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SCALAR PRODUCTS

Definition
For two vectors x and y in R?, the scalar product of x and y is

d
X,y) = xyi+...+xXa = in)’i
i=1

Note: (x,x) = ||x||%, so the Euclidean norm (= the length) of x is ||x|| = +/(x, x).

Linearity
The scalar product is additive in both arguments,

(x+2z,y) =(x,y) +(z,y) and (X,y+2z)=(X,y)+(X,2)

and scales as
(c-x,y) =c-(x,y) = (X,c-Yy) foranyc € R.

Functions that are additive and scale-equivariant are called linear, so the scalar product is linear
in both arguments.
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THE COSINE RULE

Recall: The cosine rule 0

If two vectors x and y enclose an angle 6, then

2 2 2
[x = ylI” = [[x[I" + llyll” — 2 cos 0[[x]|[y]]
(If 6 is a right angle, then cos § = 0, and this becomes Pythogoras’ ||x — y||? = [|x]|* + |ly]]*.)

Cosine rule for scalar products
It is easy to check that
)1+ llyll® =[x = ¥[I* = 2{x, y)

Substituting gives
2 cos O||x||[lyll =2 (x,¥)

and hence

(X, )
Al

cosf =
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REPESENTING A HYPERPLANE

Consequences of the cosine rule
The scalar product satisfies (x,y) = ||x||||y|| if and only if x and y are parallel, and

(x,y) =0 if and only if x and y are orthogonal.

X2

Hyperplanes

A hyperplane in R? is a linear subspace of dimension
(d—1).

o A hyperplane in R? is a line.

e A hyperplane in R? is a plane.
X1

Y

e A hyperplane always contains the origin, since it is
a linear subspace.
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X2

Vu

Hyperplanes

Y

Peter Orbanz - Applied Data Mining

X1

Consider a hyperplane H in R¢. Think of H as a set
of points.

Each point x in H is a vector x € R¢.
Now draw a vector vy that is orthogonal to H.

Then any vector x € R? is a point in H if and only
if x 1s orthogonal to vy.

Hence:
xeH & (x,vy) =0 .

If we choose vy to have length ||vy|| = 1, then vy
is called a normal vector of H.

H={xcR| (x,vq) = 0} .
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WHICH SIDE OF THE PLANE ARE WE ON?

Distance from the plane

e The projection of x onto the direction of vy has length
(X, vy ) measured in units of vy, i.e. length
(X, vu) /||vu|| in the units of the coordinates.

e By cosine rule: The distance of x from the plane is

d(x,H) = (X, Vi)

= cosf - ||x|| .
[[va]

Which side of the plane?

e The cosine satisfies cos > 0iff0 € (-2, 2).

2772
e We can decide which side of the plane x is on using

sgn(cos 8) = sgn (X, vy) .
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SHIFTING HYPERPLANES

Affine Hyperplanes

e An affine hyperplane Hy is a hyperplane shifted by a
vector w,
w — H + W .

(That means w is added to each point x in H.)

N X1 e We choose w in the direction of vy, SO
\ w=c-vyg forsomec >0.

\
\ /
\
S ¢ ||vul|

Which side of the plane are we on?
e Which side of Hy a point X is on is determined by
sgn((x — w, vi)) = sgn({x, vu) — ¢ (vur, vur)) = sgn((x, vir) — c[|vur[|?) .
e [f vy 1S a unit vector, we can use

sgn((x — w, vy)) = sgn((X,vy) — ¢) .
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sgn({vg,x) —c) >0

sgn({vg,x) —c) <0
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LINEAR CLASSIFIERS

Definition

A linear classifier is a function of the form

Su(x) = sgn((x, vu) —¢) ,

where vy € R? is a vector and ¢ € R .

Note:

e We usually assume vy to be a unit vector. If it is not, fy still defines a linear classifier, but
c¢ describes a shift of a different length.

e Specifying a linear classifier in R¢ requires d + 1 scalar parameters.

Definition

Two sets A, B € R are called linearly separable if there is an affine hyperplane H which
separates them, i.e. which satisfies

<XV>—C— <0 1ifxeA
i “1>0 ifxeB
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linearly separable not linearly separable
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o Recall that when data is represented by points in R?, each axis represents a quantity that is
measured (a “variable”).

o If there exists a single variable that distinguishes two classes, these classes can be
distinguished along a single axis.

X2

A

~—

e In this illustration, we could classify by a “threshold point” ¢ on the line.
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e Even if classes cannot be distinguished by a single variable, they may be distinguishable
by a combination of several variables.

e That is the case for linearly separable data. The threshold point along x; is now a function

of the threshold point along x,, and vice versa. Linearly separable also implies this

function is linear.

X2

separable by a single measurement
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not separable by a single measurement

but linearly separable

Y

X1
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