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INTRODUCTION



COURSE WEBPAGE

http://stat.columbia.edu/~porbanz/UN3106S18.html
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THIS CLASS

What to expect
• This class is an introduction to machine learning.
• Topics: Classification; “learning”; basic neural networks; etc

Homework
• Programming + “theoretical” questions.
• All programming will be done in R.

What this class is not
• Applied.

The purpose of this class is to understand how some of
the most important machine learning methods work.
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BOOKS

T. Hastie, J. Friedman and R. Tibshirani:
"The Elements of Statistical Learning".
2nd Edition, Springer, 2009.

Available online.

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I[rank(|β̂j | ≤ M)

Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

β̂ β^2
. .β

1

β 2

β1 β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.

←− It’s much prettier inside.

Links to this book and other potentially useful references will be added to the class homepage as they become relevant. All of
these are optional; the relevant material are the course slides.
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BACKGROUND KNOWLEDGE

• Euclidean space; vectors

• Scalar products

• Derivatives and gradients of functions

• Probability distributions and densities. Example:

P(y|x) = P(x|y)P(y)
P(x)

or p(y|x) = p(x|y)p(y)
p(x)

• Gaussian distribution on R and Rd

• (Eigenvalues and eigenvectors)

• Regression
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CLASSIFICATION

Problem setting
Classification methods subdivide data into several, distinct classes. More formally:

• Data x1, x2, ....
• Each observations falls into one of K categories (the classes).
• Learning task: Find a classification function

f : X→ {1, . . . ,K} .
• Input of the learning problem: Correctly categorized examples x̃1, . . . , x̃n.

Approach
• Define:

1. A set of possible classification functions f (the hypothesis set).
2. A cost function which assumes a large value when mistakes are made.

• To find a good classifier, search the hypothesis class for the f which keeps costs as small
as possible.

• Different types of errors can be more or less expensive.
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USPS DATA

Each digit: 16× 16 pixels, i.e. x ∈ R256
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CANCER DIAGNOSIS
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CLASSIFICATION

Previous examples as classification problems
• USPS data: 10 classes (+ one “outlier class”)
• Cancer diagnosis: 4 classes

Face recognition
• Hard problem, but much recent progress.
• Deployable systems can now have around 90+% accuracy on people in their database.
• 1 class per person in data base + 1 class for “none of those”.

Fingerprint recognition
• Again: 1 class per person in data base + 1 class for “none of those”.
• Deployable systems have been available for ca. 15 years.
• Development of computer systems lead to reassessment of human error rates.
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TWO-CLASS CLASSIFICATION: BASIC IDEAS
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1. Represent each object as a
point; axes = measurements
(→ vector spaces)

2. Separate classes by hyperplane
(→ scalar products)

3. Define a function that measures how well the plane
separates classes; small values indicate a good fit.

4. Find “good” hyperplane by minimizing function
(→ derivatives, gradients, Hessians, etc)
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TWO-CLASS CLASSIFICATION: BASIC IDEAS

•
•

•

•

•

•

•

•

•• •

•

•

•

•

•
•

•

•

• ••

•

••

•

•

•
•

•

•

•

•

• ••

•
•

•

•

• •

•

• •

•

•

• •
• • •

•
•

•

•

•

•

•
•

••

•

•

•
•

•

•

•
•

•

•

•

•
•

•
• •

•

•

••
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

••

•

•
•

•
•
•

•

• •

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

••

•

•

•
••

• •

•

•

• • •

•

• •

•

•

••

•

•
•

•
•

• •

•

•
•

•

•

•

••
•

•

•

•
•

•

•
•

•
• •

•

•

•

•

• ••

•

•

•

•
•
•••

•

•
•

•••
•

•
•

•

•

• •

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

• •• ••

•

•

•
•

•

••

••

•
•

•

•

•

•

•

•

•

•

•••
•

•

•

•
•

•

••• •
•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

••

• •

•

•
•

•
•

•

•

•

•
•

•

•
•

•

•

•
•

•

•

•
•

•

•

••

•

•

• •

•
•
•
•

•

•• •

•

•

•
•

•

•

•
•

•

•

•

•
•

•
•

•

•
•

•

•

•

• •

•

•

••
•

•

••

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•
•
••

• •

•

•
•

•

•
•

•

•

•• •
•

•
•

•

•

•
•

•
•

•

•

•

• •
•

•

•
•

•

•

• •

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•• •

•

•

•

•

•
•

•
• • •

• •

•

•
•

•

•

•

•

•
•

• •

•

•

•

•

•

•
•

•

•
•
•

•

•

•

•
•

•

•

•

•••

•
•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

• •

•

•

•

••
•

•
•

•

•

•

•
•

•

•

•
• ••

•

•

•

•

•

•

•
•
•

•

•

•

•
•

• •

•

•

•
•

•

•

•

•

•
•
•

•
•

•

••
•

•

•

•

•

•
•

•
••

•

•
•

•

•

•
•

•
•

•

•

•

•

•

• •

•

•
•

•

•

•

•

•

•

•
•

•

•
•

•

•
• •

•

• •

•

•

•

• •

•
•

•

•

•

•

• •

•

•
•

• ••

•
•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•
•

• • •

•

•

•

•

•

•

•

•
•

•

•

•

• •

•

•
•

•

•

•

•

•

• ••

• •
•

•

•

•

•

•

•

•
•

•

•

•

•

• • •
•

•

•

•

• •
•
•

•

•
•

•• •

•

•
•

•

•

•

•• •
•

•

•
•

•

• •

•

•
•

•

•

•

•

•

•

•
• •

• •

•

•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•
•

•

• •

••
•

•

•

•

•

•

•
•

••

•

•

•

•

•

•
•

•
•

•

•

•

• •
•

•
•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•
•

•

•

•
•••

••

•

•

• •

•

•
•

•
••

•

•

•

•
•

•

•

•

•

•
•

•

••
•

•

•
•• •

•

•
•

•

•
•

•
••• •

•

•

•

•

•

•

•

•

•

•
•

•

••
•

•

•

•

•

•
•

•

•

•

•
•

•
•

•
•

•• •

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

••

•

•

•
•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

• •

•
•

•

•
•

•

• •

•

••

•
•

•

•

•

•
•

••• •

•
•

1. Represent each object as a
point; axes = measurements
(→ vector spaces)

2. Separate classes by hyperplane
(→ scalar products)

3. Define a function that measures how well the plane
separates classes; small values indicate a good fit.

4. Find “good” hyperplane by minimizing function
(→ derivatives, gradients, Hessians, etc)
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1. Represent each object as a
point; axes = measurements
(→ vector spaces)

2. Separate classes by hyperplane
(→ scalar products)

3. Define a function that measures how well the plane
separates classes; small values indicate a good fit.

4. Find “good” hyperplane by minimizing function
(→ derivatives, gradients, Hessians, etc)
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TWO-CLASS CLASSIFICATION: BASIC IDEAS
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1. Represent each object as a
point; axes = measurements
(→ vector spaces)

2. Separate classes by hyperplane
(→ scalar products)

3. Define a function that measures how well the plane
separates classes; small values indicate a good fit.

4. Find “good” hyperplane by minimizing function
(→ derivatives, gradients, Hessians, etc)
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TWO-CLASS CLASSIFICATION: BASIC IDEAS
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1. Represent each object as a
point; axes = measurements
(→ vector spaces)

2. Separate classes by hyperplane
(→ scalar products)

3. Define a function that measures how well the plane
separates classes; small values indicate a good fit.

4. Find “good” hyperplane by minimizing function
(→ derivatives, gradients, Hessians, etc)
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PENDULUM
(WORK OF MARC DEISENROTH AND CARL EDWARD RASMUSSEN)

Task
Balance the pendulumn upright by moving the
sled left and right.

• The computer can control only the motion
of the sled.

• Available data: Current state of system
(measured 25 times/second).

Formalization
State = 4 variables (sled location, sled velocity, angle, angular velocity)

Actions = sled movements

The system can be described by a function

f : S ×A → S
(state, action) 7→ state
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ABOUT MACHINE LEARNING

Historical origins: Artificial intelligence and engineering
Machines need to...

• recognize patterns (e.g. vision, language)
• make decisions based on experience (= data)
• predict
• cope with uncertainty

Today
• There is no clear dividing line between machine learning and statistics anymore.
• Engineering aspects (such as software development and specialized hardware) have

become much more important as machine learning systems get deployed.

Modern applications: (A few) Examples
• medical diagnosis
• face detection/recognition
• speech and handwriting recognition
• web search

• recommender systems
• bioinformatics
• natural language processing
• computer vision
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REVIEW: GAUSSIAN DISTRIBUTIONS



GAUSSIAN DISTRIBUTION

Gaussian density in one dimension

p(x;µ, σ) :=
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
• µ = expected value of x, σ2 = variance, σ = standard deviation

• The quotient x−µ
σ

measures deviation of x from its expected value in
units of σ (i.e. σ defines the length scale)

The Gaussian Distribution

Chris Williams, School of Informatics, University of Edinburgh
Overview

• Probability density functions

• Univariate Gaussian

• Multivariate Gaussian

• Mahalanobis distance

• Properties of Gaussian distributions

• Graphical Gaussian models

• Read: Tipping chs 3 and 4

Continuous distributions
• Probability density function (pdf) for a continuous random variable X

P (a ≤ X ≤ b) =

∫ b

a
p(x)dx

therefore
P (x ≤ X ≤ x + δx) " p(x)δx

• Example: Gaussian distribution

p(x) =
1

(2πσ2)1/2
exp−

{
(x − µ)2

2σ2

}

shorthand notation X ∼ N(µ, σ2)

• Standard normal (or Gaussian) distribution Z ∼ N(0,1)

• Normalization ∫ ∞

−∞
p(x)dx = 1

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

• Cumulative distribution function

Φ(z) = P (Z ≤ z) =

∫ z

−∞
p(z′)dz′

• Expectation

E[g(X)] =

∫
g(x)p(x)dx

• mean, E[X]

• Variance E[(X − µ)2]

• For a Gaussian, mean = µ, variance = σ2

• Shorthand: x ∼ N(µ, σ2)

Recall: Standard deviation around the mean
• Recall that the interval [µ− σ, µ+ σ] (“one standard deviation”) always contains the

same amount of probability mass (ca. 68.27%), regardless of the choice of µ and σ.
• Similarly, the intervall [µ− 2σ, µ+ 2σ] contains ∼ 95.45% of the mass, and

[µ− 3σ, µ+ 3σ] contains ∼ 99.73%.
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COMPONENTS OF A 1D GAUSSIAN

µ = 2, σ = 2

-5 5 10

-2

-1

1

2

• Red: x 7→ x

• Green: x 7→ x− µ

• Blue: x 7→ − 1
2 (x− µ)2

• Brown: x 7→ − 1
2

(
x−µ
σ

)2

• Black: x 7→ exp
(
− 1

2

(
x−µ
σ

)2)
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COVARIANCE MATRICES

Recall: Covariance
The covariance of two random variables X1,X2 is

Cov[X1,X2] = E[(X1 − E[X1])(X2 − E[X2])] .

If X1 = X2, the covariance is the variance: Cov[X,X] = Var[X].

Covariance matrix
If X = (X1, . . . ,Xm) is a random vector with values in Rm, the matrix of all covariances

Cov[X] := (Cov[Xi,Xj])i,j =

Cov[X1,X1] · · · Cov[X1,Xm]
...

...
Cov[Xm,X1] · · · Cov[Xm,Xm]


is called the covariance matrix of X.

Notation
It is customary to denote the covariance matrix Cov[X] by Σ.
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GAUSSIAN IN MULTIPLE DIMENSIONS

Gaussian density in m dimensions
The quadratric function

− (x− µ)2

2σ2
= − 1

2
(x− µ)(σ2)−1(x− µ)

is replaced by a quadratic form:

p(x;µµµ,Σ) :=
1√

2π det(Σ)
exp
(
−1

2

〈
(x−µµµ),Σ−1(x−µµµ)

〉)

Covariance matrix of a Gaussian
If a random vector X ∈ Rm has Gaussian distribution with density p(x;µ,Σ), its covariance
matrix is Cov[X] = Σ. In other words, a Gaussian is parameterized by its covariance.

Peter Orbanz · Applied Data Mining 5



GAUSSIAN DENSITY: EXAMPLE

p(x;µµµ,Σ) with µµµ = (0, 0) with Σ =

(
2 1
1 2

)

Density Contour lines 1000 sample points

Peter Orbanz · Applied Data Mining 6



CONTOUR LINES

Intersect density with a horizontal plane, draw intersection
as a curve, and project it down onto the plane.

Each elliptical line is such a contour,
for planes at different heights.

Contours and standard deviation
• Each ellipse consists of all points x ∈ R2 that satisfy the equation〈

x,Σ−1x
〉
= c for some fixed c > 0 .

Changing c changes the size of the ellipse.
• The ellipses play the same role as intervals around the mean for 1D Gaussians: The ellipse

with
〈

x,Σ−1x
〉
= 1 contains ∼ 68.27% of the probability mass, etc.

• That is: The area within the ellipse given by
〈

x,Σ−1x
〉
= k corresponds to k standard

deviations.

Peter Orbanz · Applied Data Mining 7



TOOLS: MAXIMUM LIKELIHOOD



PARAMETRIC MODELS

Models
A model P is a set of probability distributions. We index each distribution by a parameter value
θ ∈ T ; we can then write the model as

P = {Pθ|θ ∈ T } .
The set T is called the parameter space of the model.

Parametric model
The model is called parametric if the number of parameters (i.e. the dimension of the vector θ)
is (1) finite and (2) independent of the number of data points. Intuitively, the complexity of a
parametric model does not increase with sample size.

Density representation
For parametric models, we can assume that T ⊂ Rd for some fixed dimension d. We usually
represent each Pθ be a density function p(x|θ).

Peter Orbanz · Applied Data Mining 9



MAXIMUM LIKELIHOOD ESTIMATION

Setting
• Given: Data x1, . . . , xn, parametric model P = {p(x|θ) | θ ∈ T }.
• Objective: Find the distribution in P which best explains the data. That means we have to

choose a "best" parameter value θ̂.

Maximum Likelihood approach
Maximum Likelihood assumes that the data is best explained by the distribution in P under
which it has the highest probability (or highest density value).

Hence, the maximum likelihood estimator is defined as

θ̂ML := argmax
θ∈T

p(x1, . . . , xn|θ)

the parameter which maximizes the joint density of the data.
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ANALYTIC MAXIMUM LIKELIHOOD

The i.i.d. assumption
The standard assumption of ML methods is that the data is independent and identically
distributed (i.i.d.), that is, generated by independently sampling repeatedly from the same
distrubtion P.

If the density of P is p(x|θ), that means the joint density decomposes as

p(x1, . . . , xn) =
n∏

i=1

p(xi|θ)

Maximum Likelihood equation
The analytic criterion for a maximum likelihood estimator (under the i.i.d. assumption) is:

∇θ

( n∏
i=1

p(xi|θ)
)
= 0

We use the "logarithm trick" to avoid a huge product rule computation.

Not examinable.Peter Orbanz · Applied Data Mining 11



LOGARITHM TRICK

Recall: Logarithms turn products into sums

log
(∏

i

fi
)
=
∑

i

log(fi)

Logarithms and maxima
The logarithm is monotonically increasing on R+.

