle \mathbf{x}, \mathbf{y} \rangle := x_1 y_1 + \ldots + x_d y_d = \sum_{i=1}^d x_i y_i$$

Note: $\langle \mathbf{x}, \mathbf{x} \rangle = \|\mathbf{x}\|^2$, so the Euclidean norm (= the length) of \mathbf{x} is $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

Linearity

The scalar product is additive in both arguments,

$$\langle \mathbf{x} + \mathbf{z}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{z}, \mathbf{y} \rangle$$
 and $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$

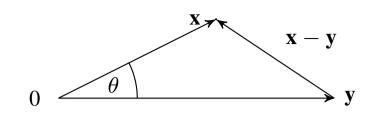
and scales as

$$\langle c \cdot \mathbf{x}, \mathbf{y} \rangle = c \cdot \langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, c \cdot \mathbf{y} \rangle$$
 for any $c \in \mathbb{R}$.

Functions that are additive and scale-equivariant are called **linear**, so the scalar product is linear in both arguments.

THE COSINE RULE

Recall: The cosine rule



If two vectors \mathbf{x} and \mathbf{y} enclose an angle θ , then

$$\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\cos\theta\|\mathbf{x}\|\|\mathbf{y}\|$$

(If θ is a right angle, then $\cos \theta = 0$, and this becomes Pythogoras' $\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.)

Cosine rule for scalar products

It is easy to check that

$$\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{y} \rangle$$

Substituting gives

$$2\cos\theta \|\mathbf{x}\| \|\mathbf{y}\| = 2\langle \mathbf{x}, \mathbf{y}\rangle$$

and hence

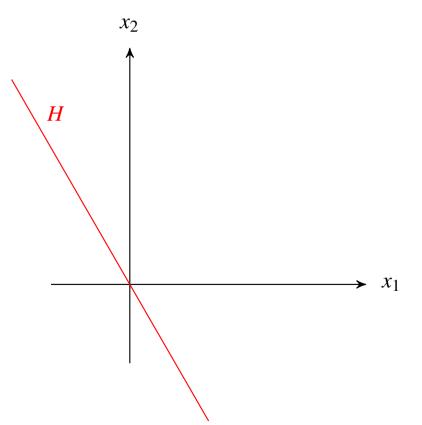
$$\cos \theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

REPESENTING A HYPERPLANE

Consequences of the cosine rule

The scalar product satisfies $\langle \mathbf{x}, \mathbf{y} \rangle = ||\mathbf{x}|| ||\mathbf{y}||$ if and only if \mathbf{x} and \mathbf{y} are parallel, and

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0$$
 if and only if \mathbf{x} and \mathbf{y} are orthogonal.

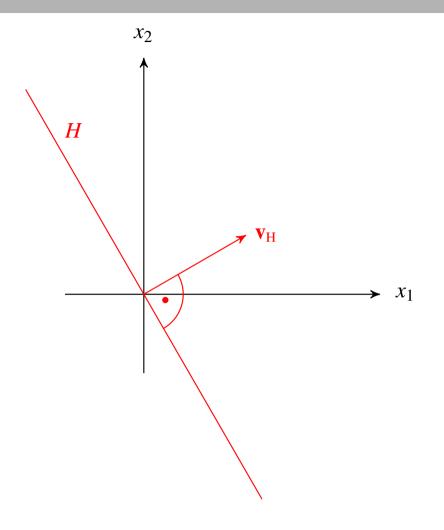


Hyperplanes

A **hyperplane** in \mathbb{R}^d is a linear subspace of dimension (d-1).

- A hyperplane in \mathbb{R}^2 is a line.
- A hyperplane in \mathbb{R}^3 is a plane.
- A hyperplane always contains the origin, since it is a linear subspace.

HYPERPLANES



Hyperplanes

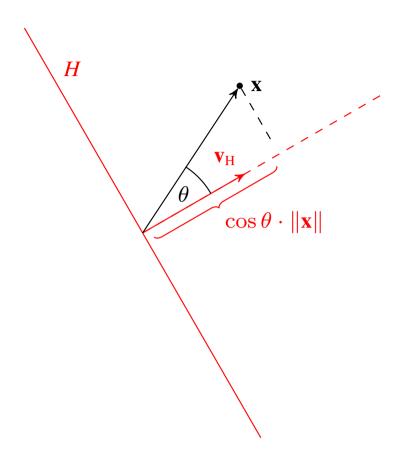
- Consider a hyperplane H in \mathbb{R}^d . Think of H as a set of points.
- Each point \mathbf{x} in H is a vector $\mathbf{x} \in \mathbb{R}^d$.
- Now draw a vector \mathbf{v}_{H} that is orthogonal to H.
- Then any vector $\mathbf{x} \in \mathbb{R}^d$ is a point in H if and only if \mathbf{x} is orthogonal to \mathbf{v}_H .
- Hence:

$$\mathbf{x} \in H \qquad \Leftrightarrow \qquad \langle \mathbf{x}, \mathbf{v}_{H} \rangle = 0 \ .$$