Consequence: Application of log does not change the location of a maximum or minimum:

max
y

log(g(y)) ̸= max
y

g(y) The value changes.

argmax
y

log(g(y)) = argmax
y

g(y) The location does not change.

Not examinable.Peter Orbanz · Applied Data Mining 12



ANALYTIC MLE

Likelihood and logarithm trick

θ̂ML = argmax
θ

n∏
i=1

p(xi|θ) = argmax
θ

log
( n∏

i=1

p(xi|θ)
)
= argmax

θ

n∑
i=1

log p(xi|θ)

Analytic maximality criterion

0 =
n∑

i=1

∇θ log p(xi|θ) =
n∑

i=1

∇θp(xi|θ)
p(xi|θ)

Whether or not we can solve this analytically depends on the choice of the model!

Not examinable.Peter Orbanz · Applied Data Mining 13



EXAMPLE: GAUSSIAN MEAN MLE

Model: Multivariate Gaussians
The model P is the set of all Gaussian densities on Rd with fixed covariance matrix Σ,

P = {g( . |µ,Σ) |µ ∈ Rd} ,
where g is the Gaussian density function. The parameter space is T = Rd .

MLE equation
We have to solve the maximum equation

n∑
i=1

∇µ log g(xi|µ,Σ) = 0

for µ.

Not examinable.Peter Orbanz · Applied Data Mining 14



EXAMPLE: GAUSSIAN MEAN MLE

0 =
n∑

i=1

∇µ log
1√

(2π)d|Σ|
exp
(
−1

2

〈
(xi − µ),Σ−1(xi − µ)

〉)

=
n∑

i=1

∇µ

(
log
( 1√

(2π)d|Σ|

)
+ log

(
exp
(
−1

2

〈
(xi − µ),Σ−1(xi − µ)

〉)

=
n∑

i=1

∇µ

(
−1

2

〈
(xi − µ),Σ−1(xi − µ)

〉)
= −

n∑
i=1

Σ−1(xi − µ)

Multiplication by (−Σ) gives

0 =
n∑

i=1

(xi − µ) ⇒ µ =
1
n

n∑
i=1

xi

Conclusion
The maximum likelihood estimator of the Gaussian expectation parameter for fixed covariance
is

µ̂ML :=
1
n

n∑
i=1

xi

Not examinable.Peter Orbanz · Applied Data Mining 15



EXAMPLE: GAUSSIAN WITH UNKNOWN COVARIANCE

Model: Multivariate Gaussians
The model P is now

P = {g( . |µ,Σ) |µ ∈ Rd,Σ ∈ ∆d} ,
where ∆d is the set of all possible d × d covariance matrices. The parameter space is
T = Rd ×∆d .

ML approach
Since we have just seen that the ML estimator of µ does not depend on Σ, we can compute µ̂ML

first. We then estimate Σ using the criterion
n∑

i=1

∇Σ log g(xi|µ̂ML,Σ) = 0

Solution
The ML estimator of Σ is

Σ̂ML :=
1
n

n∑
i=1

(xi − µ̂ML)(xi − µ̂ML)
t .

Not examinable.Peter Orbanz · Applied Data Mining 16



CLASSIFICATION



ASSUMPTIONS AND TERMINOLOGY

In a classification problem, we record measurements x1, x2, . . ..

We assume:
1. All measurements can be represented as elements of a Euclidean Rd .

2. Each xi belongs to exactly one out of K categories, called classes. We express this using
variables yi ∈ [K], called class labels:

yi = k ⇔ "xi in class k"

3. The classes are characterized by the (unknown!) joint distribution of (X, Y), whose
density we denote p(x, y). The conditional distribution with density p(x|y = k) is called
the class-conditional distribution of class k.

4. The only information available on the distribution p is a set of example measurements
with labels,

(x̃1, ỹ1), . . . , (x̃n, ỹn) ,

called the training data.
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CLASSIFIERS

Definition
A classifier is a function

f : Rd [K] ,

i.e. a function whose argument is a measurement and whose output is a class label.

Learning task
Using the training data, we have to estimate a good classifier. This estimation procedure is also
called training.

A good classifier should generalize well to new data. Ideally, we would like it to perform with
high accuracy on data sampled from p, but all we know about p is the training data.

Simplifying assumption
We first develop methods for the two-class case (K=2), which is also called binary
classification. In this case, we use the notation

y ∈ {−1,+1} instead of y ∈ {1, 2}

Peter Orbanz · Applied Data Mining 19



SUPERVISED AND UNSUPERVISED LEARNING

Supervised vs. unsupervised
Fitting a model using labeled data is called supervised learning. Fitting a model when only
x̃1, . . . , x̃n are available, but no labels, is called unsupervised learning.

Types of supervised learning methods
• Classification: Labels are discrete, and we estimate a classifier f : Rd [K],
• Regression: Labels are real-valued (y ∈ R), and we estimate a continuous function

f : Rd R. This functions is called a regressor.
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A VERY SIMPLE CLASSIFIER

Algorithm
1. On training data, fit a Gaussian into each class (by MLE).

Result: Densities g(x|µ⊕,Σ⊕) and g(x|µ⊖,Σ⊖)

2. Classify a new point x according to which density assigns larger value:

yi :=

{
+1 if g(x|µ⊕,Σ⊕) > g(x|µ⊖,Σ⊖)

−1 otherwise

Resulting classifier
• Hyperplane if Σ⊕=Σ⊖ = constant · diag(1, . . . , 1) (“isotropic” Gaussians).
• Curved surface otherwise.
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A VERY SIMPLE CLASSIFIER
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Figure 2.10: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
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the means. In these 1-, 2-, and 3-dimensional examples, we indicate p(x|ωi) and the
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wi =
1

σ2
µi (52)

and

wi0 =
−1

2σ2
µt

iµi + ln P (ωi). (53)

We call wi0 the threshold or bias in the ith direction. threshold

bias
A classifier that uses linear discriminant functions is called a linear machine. This

linear
machine

kind of classifier has many interesting theoretical properties, some of which will be
discussed in detail in Chap. ??. At this point we merely note that the decision
surfaces for a linear machine are pieces of hyperplanes defined by the linear equations
gi(x) = gj(x) for the two categories with the highest posterior probabilities. For our
particular case, this equation can be written as

wt(x − x0) = 0, (54)

where

w = µi − µj (55)

and

x0 =
1

2
(µi + µj) − σ2

‖µi − µj‖2
ln

P (ωi)

P (ωj)
(µi − µj). (56)

This equation defines a hyperplane through the point x0 and orthogonal to the
vector w. Since w = µi − µj , the hyperplane separating Ri and Rj is orthogonal to
the line linking the means. If P (ωi) = P (ωj), the second term on the right of Eq. 56
vanishes, and thus the point x0 is halfway between the means, and the hyperplane is
the perpendicular bisector of the line between the means (Fig. 2.11). If P (ωi) #= P (ωj),
the point x0 shifts away from the more likely mean. Note, however, that if the variance
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Figure 2.14: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
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DISCUSSION

Possible weakness
1. Distributional assumption.

2. Density estimates emphasize main bulk of data. Critical region for classification is at
decision boundary, i.e. region between classes.

Consequence
• Classification algorithms focus on class boundary.
• Technically, this means: We focus on estimating a good decision surface (e.g. a

hyperplane) between the classes; we do not try to estimate a distribution.

Our program in the following
• First develop methods for the linear case, i.e. separate two classes by a hyperplane.
• Then: Consider methods that do not require the decision surface (= the boundary between

classes) to be linear (= a straight line or plane).
• Dealing with more than two classes.
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MEASURING PERFORMANCE: LOSS FUNCTIONS

Definition
A loss function is a function

L : [K]× [K] [0,∞) ,

which we read as

L : (true class label y, classifier output f (x)) 7−→ loss value .

Example: The two most common loss functions
1. The 0-1 loss is used in classification. It counts mistakes:

L0-1(y, f (x)) =

{
0 f (x) = y
1 f (x) ̸= y

2. Squared-error loss is used in regression:

Lse(y, f (x)) := ∥y− f (x)||22
Its value depends on how far off we are: Small errors hardly count, large ones are very
expensive.
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RISK

Motivation
It may be a good strategy to allow (even expensive) errors for values of x which are very
unlikely to occur

Definition
The risk R(f ) of a classifier f is its expected loss under p. If you prefer equations:

R(f ) := Ep[L(y, f (x)] =
∫

L(y, f (x))p(x, y)dxdy =
K∑

y=1

∫
L(y, f (x))p(x, y)dx .

When we train f , we do not know p, and have to approximate R using the data:

The empirical risk R̂n(f ) is the plug-in estimate of R(f ), evaluated on the training sample
(x̃1, ỹ1), . . . , (x̃n, ỹn):

R̂n(f ) :=
1
n

n∑
i=1

L(ỹi, f (x̃i))
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DEPENDENCE AND INDEPENDENCE

Recall
Two random variables are stochastically independent, or independent for short, if their joint
distribution factorizes:

P(x, y) = P(x)P(y) or p(x, y) = p(x)p(y)

Dependent means not independent.

Intuitively

X and Y are dependent if knowing the outcome of X provides any information about the
outcome of Y .

More precisely:
• If someone draws (X, Y) simultaneously, and only discloses X = x to you, does that

change your mind about the distribution of Y? (If so: Dependence.)
• Once X is given, the conditional distribution of Y is P(Y|X = x).
• If that is still P(Y = y), as before X was drawn, the two are independent. If

P(Y|X = x) ̸= P(Y), they are dependent.
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INDEPENDENCE AS A MODELING ASSUMPTION

A few remarks
• Joint distributions of dependent variables can become very complicated. Dealing with

joint distributions of many variables is one of the hardest problems in statistics and
probability.

• The math almost always becomes easier if we assume variables are independent.
• On the other hand, assuming independence means we neglect all interactions between the

effects represented by the variables.
• When we design probability models, there is usually a trade-off between simplicity (e.g.

assuming everything is independent) and accuracy (trying to model all interactions
precisely).
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BAYES EQUATION

Simplest form
• Random variables X ∈ X and Y ∈ Y, where X,Y are finite sets.
• Each possible value of X and Y has positive probability.

Then
P(X = x, Y = y) = P(y|x)P(x) = P(x|y)P(y)

and we obtain

P(y|x) = P(x|y)P(y)
P(x)

=
P(x|y)P(y)∑

y∈Y P(x|y)P(y)
It is customary to name the components,

posterior =
likelihood× prior

evidence

In terms of densities
For continuous sets X and Y,

p(y|x) = p(x|y)p(y)
p(x)

=
p(x|y)p(y)∫
Y p(x|y)dy
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BAYESIAN CLASSIFICATION

Classification
We define a classifier as

f (x) := arg max
y∈[K]

P(y|x)

where Y = [K] and X = sample space of data variable.
With the Bayes equation, we obtain

f (x) = argmax
y

p(x|y)P(y)
p(x)

= argmax
y

p(x|y)P(y)

If the class-conditional distribution is continuous, we use

f (x) = argmax
y

p(x|y)P(y)
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BAYES-OPTIMAL CLASSIFIER

Optimal classifier
• In the risk framework, the best possible

classifier is the one which minimizes the
risk.

• Which classifier is optimal depends on the
chosen cost function.

Zero-one loss
Under zero-one loss, the classifier which
minimizes the risk is the classifier

f (x) = argmax
y

P(x|y)P(y)

from the previous slide. When computed from
the true distribution of (X, Y), this classifier is
called the Bayes-optimal classifier (or Bayes
classifier for short).

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2

Bayes Optimal Classifier
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FIGURE 2.5. The optimal Bayes decision boundary
for the simulation example of Figures 2.1, 2.2 and 2.3.
Since the generating density is known for each class,
this boundary can be calculated exactly (Exercise 2.2).
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BAYES-OPTIMAL CLASSIFIER

Suppose for simplicity we have to classes labeled “1” and “2”, so y ∈ {1, 2}.
f (x) = argmax

y
p(x|y)P(y)

What do the terms mean?
• P(y) = probability to observe class Y = y if we draw (X, Y) from p(x, y) and discard X.
• Approximately, this is the probability that a training data point is labeled y if we draw it

uniformly from a very large training set (without looking at x).
• If both classes are equally probable (in terms of training data: equally large), then

P(y) = 1
2 .

• P(y|x): Fix a point x is space. What is the probability that a data point at this location
belongs to class y?

• This is a number strictly between 0 and 1 if the classes “overlap” in space.

If classes are assumed equally large

f (x) = argmax
y

p(x|y)P(y) = argmax
y

p(x|y) 1
2 = argmax

y
p(x|y)

That means: The Bayes-optimal classifier is the one that assigns a point at location x to the class
whose probability at x is larger, e.g. to class 1 if P(1|x) ≥ P(2|x).
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EXAMPLE: SPAM FILTERING

Representing emails
• Y = { spam, email }
• X = Rd

• Each axis is labeled by one possible word.
• d = number of distinct words in vocabulary
• xj = number of occurrences of word j in email represented by x

For example, if axis j represents the term "the", xj = 3 means that "the" occurs three times in
the email x. This representation is called a vector space model of text.

Example dimensions
george you your hp free hpl ! our re edu remove

spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

With Bayes equation

f (x) = argmax
y∈{spam,email}

P(y|x) = argmax
y∈{spam,email}

p(x|y)P(y)
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NAIVE BAYES

Simplifying assumption
The classifier is called a naive Bayes classifier if it assumes

p(x|y) =
d∏

j=1

pj(xj|y) for x = (x1, . . . , xd) ,

i.e. if it treats the individual dimensions of x as conditionally independent given y.

In spam example
• Corresponds to the assumption that the number of occurrences of a word carries

information about y.
• Co-occurrences (how often do given combinations of words occur?) is neglected.
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ESTIMATION

Class prior
The distribution P(y) is easy to estimate from training data:

P(y) =
#observations in class y

#observations

Class-conditional distributions
The class conditionals p(x|y) usually require a modeling assumption. Under a given model:

• Separate the training data into classes.
• Estimate p(x|y) on class y by maximum likelihood.

Class-conditional in the spam example
P(x|y) is a multinomial (= categorical distribution). It is estimated as:

P(word i|y) = # occurrences of word i in emails of class y
# occurrences of word i in all emails
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SCALAR PRODUCTS

Definition
For two vectors x and y in Rd , the scalar product of x and y is

⟨x, y⟩ := x1y1 + . . .+ xdyd =
d∑

i=1

xiyi

Note: ⟨x, x⟩ = ∥x∥2, so the Euclidean norm (= the length) of x is ∥x∥ =
√
⟨x, x⟩.

Linearity
The scalar product is additive in both arguments,

⟨x + z, y⟩ = ⟨x, y⟩+ ⟨z, y⟩ and ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩

and scales as
⟨c · x, y⟩ = c · ⟨x, y⟩ = ⟨x, c · y⟩ for any c ∈ R .

Functions that are additive and scale-equivariant are called linear, so the scalar product is linear
in both arguments.
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THE COSINE RULE

Recall: The cosine rule
If two vectors x and y enclose an angle θ, then

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2 cos θ∥x∥∥y∥
(If θ is a right angle, then cos θ = 0, and this becomes Pythogoras’ ∥x− y∥2 = ∥x∥2 + ∥y∥2.)

Cosine rule for scalar products
It is easy to check that

∥x∥2 + ∥y∥2 − ∥x− y∥2 = 2 ⟨x, y⟩
Substituting gives

2 cos θ∥x∥∥y∥ = 2 ⟨x, y⟩
and hence

cos θ =
⟨x, y⟩
∥x∥∥y∥

0

x
x− y

yθ
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REPESENTING A HYPERPLANE

Consequences of the cosine rule
The scalar product satisfies ⟨x, y⟩ = ∥x∥∥y∥ if and only if x and y are parallel, and

⟨x, y⟩ = 0 if and only if x and y are orthogonal.

x1

x2

H Hyperplanes
A hyperplane in Rd is a linear subspace of dimension
(d − 1).

• A hyperplane in R2 is a line.
• A hyperplane in R3 is a plane.
• A hyperplane always contains the origin, since it is

a linear subspace.
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HYPERPLANES

x1

x2

H

vH

Hyperplanes
• Consider a hyperplane H in Rd . Think of H as a set

of points.
• Each point x in H is a vector x ∈ Rd .
• Now draw a vector vH that is orthogonal to H.
• Then any vector x ∈ Rd is a point in H if and only

if x is orthogonal to vH.
• Hence:

x ∈ H ⇔ ⟨x, vH⟩ = 0 .

• If we choose vH to have length ∥vH∥ = 1, then vH

is called a normal vector of H.

H = {x ∈ Rd | ⟨x, vH⟩ = 0} .
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WHICH SIDE OF THE PLANE ARE WE ON?

H

vH

x

cos θ · ∥x∥
θ

Distance from the plane
• The projection of x onto the direction of vH has length
⟨x, vH⟩ measured in units of vH, i.e. length
⟨x, vH⟩ /∥vH∥ in the units of the coordinates.

• By cosine rule: The distance of x from the plane is

d(x,H) =
⟨x, vH⟩
∥vH∥

= cos θ · ∥x∥ .

Which side of the plane?
• The cosine satisfies cos θ > 0 iff θ ∈ (−π

2 ,
π
2 ).

• We can decide which side of the plane x is on using

sgn(cos θ) = sgn ⟨x, vH⟩ .

Peter Orbanz · Applied Data Mining 41



SHIFTING HYPERPLANES

x1

x2 H

vH

c · ∥vH∥

Affine Hyperplanes
• An affine hyperplane Hw is a hyperplane shifted by a

vector w,
Hw = H + w .

(That means w is added to each point x in H.)
• We choose w in the direction of vH, so

w = c · vH for some c > 0 .

Which side of the plane are we on?
• Which side of Hw a point x is on is determined by

sgn(⟨x− w, vH⟩) = sgn(⟨x, vH⟩ − c ⟨vH, vH⟩) = sgn(⟨x, vH⟩ − c∥vH∥2) .

• If vH is a unit vector, we can use

sgn(⟨x− w, vH⟩) = sgn(⟨x, vH⟩ − c) .
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CLASSIFICATION WITH AFFINE HYPERPLANES

H

vH

sgn(⟨vH, x⟩ − c) < 0

sgn(⟨vH, x⟩ − c) > 0

c∥vH∥
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LINEAR CLASSIFIERS

Definition

A linear classifier is a function of the form

fH(x) := sgn(⟨x, vH⟩ − c) ,

where vH ∈ Rd is a vector and c ∈ R+.

Note:
• We usually assume vH to be a unit vector. If it is not, fH still defines a linear classifier, but

c describes a shift of a different length.
• Specifying a linear classifier in Rd requires d + 1 scalar parameters.

Definition
Two sets A,B ∈ Rd are called linearly separable if there is an affine hyperplane H which
separates them, i.e. which satisfies

⟨x, vH⟩ − c =

{
< 0 if x ∈ A
> 0 if x ∈ B
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LINEAR SEPARABILITY
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2

Bayes Optimal Classifier

..
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FIGURE 2.5. The optimal Bayes decision boundary
for the simulation example of Figures 2.1, 2.2 and 2.3.
Since the generating density is known for each class,
this boundary can be calculated exactly (Exercise 2.2).

linearly separable not linearly separable
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LINEAR SEPARABILITY

• Recall that when data is represented by points in Rd , each axis represents a quantity that is
measured (a “variable”).

• If there exists a single variable that distinguishes two classes, these classes can be
distinguished along a single axis.

x2

x1
t

• In this illustration, we could classify by a “threshold point” t on the line.
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LINEAR SEPARABILITY

• Even if classes cannot be distinguished by a single variable, they may be distinguishable
by a combination of several variables.

• That is the case for linearly separable data. The threshold point along x1 is now a function
of the threshold point along x2, and vice versa. Linearly separable also implies this
function is linear.

x2

x1

separable by a single measurement

x2

x1

not separable by a single measurement

but linearly separable
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MULTIPLE CLASSES

More than two classes
For some classifiers, multiple classes are natural. We have already seen one:

• Simple classifier fitting one Gaussian per class.
We will discuss more examples soon:

• Trees.
• Ensembles: Number of classes is determined by weak learners.

Exception: All classifiers based on hyperplanes.

Linear Classifiers
Approaches:

• One-versus-all (more precisely: one-versus-the-rest) classification.
• One-versus-one classification.
• Multiclass discriminants.

Peter Orbanz · Applied Data Mining 49



ONE-VERSUS-ALL CLASSIFICATION

R1

R2

R3

?

C1

not C1

C2

not C2

• One linear classifier per class.
• Classifies "in class k" versus "not in class k".
• This is a two-class classifier that defines:

• Positive class = Ck .
• Negative class = ∪j̸=kCj.

• Problem: Ambiguous regions (green in figure).
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ONE-VERSUS-ONE CLASSIFICATION

R1

R2

R3

?C1

C2

C1

C3

C2

C3

• One linear classifier for each pair of classes (i.e. K(K−1)
2 in total).

• Classify by majority vote.
• Problem again: Ambiguous regions.

Peter Orbanz · Applied Data Mining 51



MULTICLASS DISCRIMINANTS

Linear classifier
• Recall: Decision rule is f (x) = sgn(⟨x, vH⟩ − c)

• Idea: Combine classifiers before computing sign. Define

gk(x) := ⟨x, vk⟩ − ck

Multiclass linear discriminant
• Use one classifier gk (as above) for each class k.
• Trained e.g. as one-against-rest.
• Classify according to

f (x) := argmax
k
{gk(x)}

• If gk(x) is positive for several classes, a larger value of gk means that x lies “further” into
class k than into any other class j.

• If gk(x) is negative for all k, the maximum means we classify x according to the class
represented by the closest hyperplane.

Peter Orbanz · Applied Data Mining 52



Problem
• Multiclass discriminant idea: Compare distances to hyperplanes.
• Works if the orthogonal vectors vH determining the hyperplanes are normalized.
• For some of the best training methods for linear classifiers, that does not work well.
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MOTIVATION

Recall from classification
• We “train” e.g. a linear classifier by finding the affine plane for which the empirical risk

defined by a given loss function becomes as small as possible.
This is an example of phrasing a problem as an “optimization problem”:

• There is a real-valued function (here: the empirical risk) that measures how good a given
solution is.

• We choose that solution for which this function is minimal.

More generally
A variety of problems in statistics, machine learning and data mining are phrased as
optimization problems:

• Fitting a parametric model: Maximum likelihood
• Training a classifier: Minimize an empirical risk under a given loss function
• Linear regression: Minimize a least squares error
• Sparse regression: Minimize a penalized least squares error
• Training neural networks: Minimize an empirical risk; loss can be chosen for

classification or for regression task.
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TERMINOLOGY

Min and Argmin

min
x

f (x) = smallest value of f (x) for any x

argmin
x

f (x) = value of x for which f (x) is minimal

Minimum with respect to subset of arguments

min
x

f (x, y) = smallest value of f (x, y) for any x if y is kept fixed

Optimization problem
For a given function f : Rd → R, a problem of the form

find x∗ := argmin
x

f (x)

is called an minimization problem. If argmin is replaced by argmax, it is a maximization
problem. Minimization and maximization problems are collectively referred to as
optimization problems.
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MINIMIZATION VS MAXIMIZATION

For any function f , we have

min f (x) = −max(−f (x)) and argmin f (x) = argmax(−f (x))

That means:
• If we know how to minimize, we also know how to maximize, and vice versa.
• We do not have to solve both problems separately; we can just generically discuss

minimization.
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TYPES OF MINIMA

-3 -2 -1 1 2

-5

5

-2 2 4

-10

-5

5

10

15

20

25

global, but not local

local

global and local

Local and global minima
A minimum of f at x is called:

• Global if f assumes no smaller value on its domain.
• Local if there is some open interval (a, b) containing x such that f (x) is a global minimum

of f restricted to that interval.
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SOLVING OPTIMIZATION PROBLEMS

Typical situation
• Given is a function f : Rd → R.
• The dimension d is usually very large.

(In neural network training problems: Often in the millions.)
• We cannot plot or “look at” the function.
• We can only evaluate its value f (x) point by point.

One-dimensional illustration
Here, d = 1 (but keep in mind we are interested in very large d.)

x

f (x)

x∗

The minimizer we are interested in is x∗.
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ONE-DIMENSIONAL ILLUSTRATION

x∗x1 x2

• Our goal is to find x∗.
• We can evaluate the function at points

of our choice, say x1 and x2.

x1 x2

• However, we cannot “see” the function.
• All we know are values at a few points.

Task
Based on the values we know, we have to:

• Either make a decision what x∗ is.
• Or gather more information, by evaluating f at additional points. In that case, we have to

decide which point to evaluate next.
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NEXT STEPS

• We will first consider how we would proceed if we had access to the entire function in a
small neighborhood around each of the points x1, x2, . . ., i.e. if we could see something
like this:

x1 x2

To this end, we discuss the concept of a derivative.
• We then consider what we can actually implement on a computer, given that we only have

access to point-wise information:

x1 x2
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ZOOMING IN ON A SMOOTH FUNCTION

x

f (x)

x

f (x)

x

f (x)

x

f (x)

×3 ×3

Observation
• Each time we zoom in, the curve looks more like a straight line.
• If we zoom in far enough, we can replace the curve in a small area around the marked

point by a straight line.
• In mathematical jargon, that is called an approximation: We replace the curve around the

marked point by a surrogate curve. If that surrogate is a straight line (i.e. a linear
function), it is a linear approximation.
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ZOOMING IN ON A SMOOTH FUNCTION

A counter example
• Not every function has this property.
• Here, we consider the absolute value function

f (x) = |x|, and zoom in on the point x = 0.
• In this case, the shape of f never seems to change.
• Note this would be different if we had picked any

other point than x = 0.

We observe
• Whether a function is “locally straight” is a

property that may be true at some points, but not at
others.

• Clearly it matters whether the function is “smooth”
around the point we focus on.

x

f (x)

x

f (x)

x

f (x)

x

f (x)
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APPROXIMATING BY A STRAIGHT LINE

x xx− c x+ c

• We consider a function (blue) and approximate it at a point x by a straight line (red).
• To measure how good the approximation is, we fix a constant c > 0 and enclose x in the

interval [x− c, x + c].
• On this interval, we compute the area between the two functions (shaded in gray).

Suppose this area is A(x, c).
• Of course, A(x, c) will grow if we make c larger. To make the area comparable for

different values of c, we use the relative approximation error

r(c) =
A(x, c)

|[x− c, x + c]| =
A(x, c)

2c
.
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APPROXIMATING BY A STRAIGHT LINE

[x − 1, x + 1] [x − 1
2 , x + 1

2 ] [x − 1
4 , x + 1

4 ]

• Now consider what happens if we zoom in, by making c smaller and smaller.
• If the function is smooth, we observe the relative error becomes smaller each time.
• The function can be approximated by the line to arbitrary precision, that is: If we are

permitted any error ε > 0, we can always find a small enough c such that r(c) < ε.
• In this sense, the linear approximation (= approximation by a straight line) is locally exact.
• If a straight line can be chosen for f and x such that the relative approximation error can

be made arbitrarily small by making the intervall sufficiently small, then f is called
differentiable at x.
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ZOOMING IN ON A NON-SMOOTH FUNCTION

[x − 1, x + 1] [x − 1
2 , x + 1

2 ] [x − 1
4 , x + 1

4 ]

Now try the same for the absolute value function:
• Approximate it at x = 0 by a horizontal line.
• Here, the relative error around x = 0 remains the same regardless of how we choose c.
• We could also use an approximating line with a different slope, and would encounter the

same problem.
• Thus, |x| is not differentiable at x = 0 (although it is differentiable at every other point x).
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THE DERIVATIVE

1

=: f ′(x)

• If f is differentiable at x, there is a unique approximating line at x for which the relative
error is minimal as c gets smaller.

• We can measure the slope of this line by substracting its values at x + 1 and x.
• We denote this slope by f ′(x) and call it the derivative of f at x.
• If f is differentiable at every point x, we can compute the value f ′(x) at every point, so f ′

is again a function. In general, it takes different values at different points x.

Peter Orbanz · Applied Data Mining 67



SOME PROPERTIES OF THE DERIVATIVE

1

=: f ′(x)

• If f increases around x, then f ′(x) > 0. If f decreases, then f ′(x) < 0.
• Recall that we are interested in finding minima and maxima. If f is differentiable at x and

x is a local minimum or maximum, the approximating line is horizontal:

x

f (x)

x∗

That means: At a (differentiable) maximum or minimum x∗, we have f ′(x∗) = 0.
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FINDING THE DERIVATIVE

x x+ c1 x x+ c2

• We fix a constant c > 0 and draw a straight line through the points (x, f (x)) and
(x + c, f (x + c)). The slope of that line is

f (x + c)− f (x)
c

• Now make c smaller and smaller: Choose c1 > c2 > . . ., for example cn = 1
n .

• We then ask what happens as c gets infinitely small, i.e. we try to find the limit

lim
n→∞

f (x + cn)− f (x)
cn

• If f is differentiable, this limit exists, and its slope is exactly that of the best possible linear
approximation. That is, the limit is f ′(x).

• If the limit does not exist, f is not differentiable at x.
Not examinable.Peter Orbanz · Applied Data Mining 69



SUMMARY

The derivative of a function f at a point x is the the slope of the locally best linear
approximation to f around x.

If you are not familiar with calculus, keep in mind:
• The derivative f ′(x) exists if f is “sufficiently smooth” at x.
• Sign: The derivative is positive if f increases at x, negative if it decreases, and 0 if f is a

maximum or minimum.
• Magnitude: The absolute value | f ′(x)| is the larger the more rapidly f changes around x.
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BACK TO OPTIMIZATION

Recall that we had asked: How can would we find a minimum if we had access to the entire
function in a small neighborhood around points x1, x2, . . . that we are allowed to choose?

x1 x2

• If we can compute the derivatives f ′(x1) and f ′(x2), we have (the slope of) linear
approximations to f at both points that are locally exact.