• If we choose \mathbf{v}_{H} to have length $\|\mathbf{v}_{H}\| = 1$, then \mathbf{v}_{H} is called a **normal vector** of H.

$$H = \{ \mathbf{x} \in \mathbb{R}^d \mid \langle \mathbf{x}, \mathbf{v}_{\mathrm{H}} \rangle = 0 \}$$
.

WHICH SIDE OF THE PLANE ARE WE ON?



Distance from the plane

- The projection of \mathbf{x} onto the direction of \mathbf{v}_H has length $\langle \mathbf{x}, \mathbf{v}_H \rangle$ measured in units of \mathbf{v}_H , i.e. length $\langle \mathbf{x}, \mathbf{v}_H \rangle / ||\mathbf{v}_H||$ in the units of the coordinates.
- By cosine rule: The distance of \mathbf{x} from the plane is

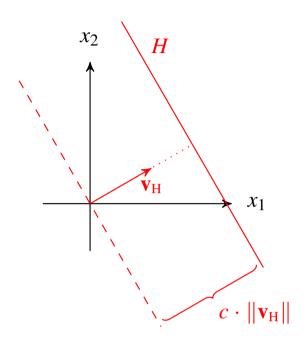
$$d(\mathbf{x}, H) = \frac{\langle \mathbf{x}, \mathbf{v}_{H} \rangle}{\|\mathbf{v}_{H}\|} = \cos \theta \cdot \|\mathbf{x}\|.$$

Which side of the plane?

- The cosine satisfies $\cos \theta > 0$ iff $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$.
- We can decide which side of the plane x is on using

$$\operatorname{sgn}(\cos\theta) = \operatorname{sgn}\langle \mathbf{x}, \mathbf{v}_{H}\rangle$$
.

SHIFTING HYPERPLANES



Affine Hyperplanes

• An **affine hyperplane** $H_{\mathbf{w}}$ is a hyperplane shifted by a vector \mathbf{w} ,

$$H_{\mathbf{w}} = H + \mathbf{w}$$
.

(That means \mathbf{w} is added to each point \mathbf{x} in H.)

• We choose w in the direction of v_H , so

$$\mathbf{w} = c \cdot \mathbf{v}_{\mathsf{H}}$$
 for some $c > 0$.

Which side of the plane are we on?

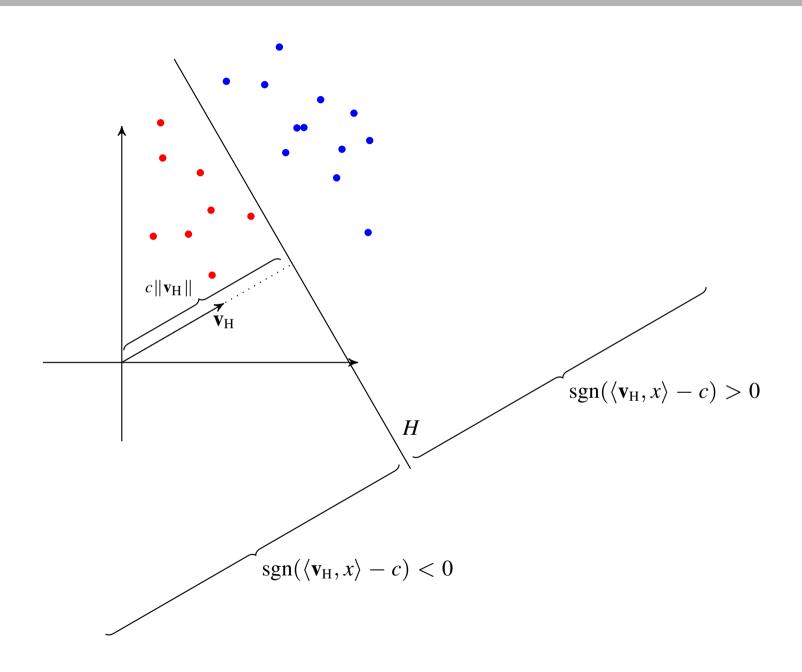
• Which side of $H_{\mathbf{w}}$ a point \mathbf{x} is on is determined by