• That is: We can substitute the derivatives for the two short blue lines in the figure.
• We can tell from the sign of the derivative in which direction the function decreases.
• We also know that f ′(x) = 0 if x is a minimum.
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MINIMIZATION STRATEGY

Basic idea
Start with some point x0. Compute the derivative f ′(x0) at x. Then:

• “Move downhill”: Choose some c > 0, and set x1 = x0 + c if f ′(x0) < 0 and
x1 = x0 − c if f ′(x0) > 0.

• Compute f ′(x1). If it is 0 (possibly a minimum), stop.
• Otherwise, move downhill from x1, etc.

Observations
• Since the sign of f ′ is determined by whether f increases or decreases, we can summarize

the case distinction above by setting

x1 = x0 − sign( f ′(x0)) · c
• If f changes rapidly, it may be a good strategy to make a large step (choose a large c), since

we presumably are still far from the minimum. If f changes slowly, c should be small.
• One way of doing so is to choose c as the magnitude of f ′, since |f ′| has exactly this

property. In that case:

x1 = x0 − sign( f ′(x0)) · | f ′(x0)| = x0 − f ′(x0)

The algorithm obtained by replying this step repeatedly is called gradient descent.
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GRADIENT DESCENT

Gradient descent searches for a minimum of a differentiable function f .

Algorithm
Start with some point x0 ∈ R and fix a precision ε > 0.
Repeat for n = 1, 2, . . .:

1. Check whether | f ′(xn)| < ε. If so, report the solution x∗ := xn and terminate.

2. Otherwise, set
xn+1 := xn − f ′(xn)

x

f (x)

f (x)

f ′(x)

x0x1x2xopt
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DERIVATIVES IN MULTIPLE DIMENSIONS

f (x)

• We now ask how to define a derivative in multiple dimensions.
• Consider a function f : Rd → R. What is the derivative of f at a point x?
• For simplicity, we assume d = 2 (so that we can plot the function).
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DERIVATIVES IN MULTIPLE DIMENSIONS

x1

x2

x

f (x)

• We fix a point x = (x1, x2) in R2, marked red above.
• We will try to turn this into a 1-dimensional problem, so that we can use the definition of a

derivative we already know.
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REDUCING TO ONE DIMENSION

x1

x2

x

x + v

• To make the problem 1-dimensional, fix some vector v ∈ R2, and draw a line through x in
direction of v.

• Then intersect f with a plane given by this line: In the coordinate system of f , choose the
plane that contains the line and is orthogonal to R2.

• The plane contains the point x.
• Note we can do that even if d > 2. We still obtain a plane.
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REDUCING TO ONE DIMENSION

x1

x2

x

x + v

• To make the problem 1-dimensional, fix some vector v ∈ R2, and draw a line through x in
direction of v.

• Then intersect f with a plane given by this line: In the coordinate system of f , choose the
plane that contains the line and is orthogonal to R2.

• The plane contains the point x.
• Note we can do that even if d > 2. We still obtain a plane.
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REDUCING TO ONE DIMENSION

• The intersection of f with the plane is a 1-dimensional function fH , and x corresponds to a
point xH in its domain.

• We can now compute the derivative f ′H of fH at xH . The idea is to use this as the derivative
of f at x.
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BACK TO MULTIPLE DIMENSIONS

x1

x2

x

• In the domain of f , we draw a vector from x in direction of H such that:

1. The vector is oriented to point in the direction in which fH increases.
2. Its length is the value of the derivative f ′H(x).

• That completely determines the vector (shown in red above).
• There is one problem still to be solved: fH depends on H, that is, on the direction of the

vector v. Which direction should we use?
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THE GRADIENT

x1

x2

x

x1

x2

x

x1

x2

x

• We now rotate the plane H around x. For each position of the plane, we get a new
derivative f ′H(x), and a new red vector.

• We choose the plane for which f ′H is largest:

H∗ := arg max
all rotations of H

f ′H(x)

Provided that fH is differentiable for all H, one can show that this is always unique (or
f ′H(x) is zero for all H).

• We then define the vector

∇f (x) := vector given by H∗ as above

The vector∇f (x) is called the gradient of f at x.
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PROPERTIES OF THE GRADIENT

The gradient∇f (x) of f : Rd → R at a point x ∈ Rd is a vector in the domain Rd in the
direction in which f most rapidly increases at x.

• The length of the gradient measures steepness: The more rapidly f increases at x, the
larger ∥∇f (x)∥.

• The gradient has length 0 if x is a maximum or minimum of f . A constant function has
gradient of length 0 at every point x.

• The gradient operation is linear:

∇(αf (x) + βg(x)) = α∇f (x) + β∇g(x)
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GRADIENTS AND CONTOUR LINES

• Recall that a contour line (or contour set) of f is a set of points along which f remains
constant,

C[ f , c] := {x ∈ Rd | f (x) = c} for some c ∈ R.
• One can show that if C[f , c] contains x, the gradient at x is orthogonal to the contour:

∇f (x) ⊥ C[f , c] if x ∈ C[f , c] .

• Intuition: The gradient points in the direction of maximal local change, whereas C[f , c] is
a direction in which there is no change. Locally, these two are orthogonal.

Gradients are orthogonal to contour lines.
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GRADIENTS AND CONTOUR LINES

• For this parabolic function, all contour lines are concentric circles around the minimum.
• The picture above shows the gradients plotted at various points in the plane.
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BASIC GRADIENT DESCENT

f : Rd → R

Algorithm
Start with some point x0 ∈ R and fix a precision ε > 0.
Repeat for n = 1, 2, . . .:

1. Check whether ∥∇f (xn)∥ < ε. If so, report the solution x∗ := xn and terminate.

2. Otherwise, set
xn+1 := xn −∇f (xn)
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GRADIENT DESCENT

f : Rd → R

Algorithm
Start with some point x0 ∈ R and fix a precision ε > 0.
Repeat for n = 1, 2, . . .:

1. Check whether ∥∇f (xn)∥ < ε. If so, report the solution x∗ := xn and terminate.

2. Otherwise, set
xn+1 := xn − α(n)∇f (xn)

Here, α(n) > 0 is a coefficient that may depend on n. It is called the step size in optimization,
or the learning rate in machine learning.
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GRADIENT DESCENT AND LOCAL MINIMA

-3 -2 -1 1 2
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-2 2 4

-10

-5

5

10

15

20

25

• Suppose for both functions above, gradient descent is started at the point marked red.
• It will “walk downhill” as far as possible, then terminate.
• For the function on the left, the minimum it finds is global. For the function on the right, it

is only a local minimum.
• Since the derivative at both minima is 0, gradient descent cannot detect whether they are

global or local.

For smooth functions, gradient descent finds local minima. If the function is complicated,
there may be no way to tell whether the solution is also a global minimum.
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OUTLOOK

Summary so far
• The derivative/gradient provides local information about how a function changes around a

point x.
• Optimization algorithms: If we know the gradient at our current location x, we can use this

information to make a step in “downhill” direction, and move closer to a (local) minimum.

What we do not know yet
That assumes that we can compute the gradient. There are two possibilities:

• For some functions, we are able to derive∇f (x) as a function of x. Gradient descent can
evaluate the gradient by evaluating that function.

• Otherwise, we have to estimate∇f (x) by evaluating the function f at points close to x.
For now, we will assume that we can compute the gradient as a function.
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RECAP: OPTIMIZATION AND LEARNING

Given
• Training data (x̃1, ỹ1), . . . , (x̃n, ỹn).

The data analyst chooses
• A classH of possible solutions (e.g. H = all linear classifier).
• A loss function L (e.g. 0-1 loss) that measures how well the solution represents the data.

Learning from training data
• Define the empirical risk of a solution f ∈ H on the training data,

R̂n(f ) =
1
n

n∑
i=1

L(f (x̃i), ỹi)

• Find an optimal solution f ∗ by minimizing the empirical risk using gradient descent (or
another optimization algorithm).
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THE PERCEPTRON ALGORITHM



TASK: TRAIN A LINEAR CLASSIFIER

We want to determine a linear classifier in Rd using 0-1 loss.

Recall
• A solution is determined by a normal vH ∈ Rd and an offset c > 0.
• For training data (x̃1, ỹ1), . . . , (x̃n, ỹn), the empirical risk is

R̂n(vH, c) =
1
n

n∑
i=1

I{sgn(⟨vH, xi)⟩ − c) ̸= yi}

• The empirical risk minimization approach would choose a classifer given by (v∗H , c∗) for
which

(v∗H , c∗) = argmin
vH,c

R̂n(vH, c)

Idea
Can we use gradient descent to find the minimizer of R̂n?
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PROBLEM

Example

• In the example on the right, the two dashed classifiers both
get a single (blue) training point wrong.

• Both of them have different values of (vH, c), but for both of
these values, the empirical risk is identical.

• Suppose we shift one of the to dashed lines to obtain the
dotted line. On the way, the line moves over a single red
point. The moment it passes that point, the empirical risk
jumps from 1

n to 2
n .

Conclusion
Consider the empirical risk function R̂n(vH, c):

• If (vH, c) defines an affine plain that contains one of the training points, R̂n is
discontinuous at (vH, c) (it “jumps”). That means it is not differentiable.

• At all other points (vH, c), the function is constant. It is differentiable, but the length of
the gradient is 0.
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The empirical risk of a linear classifer under 0-1 loss is piece-wise constant.

16 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS
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Figure 5.11: Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant
and hence unacceptable for gradient descent procedures. At the upper right is the
Perceptron criterion (Eq. 16), which is piecewise linear and acceptable for gradient
descent. The lower left is squared error (Eq. 32), which has nice analytic properties
and is useful even when the patterns are not linearly separable. The lower right is
the square error with margin (Eq. 33). A designer may adjust the margin b in order
to force the solution vector to lie toward the middle of the b = 0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”batch

training to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and η(k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.
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CONSEQUENCES FOR OPTIMIZATION

Formal problem
Even if we can avoid points where R̂n jumps, the gradient is always 0. Gradient descent never
moves anywhere.

Intuition
• Remember that we can only evaluate local information about R̂n around a given point

(vH, c).
• In every direction around (vH, c), the function looks identical.
• The algorithm cannot tell what a good direction to move in would be.
• Note that is also the case for every other optimization algorithm, since optimization

algorithms depend on local information.

Solution idea
Find an approximation to R̂n that is not piece-wise constant, and decreases in direction of an
optimal solution. We try to keep the approximation as simple as possible.
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PERCEPTRON COST FUNCTION

We replace the empirical risk R̂n(vH, c) = 1
n

∑n
i=1 I{sgn(⟨vH, xi)⟩ − c) ̸= yi} by the

piece-wise linear function

Ŝn(vH, c) =
1
n

n∑
i=1

I{sgn(⟨vH, xi)⟩ − c) ̸= yi} · | ⟨vH, x⟩ − c|

“switches off” correctly classified points

measures distance to plane

Ŝn is called the perceptron cost function.
16 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS
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and is useful even when the patterns are not linearly separable. The lower right is
the square error with margin (Eq. 33). A designer may adjust the margin b in order
to force the solution vector to lie toward the middle of the b = 0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”batch

training to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and η(k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.
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Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”batch

training to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and η(k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.
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THE PERCEPTRON

Training
• Given: Training data (x̃1, ỹ1), . . . , (x̃n, ỹn).
• Training: Fix a precision ε and a learning rate α, and run gradient descent on the

perceptron cost function to find an affine plane (v∗H , c∗)

• Define a classifier as f (x) := sgn(⟨vH, x⟩ − c).
(If the gradient algorithm returns c < 0, flip signs: Use (−v∗H ,−c∗).)

Prediction
• For a given data point x ∈ Rd , predict the class label y := f (x).

This classifier is called the perceptron. It was first proposed by Rosenblatt in 1962.
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THE PERCEPTRON GRADIENT

One can show that the gradient of the cost function is

∇Ŝn(vH, c) =−
n∑

i=1

I{f (x̃i) ̸= ỹi} · ỹi

(
x̃i
1

)
.

This is an example of gradient descent where we do not have to approximate the derivative
numerically. Gradient descent steps then look like this:(

v(k+1)
H

c(k+1)

)
:=

(
v(k)

H

c(k)

)
+

∑
i|x̃i misclassified

ỹi

(
x̃i
1

)

Peter Orbanz · Applied Data Mining 95



ILLUSTRATION

(
v(k+1)

H

c(k+1)

)
:=

(
v(k)

H

c(k)

)
+

∑
i|x̃i misclassified

ỹi

(
x̃i
1

)

Effect for a single training point
Step k: x̃ (in class -1) classified incorrectly

x̃Hk

vk
H

vk
H − x̃

Step k + 1

x̃

vk+1
H = vk

H − x̃

Simplifying assumption: H contains origin, so c = 0.
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THE PERCEPTION. I

0

0

Retina of
Sensory Units

Associator
Units

Response
Units

FIG. 2. Organization of Perceptron.

structure; "short-term memory" might be stored by
means of a transient state of activity. In any case
many of the conjectures are functionally equivalent to
the rule that when the two ends of a connection are
sequentially active the connection is strengthened,
i.e., the pulse it carries is increased. This description
of the reinforcement rule is intentionally vague; it can be
realized in various ways, some of which are given in
precise terms below.
Parameters which must be specified to delne the

perceptron of Fig. 2 are: The number of sensory
elements, the number (or probability distribution) of
excitatory and inhibitory connections at each level
and the geometrical constraints on them, the number
of associators and the number of responses; the
thresholds, refractory periods, summation intervals,
and transmission times. For studying the behavior of
such a perceptron we would also have to specify the
set of stimulus patterns, the order and times of their
presentation, and the observations to be made on the
responses. The reinforcement rule must, of course,
also be defined.
We shall not pursue further here the arguments

showing that the above model is consistent with the
biological constraints. "4

37 H. D. Block, B. W. Knight, Jr., and F. Rosenblat, t. Revs.
Modern Phys. 34, 135 (1962).

8. Techniques of Investigation

For studying the behavior of perceptrons, three
general techniques are available.
(a) Mathematical anatysis When i.t is successful, this

approach overs many advantages, such as the pre-
dictability of the performance of classes of perceptrons,
the eGects of variations in the parameters, and so
forth. For a model of the complexity of the general
perceptron of Fig. 2 the analysis is quite complicated
(see Sec. 6 of the paper which follows" ). For certain
simplified cases as in the simple perceptron of Fig. 4
which is discussed later, the analysis is fairly complete.
In Sec. 9 we prove some theorems and illustrate the
analytical techniques for such systems. In the paper
which follows, a more complicated system is analyzed.
(b) Simnlatioe on a digital comPuler. The principal

advantage of this method is that it can always be done,
subject, of course, to time„storage, and cost limitations.
A considerable amount of data has been obtained in

l

3

I

g (

FIG. 3. Mark I Percep tron
at Cornell Aeronautical labor-
tory. (a) Overall view with
sensory input at left, associa-
tion units in center, and
control panel and response
units at far right. The sensory
to associator plugboard, shown
in (b) is located behind the
closed panel to the right of
the operator. The image of
the letter "C" on the front
panel is a repeater display, for
monitoring sensory inputs.

this way. ' "Some of these will be described in Sec. 9
below.
(c) Construction, of an actual machine This h. as an

enormous advantage in speed over the digital computer,
since essentially all the action goes on in parallel
simultaneously and the response appears almost
immediately, while in the digital simulation all compu-
tations are done in sequence. While an actual machine
enjoys certain types of Qexibility, such as the ease
with which the experimenter can vary the stimulus
patterns, it is a serious task to change the wiring
diagram (in the digital computer this can be generated
quickly by a suitable program) and it is impossible to
alter certain basic features of the network. There is
also the complicating factor of the inexact performance
of hardware. A machine of the complexity of Fig. 2
has not yet been built, but one having the organization
of Fig. 4 (but with eight binary-response units) has
been built, and is known as the Mark I, (Fig. 3)." "
The retina is a 20&&20 grid of photocells mounted in
the picture plane of a camera to which the stimulus
pictures are shown. There are 512 associator units and
eight binary-response units. Each sensory unit can
have up to forty connections to the associator units.

38 F. Rosenblatt, Proc. I.R.E. 48, 301 (1960)."J.C. Hay, F. C. Martin, and C. W. Wightman, Record of
I.R.E. 1960 National Convention, Part 2, New York, (1960).
'0 C. W. Wightman, Cornell Aeronautical Laboratory, Project

PARA Technical Memorandum No. 4 (February, 1959).' J.C. Hay and A. E.Murray, Cornell Aeronautical Laboratory
Report VG-1196-6-5 (February, 1960).

Peter Orbanz · Applied Data Mining 98



Peter Orbanz · Applied Data Mining 99



DOES THE PERCEPTRON WORK?

Theorem: Perceptron convergence
If the training data is linearly separable, the Perceptron learning algorithm (with fixed step size)
terminates after a finite number of steps with a valid solution (vH, c) (i.e. a solution which
classifies all training data points correctly).

Issues
The perceptron selects some hyperplane between the two classes. The choice depends on
initialization, step size etc.

The solution on the right will probably predict better than the one on the left, but the perceptron may return either.
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MOTIVATION

A classifier is a piece-wise constant function, which means it “jumps” at the decision boundary:

• We had already noted that that is inconvenient for optimization: The function is either
constant (optimization algorithms cannot extract local information) or not differentiable.

• The function does not distinguish between points close to and far from the boundary. That
allows e.g. the perceptron to place the decision boundary very close to data points.

Idea
We replace the piece-wise constant function by a smooth function that otherwise looks similar.
There is a canonical way of doing so, called logistic regression.

Keep in mind: Logistic regression is a classification method.
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SIGMOIDS

Sigmoid function

σ(x) =
1

1 + e−x

-10 -5 5 10

0.2

0.4

0.6

0.8

1.0

Note

1−σ(x) = 1 + e−x − 1
1 + e−x

=
1

ex + 1
= σ(−x)

Derivative

dσ
dx

(x) =
e−x

(1 + e−x)2
= σ(x)

(
1− σ(x)

) -10 -5 5 10

0.2

0.4

0.6

0.8
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Sigmoid (blue) and its derivative (red)
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APPROXIMATING DECISION BOUNDARIES

• In linear classification: Decision
boundary is a discontinuity

• Boundary is represented either by
indicator function I{• > c} or sign
function sign(• − c)

• These representations are equivalent:
Note sign(• − c) = 2 · I{• > c} − 1

-5 0 5 10

0.2

0.4

0.6

0.8

1.0

The most important use of the sigmoid function in machine learning is as a smooth
approximation to the indicator function.

Given a sigmoid σ and a data point x, we decide which side of the approximated boundary we
are own by thresholding

σ(x) ≥ 1
2
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SCALING

We can add a scale parameter by definining

σθ(x) := σ(θx) =
1

1− e−θx
for θ ∈ R
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Influence of θ
• As θ increases, σθ approximates I more closely.
• For θ →∞, the sigmoid converges to I pointwise, that is: For every x ̸= 0, we have

σθ(x)→ I{x > 0} as θ → +∞ .

• Note σθ(0) = 1
2 always, regardless of θ.
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APPROXIMATING A LINEAR CLASSIFIER

So far, we have considered R, but linear classifiers usually live in Rd .

The decision boundary of a linear classifier in
R2 is a discontinuous ridge:

• This is a linear classifier of the form

I{⟨v, x⟩ − c}.
• Here: v = (1, 1) and c = 0.

We can “stretch” σ into a ridge function on R2:

• This is the function
x = (x1, x2) 7→ σ(x1).

• The ridge runs parallel to the x2-axes.
• If we use σ(x2) instead, we rotate by 90

degrees (still axis-parallel).
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STEERING A SIGMOID

Just as for a linear classifier, we use a normal vector v ∈ Rd .

• The function σ(⟨v, x⟩ − c) is a sigmoid ridge, where the ridge is orthogonal to the normal
vector v, and c is an offset that shifts the ridge “out of the origin”.

• The plot on the right shows the normal vector (here: v = (1, 1)) in black.
• The parameters v and c have the same meaning for I and σ, that is, σ(⟨v, x⟩ − c)

approximates I{⟨v, x⟩ ≥ c}.
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LOGISTIC REGRESSION

Logistic regression is a classification method that approximates decision boundaries by
sigmoids.

Setup
• Two-class classification problem
• Observations x1, . . . , xn ∈ Rd , class labels yi ∈ {0, 1}.

The logistic regression model
We model the conditional distribution of the class label given the data as

P(y|x) := Bernoulli
(
σ(⟨v, x⟩ − c)

)
.

• Recall σ(⟨v, x⟩ − c) takes values in [0, 1] for all θ, and value 1
2 on the class boundary.

• The logistic regression model interprets this value as the probability of being in class y.
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LEARNING LOGISTIC REGRESSION

Since the model is defined by a parametric distribution, we can apply maximum likelihood.

Likelihood function of the logistic regression model
n∏

i=1

σ(⟨v, x̃i⟩ − c)yi
(
1− (σ(⟨v, x̃i⟩ − c))

)1−yi

Negative log-likelihood

L(w) := −
n∑

i=1

(
yi log σ(⟨v, x̃i⟩ − c) + (1− yi) log

(
1− σ((⟨v, x̃i⟩ − c))

))
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MAXIMUM LIKELIHOOD

∇L(v, c) =
n∑

i=1

(
σ(⟨v, x̃i⟩ − c)− yi

)(x̃i
1

)

Note
• Each training data point xi contributes to the sum proportionally to the approximation

error σ(⟨v, x̃i⟩ − c)− yi incurred at xi by approximating the linear classifier by a
sigmoid.

Learning logistic regression

To learn a logistic regression classifier from training data, we minimize L(v, c) using
gradient descent or another optimization algorithm.

• The function L is convex (= ∪-shaped). That means there is only a single local minimum,
which is also the global minimum.

• FYI: You may encounter an algorithm called iteratively reweighted least squares for
training logistic regression in the literature. The algorithm is obtained by applying a more
sophisticated version of gradient descent (called Newton’s method) to minimize L.
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LOGISTIC REGRESSION FOR MULTIPLE CLASSES

Bernoulli and multinomial distributions
• The mulitnomial distribution of N draws from K categories with parameter vector

(θ1, . . . , θK) (where
∑

k≤K θk = 1) has probabililty mass function

P(m1, . . . ,mK |θ1, . . . , θK) =
N!

m1! · · ·mK !

K∏
k=1

θ
mk
k where mk = # draws in category k

• Note that Bernoulli(p) = Multinomial(p, 1− p;N = 1).

Logistic regression
• Recall two-class logistic regression is defined by P(Y|x) = Bernoulli(σ(⟨v, x⟩ − c)).
• Idea: To generalize logistic regression to K classes, choose a separate weight vector vk

and offset ck for each class k, and define P(Y|x) by

Multinomial
(
σ̃(⟨v1, x⟩ − c1), . . . , σ̃(⟨vK , x⟩ − cK)

)
where σ̃(⟨vk, x⟩ − ck) =

σ(⟨vk,x⟩−ck)∑K
j=1 σ(⟨vj,x⟩−cj)

. This definition ensures the σ̃-values add up

to 1 over all classes.
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LOGISTIC REGRESSION FOR MULTIPLE CLASSES

Logistic regression for K classes
The label y now takes values in {1, . . . ,K}.

P(y|x) =
K∏

k=1

σ̃(⟨vk, x⟩ − ck)
I{y=k}

The negative log-likelihood becomes

L(v1, c1, . . . , vK , cK) = −
∑

i≤n, k≤K

I{y = k} log σ̃(⟨vk, x̃i⟩ − ck)

This can again be optimized numerically.

Comparison to two-class case
• Recall that 1− σ(x) = σ(−x), and

Bernoulli(p) = Multinomial(p, 1− p) (with N = 1 draws)
• That means

Bernoulli
(
σ(⟨v, x⟩ − c)

)
≡ Multinomial

(
σ(⟨v, x⟩ − c, σ(⟨−v, x⟩+ c)

)
• That is: Two-class logistic regression as above is equivalent to multiclass logistic

regression with K = 2 provided we choose w2 = −w1.
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MAXIMUM MARGIN IDEA

Setting
Linear classification, two linearly separable classes.

Recall Perceptron
• Selects some hyperplane between the two classes.
• Choice depends on initialization, step size etc.

Maximum margin idea
To achieve good generalization (low prediction error), place the hyperplane “in the middle”
between the two classes.

More precisely
Choose plane such that distance to closest point in each class is maximal. This distance is called
the margin.
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GENERALIZATION ERROR

Possible Perceptron solution
Good generalization under a specific distribution

(here: Gaussian) Maximum margin solution

Example: Gaussian data
• The ellipses represent lines of constant standard deviation (1 and 2 STD respectively).

• The 1 STD ellipse contains ∼ 68.3% of the probability mass (∼ 95.5% for 2 STD; ∼ 99.7% for 3 STD).

Optimal generalization: Classifier should cut off as little probability mass as possible from
either distribution.

Without distributional assumption: Max-margin classifier
• Philosophy: Without distribution assumptions, best guess is symmetric.
• In the Gaussian example, the max-margin solution would not be optimal.
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NEXT: TWO TOOLS

Convex sets
• There is an inherent relationship between linear classification and a geometric property of

shapes called convexity.
• Convex shapes have very useful properties, and we can use those for classification.

Constrained optimization
• The optimization problems we have considered before asked: What is the value of x for

which f (x) is as small as possible?
• A constrained optimization problem asks: Among all x which satisfy the property, which

value makes f (x) as small as possible?
• We use that to formulate the maximum margin problem as: Among all classifiers that

separate the two classes, which one makes the margin as large as possible?
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CONVEX SETS

Definition
A set A ⊂ Rd is called convex if, for every two points x, y ∈ A, the straight line connecting x
and y is completely contained in A.

Examples

convex convex not convex
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EXTREME POINTS

Extreme points
Let A be a convex set and x ∈ A. If x can be removed from A and A \ {x} is still convex, then x
is called an extreme point of A.

Examples
Extreme points are marked black.

infinitely many extreme pointsfinitely many extreme points removing a point from the straight part of
the boundary would leave a “hole”, and
the set would not be convex anymore.

Informally
• If all segments of the boundary are straight lines or planes, the extreme points are exactly

the “corner points” of the set.
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CONVEX HULLS

Definition
If C is a finite set of points in Rd , the convex hull conv(C) of C is the smallest convex set that
contains all points in C.

Note
• Each extreme point of conv(C) is a point in the original set C.
• The convex hull is uniquely determined by C. (Every other convex in Rd either contains

conv(C), or does not contain all points in C.)
• Think of the convex hull as the shape we get by connecting the “outer” point of C.
• The importance of the convex hull for classification is that it defines which points in each

training class are “outer” points (namely those which are extreme points of the convex
hull).
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LINEAR CLASSIFICATION AND CONVEXITY

Observation
Where a separating affine plane may be placed depends on the "outer" points of the sets. Points
in the center do not matter.

In geometric terms
Substitute each class by its convex hull:
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CONVEX HULLS AND CLASSIFICATION

Key idea
There is an inherent relationship between convexity and linear classification: An affine plane
separates two classes if and only if it separates their convex hulls.

Next
We have to formalize what it means for a hyperplane to be "in the middle" between two classes.
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DISTANCES TO SETS

Definition
The distance between a point x and a set A the Euclidean distance between x and the closest
point in A:

d(x,A) := min
y∈A
∥x− y∥

In particular, if A = H is a hyperplane, d(x,H) := min
y∈H
∥x− y∥.

A

d(x,A)

x

d(x,H)
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MARGIN

The margin of a classifier hyperplane H given two training classes is the shortest distance
between the plane and any point in either set:

margin = min
x∈ training data

d(x,H)

Equivalently: The shortest distance to either of the convex hulls.

Idea in the following: H is "in the middle" when margin maximal.
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MAXIMUM MARGIN PROBLEM

Basic problem
We want to find the affine plane H(v, c) that maximizes the distance to both data sets:

maximize d(H(v, c), training data) over all v, c

Problem: The optimization algorithm can just move the plane further and further away from the
data. We have to make sure H is “between the classes”.

Maximum margin optimization problem
The problem we actually solve is

maximize d(H(v, c), training data) over all v, c

such that H(v, c) separates the training data classes

We can express that as:

maximize d(H(v, c), training data) over all v, c

such that ỹisgn(⟨v, x̃i⟩ − c) > 0

This is an example of a so-called constrained optimization problem.
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CONSTRAINED OPTIMIZATION

Recall that a basic optimization problem searches for an argmument x∗ that makes f (x∗)) as
small as possible.

Contstrains
Suppose we fix some property of x that is either true or false (e.g. “x > 0”). The problem

among all x that satisfy the property, find the one that makes f as small as possible

is called a constrained optimization problem. The property is called the constrained.

Customary notation
If we call the property A, say, this is often written as:

minimize f (x)

subject to x satisifies A
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HOW CONSTRAINED PROBLEMS ARE SOLVED

Idea
• An optimization algorithm tries to make f as small as possible.
• We have exclude values of x that violate the constraint.
• Solution: Change the function f so that it is very large at values x that should be excluded.

Implementation
• Choose a function β(x) that is very large for all x that violate the constraint, and 0 at those

x that are permitted.
• Add β to f : Minimize f + β instead of f .
• Remember: We should not introduce jumps, so g should transition smoothly from 0 to

“very large”.

For example
Say we want to minimize f . For another function g, we impose the constraint g(x) < 0.

min f (x) s.t. g(x) < 0

The constraint g(x) < 0 be expressed as an indicator function of g(x) ≥ 0:

min f (x) + const. · I[0,∞)(g(x))

The constant must be chosen large enough to enforce the constraint.
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ADDING A SMOOTH FUNCTION

Choice of the function we add
• The indicator function jumps, which we know is

not useful for optimization. We replace it by a
smooth function.

• A common choice is

βt(x) := −
1
t
log(−x) . x

f (x)

I[0,∞)(x)
βt(x)

In the example above
To solve min f (x) subject to g(x) < 0, we apply gradient descent to

f (x) + βt(g(x)) .

The value t is a “tuning parameter” of the optimization method.
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CONSTRAINED OPTIMIZATION

Remarks
• If the constraint changes (e.g. to “g(x) > −3”), it is easier to modify g than to tinker with

β.
• The method above is an example of a principle we have seen before: We express what we

want to do in terms of an indicator function, then replace it by something smooth, and
apply graident descent.