$$\operatorname{sgn}(\langle \mathbf{x} - \mathbf{w}, \mathbf{v}_{\mathsf{H}} \rangle) = \operatorname{sgn}(\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle - c \langle \mathbf{v}_{\mathsf{H}}, \mathbf{v}_{\mathsf{H}} \rangle) = \operatorname{sgn}(\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle - c \|\mathbf{v}_{\mathsf{H}}\|^2).$$

• If \mathbf{v}_H is a unit vector, we can use

$$sgn(\langle \mathbf{x} - \mathbf{w}, \mathbf{v}_{H} \rangle) = sgn(\langle \mathbf{x}, \mathbf{v}_{H} \rangle - c)$$
.

CLASSIFICATION WITH AFFINE HYPERPLANES



LINEAR CLASSIFIERS

Definition

A **linear classifier** is a function of the form

$$f_{\rm H}(\mathbf{x}) := \operatorname{sgn}(\langle \mathbf{x}, \mathbf{v}_{\rm H} \rangle - c)$$
,

where $\mathbf{v}_{\mathrm{H}} \in \mathbb{R}^d$ is a vector and $c \in \mathbb{R}_+$.

Note:

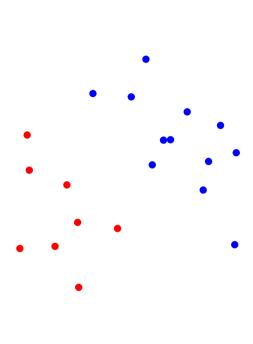
- We usually assume \mathbf{v}_H to be a unit vector. If it is not, f_H still defines a linear classifier, but c describes a shift of a different length.
- Specifying a linear classifier in \mathbb{R}^d requires d+1 scalar parameters.

Definition

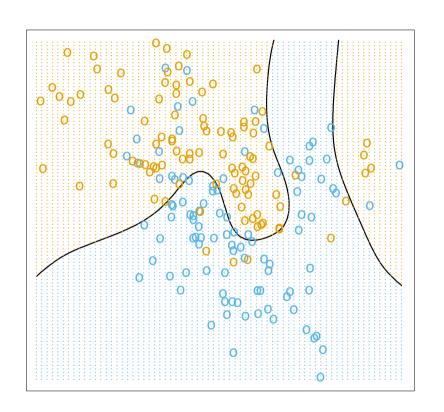
Two sets $A, B \in \mathbb{R}^d$ are called **linearly separable** if there is an affine hyperplane H which separates them, i.e. which satisfies

$$\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle - c = \begin{cases} < 0 & \text{if } \mathbf{x} \in A \\ > 0 & \text{if } \mathbf{x} \in B \end{cases}$$

LINEAR SEPARABILITY



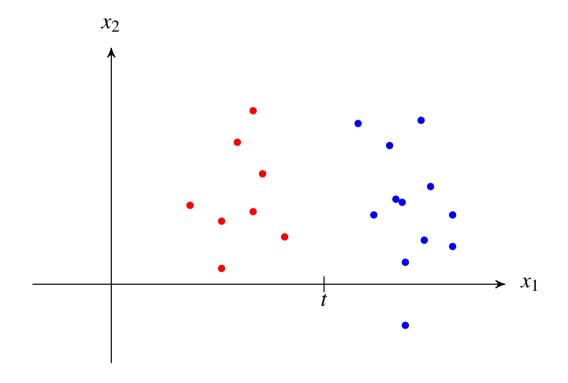
linearly separable



not linearly separable

LINEAR SEPARABILITY

- Recall that when data is represented by points in \mathbb{R}^d , each axis represents a quantity that is measured (a "variable").
- If there exists a single variable that distinguishes two classes, these classes can be distinguished along a single axis.



• In this illustration, we could classify by a "threshold point" t on the line.

LINEAR SEPARABILITY

- Even if classes cannot be distinguished by a single variable, they may be distinguishable by a combination of several variables.
- That is the case for linearly separable data. The threshold point along x_1 is now a function of the threshold point along x_2 , and vice versa. Linearly separable also implies this function is linear.