• Data mining, statistics and machine learning are only a few examples of applications of
constrained optimization methods. Much of the research on constrained optimization is
driven by operations research and financial engineering.
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SUPPORT VECTOR MACHINE

Maximum margin optimization problem
For n training points (x̃i, ỹi) with labels ỹi ∈ {−1, 1}, solve optimization problem:

maximize d
(
H(v, c), {x̃1, . . . , x̃n}

)
s.t. ỹi(⟨vH, x̃i⟩ − c) > 0 for i = 1, . . . , n

• The first line says: Make sure the plane is a far away from every data point as possible.
• The second line says: Only planes that classify the training data correctly are permitted.

Remarks
• The classifier obtained by solving this optimization problem is called a support vector

machine.
• If training data is separable: There is a unique solution (in contrast to the perceptron,

whose solution is not unique).
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SUPPORT VECTORS

Definition
Those extreme points of the convex hulls which
are closest to the hyperplane are called the
support vectors.

There are at least two support vectors, one in
each class.

Implications
• The maximum-margin criterion focuses all attention to the area closest to the decision

surface.
• One can show that the computational cost of solving the optimization problem grows

quadratically in the number of data points.
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SUPPORT VECTOR MACHINES

Advantages
• The SVM often works well for high-dimensional classification.
• It can be generalized to non-linear decision boundaries using a method called the kernel

trick.
• It can also be generalized to overlapping classes.

Disadvantages
• The quadratic training cost means SVMs cannot be trained on very large data sets.

The support vector machine (with kernel trick) is, aside from a method called a random forest,
probably the most widely used classifier for non-vision/audio data. For vision and audio data,
neural networks dominate applications.
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NEAREST NEIGHBOR ALGORITHM

Given: Training data (x̃1, ỹ1), . . . , (x̃n, ỹn).

m-nearest neighbor rule
Fix m ∈ N.

Classify data point x as:
1. Find m training data points that are closest to x in Rd .

2. Assign x to the class the majority of these m points belong to.

Remarks
• Works for any number of classes.
• For two classes, m is usually chosen as an odd number to avoid ties. For more than two

classes, one has to decide on a tie-breaking strategy in case no single class produces a
majority (e.g. choose one of the classes that are in majority at random).

• There is no training algorithm. The training data is used directly to compute the
prediction.
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EXAMPLE: TWO CLASSES

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 13

Number of Neighbors
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Training Error: 0.145
Test Error:       0.225
Bayes Error:    0.210

FIGURE 13.4. k-nearest-neighbors on the two-class
mixture data. The upper panel shows the misclassifi-
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7-NN solution
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NEIGHBORHOOD REGIONS

For m = 1, one can plot subdivide Rd into regions closest to each training point:

If a data point x falls into one of the cells, the 1-NN rule will assign it to the class label of the
point defining the cell.

For m > 1, this becomes harder to plot.
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EXAMPLE: LAND USAGE CLASSIFICATION

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 13

Spectral Band 1 Spectral Band 2 Spectral Band 3

Spectral Band 4 Land Usage Predicted Land Usage

FIGURE 13.6. The first four panels are LANDSAT
images for an agricultural area in four spectral bands,
depicted by heatmap shading. The remaining two pan-
els give the actual land usage (color coded) and the pre-
dicted land usage using a five-nearest-neighbor rule de-
scribed in the text.

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 13

Spectral Band 1 Spectral Band 2 Spectral Band 3

Spectral Band 4 Land Usage Predicted Land Usage

FIGURE 13.6. The first four panels are LANDSAT
images for an agricultural area in four spectral bands,
depicted by heatmap shading. The remaining two pan-
els give the actual land usage (color coded) and the pre-
dicted land usage using a five-nearest-neighbor rule de-
scribed in the text.

• These are the four “channels” (spectral bands) of a LANDSAT image.
• The land it shows is used for agriculture.
• There are 7 types of land usage (red soil, cotton, . . . ).
• For some images, training data is available.
• The goal is to build a classifier that can classify land use in new images.

Source: Hastie/Tibshirani/Freedman, “The elements of statistical learning”Peter Orbanz · Applied Data Mining 137



FEATURE EXTRACTION

Extracting local image statistics

1. Place a small window (size l× l) at the
location.

2. Extract the pixel values inside the
window. Write them into a vector
(→ dimension l2).

Resulting data
• We use l = 3, so each window contains 3× 3 = 9 pixels.
• Since there are four channels we obtain 9× 4 = 36 scalars characterizing each location.
• We use a nearest neighbor classifier on R36.
• To classify locations in a new image: Again extract a vector using a window, and feed that

vector into the NN classifier.

Source: Hastie/Tibshirani/Freedman, “The elements of statistical learning”Peter Orbanz · Applied Data Mining 138



LAND USAGE PREDICTION

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 13

Spectral Band 1 Spectral Band 2 Spectral Band 3

Spectral Band 4 Land Usage Predicted Land Usage

FIGURE 13.6. The first four panels are LANDSAT
images for an agricultural area in four spectral bands,
depicted by heatmap shading. The remaining two pan-
els give the actual land usage (color coded) and the pre-
dicted land usage using a five-nearest-neighbor rule de-
scribed in the text.

Source: Hastie/Tibshirani/Freedman, “The elements of statistical learning”Peter Orbanz · Applied Data Mining 139



EXAMPLE

• 1-NN: Classified as “red”.
• 2-NN: Tie.
• m-NN with m > 2: Classified as “blue”.
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INFLUENCE OF m

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 13

15-Nearest Neighbors
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NEAREST NEIGBHOR CLASSIFICATION

Advantages
• Simple.
• Can be applied to any number of classes.
• Often works very well.

Disadvantages
For large training data sets:

• Requires a lot of memory.
• The entire training set has to be searched for each decision.

Also:
• We are not “learning” anything, even though we can predict.
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EVALUATING AND TUNING A CLASSIFIER



WHAT NEXT

We will consider two problems:
1. Once we have trained a classifier, how do we decide whether it is “good”?

2. We have already seen classifiers with a tuning parameter (e.g. the number of neighbors m
in m-NN.) How do we choose the parameter?
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EVALUATING A CLASSIFIER

Suppose we have trained a classifier f on training data (x̃1, ỹ1), . . . , (x̃n, ỹn).
(We use 0-1 loss, so we simply count mistakes.)

Measuring performance
We can measure performance as an “error rate”:

error rate of f = percentage of data points produced by the data source that f misclassifies

Note: For 0-1 loss and i.i.d. data, this coincides with the risk of f .

Interpreting the error rate
Consider a two class problem, where each class is equally probable.

• The “baseline” error rate is 50%. Classifiers that do worse than that are irrelevant.
Explanation:

• If we predict by flipping a fair coin (and completely ignore the data), we will achieve 50%
error rate.

• If f has error rate > 50%, we can turn it into a classifier with error rate < 50% by
swapping the classes.
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ASSESSING THE ERROR RATE

How do we measure the error rate in practice?
• We don’t have access to the data source itself.
• We only have access to data from the source.
• We can estimate the error rate by measuring it on data: If (x1, y1), . . . , (xm, ym) are data

points, we can compute

error rate of f ≈
∑m

i=1 I{ f (xi) ̸= yi}
m

=
number of misclassified data point

number of data points

• To do so, we need labeled data points.

Can we use the training data?
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SAMPLE PROPERTIES

• We observe a sample of n observations from a given data source.
• If we observe a pattern in the data, it can reflect a property of the data source, or it can be

a random effect.
• When we train a classifier, it should ideally adapt to properties of the source, but ignore

random effects.
• We cannot distinguish the two cases without looking at another sample.

Peter Orbanz · Applied Data Mining 147



SAMPLE PROPERTIES

• We observe a sample of n observations from a given data source.
• If we observe a pattern in the data, it can reflect a property of the data source, or it can be

a random effect.
• When we train a classifier, it should ideally adapt to properties of the source, but ignore

random effects.
• We cannot distinguish the two cases without looking at another sample.

Peter Orbanz · Applied Data Mining 147



SAMPLE PROPERTIES

• We observe a sample of n observations from a given data source.
• If we observe a pattern in the data, it can reflect a property of the data source, or it can be

a random effect.
• When we train a classifier, it should ideally adapt to properties of the source, but ignore

random effects.
• We cannot distinguish the two cases without looking at another sample.

Peter Orbanz · Applied Data Mining 147



TRAINING AND TEST DATA

What happens if we measure the error rate on the training data?
• If the classifier has over-adapted to the idiosyncrasies of the training data, it will perform

better on the training data then on new data from the same source.
• Estimates of error rates computed on the training data tend to underestimate the actual

error rate.

Solution: Data splitting
• Before we train the classifier, we split the labeled data into two parts.
• We call these training data and test data.
• We use the training data to train the classifier.
• We then use the test data to estimate the error rate.
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TRAINING AND TEST ERROR

Types of errors
• The error rate (or, more generally, the empirical risk) evaluated on the training data is

called the training error.
• The error rate or empirical risk evaluated on the test data is the test error.

The distinction between these quantities is crucial.

Interpretation
• The training error measures how well the classifier fits the training data.
• The test error estimates how well the classifier predicts.
• Note this is an estimate rather than a measurement. Measuring the test error would require

access to the data distribution. Since we do not have that distribution, we estimate the
error from data.

Important

The test data must not be used for training in any way.

Once the training method has used any information extracted from the test data, the test error
estimate is confounded.
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STATISTICAL EXPLANATION

(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1), . . . , (Xn+m, Yn+m)

training test

f

Data
• Suppose a data source generates n + m labelled data points.
• We split these into n training and m test points:

(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1), . . . , (Xn+m, Yn+m)

• We assume that (Xi, Yi) is independent of (Xj, Yj), for i ̸= j.
• That means the data are i.i.d., since they have the same distribution (the data source).
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STATISTICAL EXPLANATION

(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1), . . . , (Xn+m, Yn+m)

training test

f

Using the data
• We train a classifier f on the training data. The classifier is obtained from the data by a

deterministic procedure. Since the data is random, the classifier is random.

(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1), . . . , (Xn+m, Yn+m)

• Since the test data is independent of the training data, the classifier is stochastically
independent of the test data.

• That means an estimate of the classifier’s error obtained from the test data is unbiased.
• If training uses any information from the test data, the classifier and the test data become

dependent.
• Typically, the effect of this dependence is that the test error systematically underestimates

the actual prediction error on data from the source.
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TREE CLASSIFIERS



TREES

Idea
• Recall: Classifiers classify according to location in Rd

• Linear classifiers: Divide space into two halfspaces
• What if we are less sophisticated and divide space only along axes? We could classify e.g.

x =

x1
x2
x3
x4

 according to x ∈
{

Class + if x3 > 0.5
Class - if x3 ≤ 0.5

• This decision would correspond to an affine hyperplane perpendicular to the x3-axis, with
offset 0.5.

Tree classifier
• A tree classifier combines several simple decision rules as the one above into a classifier

using a so-called decision tree.
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TREES

• A tree is a diagram consisting of nodes (marked as gray boxes above) and edges (the
connecting lines).

• The topmost node is called the root. Each (except the root) is connected to exactly one
node above it, called its parent.

• Nodes can be connected other nodes below them, called their children.
• Nodes at the bottom (those with no children) are called leaves.
• If each node has either two or no children, the tree is called a binary tree.
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DECISION TREES

false true

false true

Property 1

Property 2 Outcome 1

Outcome 2 Outcome 3

• Binary trees can be used as decision diagrams.
• Each inner node (a node that is not a leaf) represents a property.
• The two children of the node represent the cases “property is false” or “property is true”.
• Each leaf represents an outcome. That means: An outcome is a combination of true and

false properties.
• Such a tree is called a decision tree.
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TREE CLASSIFIER

x

y

x = a

y = b

y = c

x = d

class 2

class 1

class 3

class 1

class
3

x ≥ a

y ≥ b y ≥ c

class 1 class 2 x ≥ d class 3

class 1 class 3

false true

false true false true

false true

• A tree classifier in Rd is a decision tree.
• Each property at an inner node corresponds to a decision of the form xj ≥ c, where

j ∈ {1, . . . , d} is one of the coordinates, and c ∈ R is a constant.
• Each leaf corresponds to a class.
• We classify a data point x ∈ Rd by starting at the root, and following the decisions

through the diagram until we reach a leaf. We then assign x to the class inscribed at that
leaf.
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GROWING A TREE

Example: Data in quadratic domain, three classes, class 3 is the largest class.

x

y

class 3

x = a

y = b

y = c

x = d

class 1 class 3

class 2

class 1

class 3

class 2

class 1

class 3

class 1

class 2

class 1

class 3

class 1

class
3

false true

false true false true

false true

class 3x ≥ ax ≥ a

class 1 class 3

x ≥ a

y ≥ b class 3

class 1 class 2

x ≥ a

y ≥ b y ≥ c

class 1 class 2 class 1 class 3

x ≥ a

y ≥ b y ≥ c

class 1 class 2 x ≥ d class 3

class 1 class 3
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TREES

• Each leaf of the tree corresponds to a region Rm of Rd .
• Each inner node represents the union of all regions represented by nodes below it.
• Classes k ∈ {1, . . . ,K} (not restricted to two classes).
• The tree represents a function f : Rd → {1, . . . ,K}. If we plot that function, it is

piece-wise constant on rectangular regions in R2, or on “box-shaped” regions in Rd .

Figures: Hastie, Tibshirani, Friedman, “The elements of statistical learning”Peter Orbanz · Applied Data Mining 158



TRAINING TREE CLASSIFIERS

Approach
The basic strategy is very simple:

• At each step, decide where to place the next split.
• That replaces one of the regions represented by the tree by two new regions.
• Assign each new region by majority vote among the training data points in that region.

Where do we split?
We have to decide:

• Which region should be split.
• Along which axis.
• At which split point.

Idea: Find the split that results in the largest reduction in training error.
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FINDING A SPLIT POINT

Cost of a split
• Suppose we split regionRm along axis j at value t.
• That results in two new regions, sayR1

m andR2
m.

• In the tree, that means we replace the nodeRm by the criterion xj ≥ t, and addR1
m and

R2
m as child nodes.

• We define the cost of this split as

cost(m, j, t) := # of misclassified points inR1
m + # of misclassified points inR2

m

(That means: We assignR1
m andR2

m class labels by majority vote, and check how many
training points are misclassified by these class labels.)

Training a tree classifier
• For each region m and each axis j, find the split point t that minimizes cost(m, j, t),

tmj := argmin
t∈R

cost(m, j, t) .

• From the list of all such points tmj, pick the one with the smallest cost.
• Perform that split.

We keep doing so until the number of regions m reaches some specified, maximal value M.
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TRAINING

Example: Data in quadratic domain, three classes, class 3 is the largest class. We specify the maximum number of regions as M = 5.

x

y
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3

false true

false true false true

false true
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class 1 class 3
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class 1 class 2
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TRAINING

Example: Data in quadratic domain, three classes, class 3 is the largest class. We specify the maximum number of regions as M = 5.
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EXAMPLE: SPAM FILTERING

Data
• 4601 email messages
• Classes: email, spam

Tree classifier
• 17 nodes
• Performance:

Predicted

True Email Spam

Email 57.3% 4.0%
Spam 5.3% 33.4%

Figures: Hastie, Tibshirani, Friedman, “The elements of statistical learning”Peter Orbanz · Applied Data Mining 162



INFLUENCE OF TREE SIZE
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.4. Results for spam example. The blue
curve is the 10-fold cross-validation estimate of mis-
classification rate as a function of tree size, with stan-
dard error bars. The minimum occurs at a tree size
with about 17 terminal nodes (using the “one-standard-
-error” rule). The orange curve is the test error, which
tracks the CV error quite closely. The cross-validation
is indexed by values of α, shown above. The tree sizes
shown below refer to |Tα|, the size of the original tree
indexed by α.

Tree Size
• Complete tree of height D defines 2D regions.
• D too small: Insufficient accuracy. D too large: Overfitting.
• D can be determined by cross validation or more sophisticated methods ("complexity

pruning" etc), which we will not discuss here.

Figures: Hastie, Tibshirani, Friedman, “The elements of statistical learning”Peter Orbanz · Applied Data Mining 163



SPAM FILTERING: TREE
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.5. The pruned tree for the spam example.
The split variables are shown in blue on the branches,
and the classification is shown in every node.The num-
bers under the terminal nodes indicate misclassification
rates on the test data.

Figures: Hastie, Tibshirani, Friedman, “The elements of statistical learning”Peter Orbanz · Applied Data Mining 164



DECISION STUMPS

x ≥ a

class k1 class k2

false true

• The simplest possible tree classifier is a tree of depth 1. Such a classifier is called a
decision stump.

• A decision stump is parameterized by a pair (j, tj) of an axis j and a splitting point tj.

• Splits Rd into two regions.
• Decision boundary is an affine hyperplane which is perpendicular to axis j and intersects

the axis at tj.
• Decision stumps are often used in so-called ensemble methods. These are algorithms that

combine many poor classifiers into a good classifier. We will discuss ensemble methods
later.
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MODEL SELECTION AND CROSS
VALIDATION



OVERFITTING

• We had already noted that a classifier can adapt “too closely” to a training data set.
• If the classifier represents idiosyncracies of the training sample rather than the properties

of the data source, it achieves small training error, but will not perform well on new data
generated by the same data source.

• This phenomenon is called overfitting.

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 13

15-Nearest Neighbors
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COMPLEXITY AND OVERFITTING

Overfitting and flexibility
• How prone a classifier is to overfitting depends on how “flexible” it is.
• Linear classifier are not very likely to overfit.

Example: Trees
• A tree of depth 1 is a linear classifier, and will not overfit any reasonably large data set.
• A tree with many splits can subdivide the sample space into small regions.
• Suppose we train a tree with M splits on n training points. If M ≈ n, the tree can separate

almost every training point off into a separate region. That is overfitting: The tree
memorizes the training data.

More complex (= flexible) models are more likely to overfit.
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TRAINING VS TEST ERROR

Conceptual illustration

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

44.4: Benefits of the Bayesian approach to supervised feedforward neural networks 531

(a)

(b)

(c)

(d)
Model Control Parameters

Training Error

Test Error

(e)
Model Control Parameters

Log Probability(Training Data | Control Parameters)

Figure 44.5. Optimization of
model complexity. Panels (a–c)
show a radial basis function model
interpolating a simple data set
with one input variable and one
output variable. As the
regularization constant is varied
to increase the complexity of the
model (from (a) to (c)), the
interpolant is able to fit the
training data increasingly well,
but beyond a certain point the
generalization ability (test error)
of the model deteriorates.
Probability theory allows us to
optimize the control parameters
without needing a test set.

The overfitting problem can be solved by using a Bayesian approach to
control model complexity.

If we give a probabilistic interpretation to the model, then we can evaluate
the evidence for alternative values of the control parameters. As was explained
in Chapter 28, over-complex models turn out to be less probable, and the
evidence P (Data |Control Parameters) can be used as an objective function
for optimization of model control parameters (figure 44.5e). The setting of α
that maximizes the evidence is displayed in figure 44.5b.

Bayesian optimization of model control parameters has four important ad-
vantages. (1) No ‘test set’ or ‘validation set’ is involved, so all available training
data can be devoted to both model fitting and model comparison. (2) Reg-
ularization constants can be optimized on-line, i.e., simultaneously with the
optimization of ordinary model parameters. (3) The Bayesian objective func-
tion is not noisy, in contrast to a cross-validation measure. (4) The gradient of
the evidence with respect to the control parameters can be evaluated, making
it possible to simultaneously optimize a large number of control parameters.

Probabilistic modelling also handles uncertainty in a natural manner. It
offers a unique prescription, marginalization, for incorporating uncertainty
about parameters into predictions; this procedure yields better predictions, as
we saw in Chapter 41. Figure 44.6 shows error bars on the predictions of a
trained neural network.

Figure 44.6. Error bars on the
predictions of a trained regression
network. The solid line gives the
predictions of the best-fit
parameters of a multilayer
perceptron trained on the data
points. The error bars (dotted
lines) are those produced by the
uncertainty of the parameters w.
Notice that the error bars become
larger where the data are sparse.

Implementation of Bayesian inference

As was mentioned in Chapter 41, Bayesian inference for multilayer networks
may be implemented by Monte Carlo sampling, or by deterministic methods
employing Gaussian approximations (Neal, 1996; MacKay, 1992c).

Vertical: Error Horizontal: Model complexity (e.g. number of splits in tree)

• If classifier can adapt (too) well to data: Small training error, but possibly large test error.
• If classifier can hardly adapt at all: Large training and test error.
• Somewhere in between, there is a sweet spot.
• Trade-off is controlled by the parameter.
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Implications for Training
• If we permit the training algorithm to make a classifier more flexible, it is likely to overfit.
• Example: If the training algorithm for a tree classifier can perform an arbitrary number of

splits, it can achieve zero training error.

Avoiding overfitting
• Parameters that control flexibility (like the maximal number of splits in a tree) should be

fixed during training.
• We have to develop alternative strategies to choose values for those parameters.
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TYPES OF PARAMETERS

It is customary to separate parameters into two types:
1. Model parameters

The parameters that specify the solution.
Examples:

• Normal vector and offset of a linear classifier
• Split points and tree structure of a tree classifier.

(m-nearest neighbor classifiers are an exception: They have no such parameters.)

2. Hyperparameters
Parameters that control the complexity of the solution.
Examples:

• Number of splits of tree classifier
• number m of neighbors in m-nearest neighbor

Hyperparameters cannot be chosen by the training algorithm.

Selecting values for the parameters
• The model parameters are estimated by the training algorithm.
• Hyperparameters are often determined using data splitting methods.
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TERMINOLOGY: MODELS

Models
• Data mining and machine learning often loosely refers to a method as a model. It is

difficult to give a definition that is both general and precise.
• A definition that often works for classification is: A model is the set of all possible

classifiers that a given method can fit to training data. Each individual solution is often
called a hypothesis.

Examples
• Linear classifier in Rd: Model = all possible affine planes in Rd ,

hypothesis = a specific affine plane.
• Tree classifer in Rd: Model = all possible tree classifiers with a fixed number M of splits,

hypothesis = classifier defined by one particular tree.

Models and hyperparameters
• Typically, all classifiers within a model should have the same complexity.
• For example: We think of trees with 1 split and trees with 2 splits as two distinct models.
• More generally: Different hyperparameter values define different models.
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CROSS VALIDATION

Objective
• Cross validation is a method which tries to select the best model (e.g. all tree classifiers

with 3 splits) from a given family of models (e.g. all tree classifiers).
• This is done using data splitting. Cross validation is a data splitting “protocol”.
• Assumption: Quality measure is predictive performance.
• "Set of models" can simply mean "set of different parameter values".

Terminology
• The process of choosing a good model within a family of models is called model

selection.
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CROSS VALIDATION FOR MODEL SELECTION:
PROCEDURE

(From now on, we just write γ to denote the entire set of hyperparameters.)

Model selection
1. Randomly split data into three sets: training, validation and test data.

Training set Validation set Test set

2. Train classifier on training data for different values of γ.

3. Evaluate each trained classifier on validation data (ie compute error rate).

4. Select the value of γ with lowest error rate.

Model assessment
5. Finally: Estimate the error rate of the selected classifier on test data.
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BASIC CV FOR A TREE

x ≥ a

class 1 class 3

false true

M = 1:

false true

false true

x ≥ a

y ≥ b class 3

class 1 class 2

M = 2:

false true

false true false true

x ≥ a

y ≥ b y ≥ c

class 1 class 2 class 1 class 3

M = 3:

Training set Validation set Test set

CV procedure
• Split labeled data into a training, validation

and test set.
• For each M in {1, 2, 3}: Train a tree classifier

with M splits on the training set.
• For each M, estimate the error rate of the

trained classifier on the validation set.
• Select the value of M with the smallest error

rate; say this is M = 2.
• Estimate the error rate for M = 2 on the test

set.
For prediction on new data, you now use the tree
classifier with M = 2, and report its estimated error
rate as that estimated on the test set.
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STATISTICAL ANALYSIS

Meaning
• The quality measure by which we are comparing different classifiers fγ (for different

parameter values γ) is the risk

R
(

fγ
)
= E[L(y, fγ(x))] .

• Since we do not know the true risk, we estimate it from data as R̂( fγ).

Importance of model assessment step
• We always have to assume: Classifier is better adapted to any data used to select it than to

actual data distribution.
• Model selection: Adapts classifier to both training and validation data.
• If we estimate error rate on any part of the training or validation data, we will in general

underestimate it.
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CROSS VALIDATION

Procedure in detail
We consider possible parameter values γ1, . . . , γm.

1. For each value γj, train a classifier fγj on the training set. (That is: γj is fixed, and the
training algorithm outputs a fitted classifier f for this value of γj.)

2. Use the validation set to estimate R(fγj ) as the empirical risk

R̂(fγ) =
1
nv

nv∑
i=1

L(ỹi, fγj (x̃i)) .

nv is the size of the validation set.

3. Select the value γ∗ which achieves the smallest estimated error.

4. Re-train the classifier with parameter γ∗ on all data except the test set
(i.e. on training + validation data).

5. Report error estimate R̂( fγ∗ ) computed on the test set.
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K-FOLD CROSS VALIDATION

Idea
Each of the error estimates computed on validation set is computed from a single example of a
trained classifier. Can we improve the estimate?

Strategy
• Set aside the test set.
• Split the remaining data into K blocks.
• Use each block in turn as validation set. Perform cross validation and average the results

over all K combinations.
This method is called K-fold cross validation.

Example: K=5

Step k = 1Step k = 2Step k = 3Step k = 4Step k = 5

Test set
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K-FOLD CV FOR A TREE

x ≥ a

class 1 class 3

false true

M = 1:

false true

false true

x ≥ a

y ≥ b class 3

class 1 class 2

M = 2:

false true

false true false true

x ≥ a

y ≥ b y ≥ c

class 1 class 2 class 1 class 3

M = 3:

Step k = 1Step k = 2Step k = 3Step k = 4Step k = 5

Test set

CV procedure (for K = 5)
• Split off test data.
• Split remaining data into K equal parts.
• For each k = 1, . . . , 5:

1. Use kth block as validation set.
2. For each M in {1, 2, 3}: Train a tree

classifier with M splits on the remaining
blocks.

3. For each M, estimate the error rate of the
trained classifier on the validation block.

• For each M, average the K error rate estimates
over all values of k.

• Select the value of M with the smallest average
error rate.

• Estimate the error rate for the optimal M on
the test set.
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K-FOLD CROSS VALIDATION: IN DETAIL

Risk estimation
To estimate the risk of a classifier f ( . , γj):

1. Split data into K equally sized blocks.

2. Train an instance fγj,k of the classifier, using all blocks except block k as training data.

3. Compute the cross validation estimate

R̂CV( fγj ) :=
1
K

K∑
k=1

1
|block k|

∑
(x̃,̃y)∈ block k

L
(
ỹ, fγj,k(x̃)

)
Repeat this for all parameter values γ1, . . . , γm.

Selecting a model
• Choose the parameter value γ∗ for which estimated risk is minimal.

Model assessment
• Report risk estimate for fγ∗ computed on test data.
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HOW TO CHOOSE K?

Extremal cases
• K = n, called leave one out cross validation (loocv)
• K = 2

An often-cited problem with loocv is that we have to train many (= n) classifiers, but there is
also a deeper problem.

Argument 1: K should be small, e.g. K = 2
• Unless we have a lot of data, variance between two distinct training sets may be

considerable.
• Important concept: By removing substantial parts of the sample in turn and at random,

we can simulate this variance.
• By removing a single point (loocv), we cannot make this variance visible.

Peter Orbanz · Applied Data Mining 181



ILLUSTRATION

K = 2, n = 20
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HOW TO CHOOSE K?

Argument 2: K should be large, e.g. K = n
• Classifiers generally perform better when trained on larger data sets.
• A small K means we substantially reduce the amount of training data used to train each fk ,

so we may end up with weaker classifiers.
• This way, we will systematically overestimate the risk.

Common recommendation: K = 5 to K = 10
Intuition:

• K = 10 means number of samples removed from training is one order of magnitude
below training sample size.

• This should not weaken the classifier considerably, but should be large enough to make
measure variance effects.
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SUMMARY: CROSS VALIDATION

Purpose
Estimates the risk R(f ) = E[L(y, f (x))] of a classifier (or regression function) from data.

Application to parameter tuning
• Compute one cross validation estimate of R(f ) for each parameter value.
• Note again: Cross validation procedure does not involve the test data.

Training set Validation set Test set

for K-fold cv, split this
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EXAMPLE: NEAREST NEIGHBOR CLASSIFIER

CV for a m-NN classifier
• The nearest neighbor classifier is particularly simple since it does not require a training

algorithm.
• Since it uses training data, we still need to distinguish between training, validation and

test data.

Task
• We want to classify handwritten digits (according to the value of the digit).
• We use an m-nearest neighbor classifer.
• That means we have to choose a suitable value for m.
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DIGIT CLASSIFICATION: DATA

Peter Orbanz · Applied Data Mining 186



DIGIT CLASSIFICATION: DATA

=

• Grayscale values 0, . . . , 255 (where 0 means white and 255 black).
• Each matrix is “rolled off” into a vector. These vectors are collected in a matrix.
• Each image is of size 16× 16 = 256 pixels, so we obtain vectors in R256.

Peter Orbanz · Applied Data Mining 187



DIGIT CLASSIFICATION: CROSS VALIDATION

Basic cross validation for m-NN

Training set Validation set Test set

• Choose candidate values for m, say m = 1, 3, 5.
• Split data into training, validation and test set.
• For each m ∈ {1, 3, 5}, implement the m-NN classifier fm. Each of these uses the training

data set to classify.
• Compute the misclassification rate for each m on the validation set.
• Choose the m with the smallest misclassification rate.
• Compute the misclassifation rate on the test set for the optimal m.

Are we allowed to use the validation set for prediction?
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MEASURING CLASSIFIER PERFORMANCE



ERROR COUNTING

Error types in a two-class problem
• False positives (type I error): True label is -1, predicted label is +1.
• False negative (type II error): True label is +1, predicted label is -1.

We write TP = # true positives, FP = # false positives, TN = # true negatives,
FN = # false negatives

Error rate

ER =
# wrong predictions

# observations
=

FP + FN
FP + FN + TP + TN

Does not distinguish errors between classes.

Relevance
Distinction between error types is crucial e.g. if:

• Classes differ significantly in size
• One type of error has worse consequences than other
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MATRIX REPRESENTATION

The different types of errors can be summarized in a matrix as

positive label negative label
predicted positive TP/n FP/n
predicted negative FN/n TN/n

where n is the number of observations.

This is called a confusion matrix or contingency table.
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DEPENDENCE ON PARAMETERS

• Suppose a classifier is determined by some parameter θ.
• As we change θ, the number of false positives and false negatives changes.
• We hence have parameter-dependent quantities TP(θ), TN(θ), etc.
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PRECISION AND RECALL

One summary measure of classifier performance are precision and recall:

Precision(θ) :=
TP(θ)

TP(θ) + FP(θ)
Recall(θ) :=

TP(θ)
TP(θ) + FN(θ)

A precision/recall plot eveluates precision and recall on validation/test data for a range of
different values of θ, and plots precision (vertical axis) against recall (horizontal axis):

• Each point in the plot represents a classifier, for one value of θ.
• Ideally, both precision and recall are high, so “good values” are in the upper right corner.
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ROC DIAGRAMS

A plot of the true positive rate (TPR) versus the false positive rate (FPR) is called a receiver
operating characteristic (ROC) curve:

TPR =
TP

# Positives
FPR =

FP
# Negatives

• “Good” region: Upper left
corner. (P/R: Upper right
corner.)

• Classifier below diagonal (lower
left to upper right): Worse than
random decision.
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INTERPOLATION IN ROC CURVES

Linear interpolation of classifiers
• Given: Classifiers fθ1 , fθ2 , interpolation parameter λ ∈ [0, 1].
• Define new classifier fλ as: Randomly choose output of fθ1 with probability λ, output of

fθ2 with probability 1− λ.

Error rates under interpolation

TPR(fλ) = λTPR(fθ1 ) + (1− λ)TPR(fθ2 )

The same holds for FPR, ER (but not for Precision and Recall).

f
θ1

f
θ2 • ROC plot: Every point represents a classifier

performance.
• Consequence: A classifier with performance represented

by a point on a straight line between fθ1 and fθ2 in the
plot can be constructed by linear interpolation.

• The perfomance values constructable from existing
classifiers in this way are called achievable.
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ROC INTERPOLATION: CONVEX HULL

f
θ1

f
θ2

f
θ3

• Suppose classifiers fθ1 , fθ2 , fθ3 are given:
• If the objective is to optimize ROC

performance, fθ3 is worthless.
• We can always obtain a better classifiers

by interpolating fθ1 and fθ2 .

In general
• Recall the interpolation formula λTPR(fθ1 ) + (1− λ)TPR(fθ2 ) is a convex combination.
• If {fθ1 , . . . , fθk} are given: Any convex combination of these is achievable.

For given classifiers {fθ1 , . . . , fθk}, the convex hull of these classifiers in the ROC plot is
achievable.
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ROC VS PRECISION/RECALL

In Precision/Recall graphs, linear interpolation of classifiers does not correspond to linear
interpolation of points in the plot.

ROC convex hull Translation to P/R curve
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ROC FOR IMBALANCED CLASSES

Disadvantage of ROC
• If the TNR is high, any system can easily achive good FPR or ER by biasing towards the

negative class.
• High TNR problems are typically those where one tries to pick out a few interesting

points against a large background class (e.g. face detection).

Example
• Two classes are given. Increase the size of the negative class by a factor 10.
• The TP value of a given classifier and # Positives in training data do not depend on the

negative class, so the TPR does not change.
• Since FP increases roughly by a factor ten, the FPR does not change either:

FPRnew ≈
10 · FPold

10 · # Negativesold

= FPRold

• Consequence: The ROC curve does not change, up to small fluctuations.
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ROC (original classes)

ROC (negative class × 10)

P/R (original classes)

P/R (negative class × 10)
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PERFORMANCE OF A SINGLE CLASSIFIER

Parametrization by a threshold τ
• Many classifiers we have seen can be written as comparing a function g to a threshold τ .
• The classification result f (x) is then computed as

f (x) =

{
+1 g(x) ≥ τ

−1 g(x) < τ

For example
f g(x) τ

linear classifier ⟨v, x⟩ − c τ = 0
logistic regression σ(⟨v, x⟩ − c) τ = 1

2
one gaussian density p per class p+1 (x)− p−1 (x) τ = 0
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PERFORMANCE OF A SINGLE CLASSIFIER

Varying τ
• We can denote the classifier f above as fτ for a given value of τ , and vary that value.
• As τ changes, the values of TP, FN, etc change.
• For a larger value of τ , fewer points are classified as positive, so we expect fewer false

positives and more false negatives.
• If we regard τ as the parameter θ above, we can draw a ROC curve or Precision/Recall

diagram for f , where each point correspond to a value of τ .
If you see a ROC or P/R curve reported for a single classifier, this is usually what it means.
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AUC

Definition
The Area Under the Curve (AUC) the area under an ROC curve. Note this is a value between
0 and 1.

Illustration

• The blue curve is an ROC curve.
• The AUC value is the size of the area shaded in gray.
• AUC is a summary statistic that summarizes a ROC

diagram in a single number.

AUC of a classifier
When AUC is reported for a single classifier, it typically refers to the AUC defined by the ROC
diagram obtained by varying a threshold τ as above.
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EXAMPLE

65% Liberal), religion (“Muslim”/“Christian”; n = 18,833; 90%
Christian), and the Facebook social network information [n =
17,601; median size, ~X = 204; interquartile range (IQR), 206;
median density, ~X = 0.03; IQR, 0.03] were obtained from users’
Facebook profiles. Users’ consumption of alcohol (n = 1,196;
50% drink), drugs (n = 856; 21% take drugs), and cigarettes (n =
1211; 30% smoke) and whether a user’s parents stayed together
until the user was 21 y old (n = 766; 56% stayed together) were
recorded using online surveys. Visual inspection of profile pic-
tures was used to assign ethnic origin to a randomly selected
subsample of users (n = 7,000; 73% Caucasian; 14% African
American; 13% others). Sexual orientation was assigned using the
Facebook profile “Interested in” field; users interested only in
others of the same sex were labeled as homosexual (4.3% males;
2.4% females), whereas those interested in users of the opposite
gender were labeled as heterosexual.

Results
Prediction of Dichotomous Variables. Fig. 2 shows the prediction
accuracy of dichotomous variables expressed in terms of the area
under the receiver-operating characteristic curve (AUC), which is
equivalent to the probability of correctly classifying two randomly
selected users one from each class (e.g., male and female). The
highest accuracy was achieved for ethnic origin and gender. African
Americans and Caucasian Americans were correctly classified in
95% of cases, and males and females were correctly classified in
93% of cases, suggesting that patterns of online behavior as
expressed by Likes significantly differ between those groups
allowing for nearly perfect classification.
Christians andMuslims were correctly classified in 82%of cases,

and similar results were achieved for Democrats and Republicans
(85%). Sexual orientation was easier to distinguish among males
(88%) than females (75%), which may suggest a wider behavioral
divide (as observed from online behavior) between hetero- and
homosexual males.
Good prediction accuracy was achieved for relationship status

and substance use (between 65% and 73%). The relatively lower
accuracy for relationship status may be explained by its temporal
variability compared with other dichotomous variables (e.g.,
gender or sexual orientation).
The model’s accuracy was lowest (60%) when inferring whether

users’ parents stayed together or separated before users were 21 y
old. Although it is known that parental divorce does have long-

term effects on young adults’ well-being (28), it is remarkable that
this is detectable through their Facebook Likes. Individuals
with parents who separated have a higher probability of liking
statements preoccupied with relationships, such as “If I’m with
you then I’m with you I don’t want anybody else” (Table S1).

User – Like Matrix
(10M User-Like pairs)
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e.g.  age=α+β1 C1 +…+ βnC100
Predicted variables

Facebook profile:

social network size and density
Profile picture: ethnicity
Survey / test results: BIG5 Personali-

substance use, parents together?

Fig. 1. The study is basedona sampleof 58,466volunteers fromtheUnited States, obtained through themyPersonality Facebookapplication (www.mypersonality.
org/wiki), which included their Facebook profile information, a list of their Likes (n = 170 Likes per person on average), psychometric test scores, and survey in-
formation. Users and their Likes were represented as a sparse user–Like matrix, the entries of which were set to 1 if there existed an association between a user and
a Like and 0 otherwise. The dimensionality of the user–Like matrix was reduced using singular-value decomposition (SVD) (24). Numeric variables such as age or
intelligence were predicted using a linear regression model, whereas dichotomous variables such as gender or sexual orientation were predicted using logistic
regression. Inboth cases,weapplied 10-fold cross-validation andused the k= 100 top SVD components. For sexual orientation, parents’ relationship status, anddrug
consumption only k = 30 top SVD components were used because of the smaller number of users for which this information was available.

Fig. 2. Prediction accuracy of classification for dichotomous/dichotomized
attributes expressed by the AUC.

Kosinski et al. PNAS | April 9, 2013 | vol. 110 | no. 15 | 5803
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under the receiver-operating characteristic curve (AUC), which is
equivalent to the probability of correctly classifying two randomly
selected users one from each class (e.g., male and female). The
highest accuracy was achieved for ethnic origin and gender. African
Americans and Caucasian Americans were correctly classified in
95% of cases, and males and females were correctly classified in
93% of cases, suggesting that patterns of online behavior as
expressed by Likes significantly differ between those groups
allowing for nearly perfect classification.
Christians andMuslims were correctly classified in 82%of cases,

and similar results were achieved for Democrats and Republicans
(85%). Sexual orientation was easier to distinguish among males
(88%) than females (75%), which may suggest a wider behavioral
divide (as observed from online behavior) between hetero- and
homosexual males.
Good prediction accuracy was achieved for relationship status

and substance use (between 65% and 73%). The relatively lower
accuracy for relationship status may be explained by its temporal
variability compared with other dichotomous variables (e.g.,
gender or sexual orientation).
The model’s accuracy was lowest (60%) when inferring whether

users’ parents stayed together or separated before users were 21 y
old. Although it is known that parental divorce does have long-

term effects on young adults’ well-being (28), it is remarkable that
this is detectable through their Facebook Likes. Individuals
with parents who separated have a higher probability of liking
statements preoccupied with relationships, such as “If I’m with
you then I’m with you I don’t want anybody else” (Table S1).
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substance use, parents together?

Fig. 1. The study is basedona sampleof 58,466volunteers fromtheUnited States, obtained through themyPersonality Facebookapplication (www.mypersonality.
org/wiki), which included their Facebook profile information, a list of their Likes (n = 170 Likes per person on average), psychometric test scores, and survey in-
formation. Users and their Likes were represented as a sparse user–Like matrix, the entries of which were set to 1 if there existed an association between a user and
a Like and 0 otherwise. The dimensionality of the user–Like matrix was reduced using singular-value decomposition (SVD) (24). Numeric variables such as age or
intelligence were predicted using a linear regression model, whereas dichotomous variables such as gender or sexual orientation were predicted using logistic
regression. Inboth cases,weapplied 10-fold cross-validation andused the k= 100 top SVD components. For sexual orientation, parents’ relationship status, anddrug
consumption only k = 30 top SVD components were used because of the smaller number of users for which this information was available.

Fig. 2. Prediction accuracy of classification for dichotomous/dichotomized
attributes expressed by the AUC.

Kosinski et al. PNAS | April 9, 2013 | vol. 110 | no. 15 | 5803
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BOOSTING



ENSEMBLES

Suppose we are given a data source with two classes, and manage to generate a random
hyperplane classifier with expected error of 0.5 (i.e. 50%).

(Informally, think of this as not knowing the data source and generating a “uniformly distributed
classifier”.)

Peter Orbanz · Applied Data Mining 205



ENSEMBLES

A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

• Many random hyperplanes combined by majority vote: Still 0.5.
• A single classifier slightly better than random: 0.5 + ε.
• What if we use m such classifiers and take a majority vote?
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VOTING

Decision by majority vote
• m individuals (or classifiers) take a vote. m is an odd number.
• They decide between two choices; one is correct, one is wrong.
• After everyone has voted, a decision is made by simple majority.

Note: For two-class classifiers f1, . . . , fm (with output ±1):

majority vote = sgn
( m∑

j=1

fj
)

Assumptions
Before we discuss ensembles, we try to convince ourselves that voting can be beneficial. We
make some simplifying assumptions:

• Each individual makes the right choice with probability p ∈ [0, 1].
• The votes are independent, i.e. stochastically independent when regarded as random

outcomes.
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DOES THE MAJORITY MAKE THE RIGHT CHOICE?

Condorcet’s rule
If the individual votes are independent, the answer is

Pr{ majority makes correct decision } =
m∑

j= m+1
2

m!

j!(m− j)!
pj(1− p)m−j

This formula is known as Condorcet’s jury theorem.

Probability as function of the number of votes

p = 0.55 p = 0.45 p = 0.85
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ENSEMBLE METHODS

Terminology
• An ensemble method makes a prediction by combining the predictions of many

classifiers into a single vote.
• The individual classifiers are usually required to perform only slightly better than random.

For two classes, this means slightly more than 50% of the data are classified correctly.
Such a classifier is called a weak learner.

Strategy
• We have seen above that if the weak learners are random and independent, the prediction

accuracy of the majority vote will increase with the number of weak learners.
• Since the weak learners all have to be trained on the training data, producing random,

independent weak learners is difficult.
• Different ensemble methods (e.g. Boosting, Bagging, etc) use different strategies to train

and combine weak learners that behave relatively independently.
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METHODS WE WILL DISCUSS

Boosting
• After training each weak learner, data is modified using weights.
• Deterministic algorithm.

Bagging
• Each weak learner is trained on a random subset of the data.

Random forests
• Bagging with tree classifiers as weak learners.
• Uses an additional step to remove dimensions in Rd that carry little information.
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BOOSTING

Boosting
• Arguably the most popular (and historically the first) ensemble method.
• Weak learners can be trees (decision stumps are popular), Perceptrons, etc.
• Requirement: It must be possible to train the weak learner on a weighted training set.

Overview
• Boosting adds weak learners one at a time.
• A weight value is assigned to each training point.
• At each step, data points which are currently classified correctly are weighted down (i.e.

the weight is smaller the more of the weak learners already trained classify the point
correctly).

• The next weak learner is trained on the weighted data set: In the training step, the error
contributions of misclassified points are multiplied by the weights of the points.

• Roughly speaking, each weak learner tries to get those points right which are currently not
classified correctly.
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TRAINING WITH WEIGHTS

Example: Decision stump
A decision stump classifier for two classes is defined by

f ( x | j, t ) :=

{
+1 x(j) > t
−1 otherwise

where j ∈ {1, . . . , d} indexes an axis in Rd .

Weighted data
• Training data (x̃1, ỹ1), . . . , (x̃n, ỹn).
• With each data point x̃i we associate a weight wi ≥ 0.

Training on weighted data
Minimize the weighted misclassifcation error:

(j∗, t∗) := argmin
j,t

∑n
i=1 wiI{ỹi ̸= f (x̃i|j, t)}∑n

i=1 wi
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ADABOOST

Input
• Training data (x̃1, ỹ1), . . . , (x̃n, ỹn)

• Algorithm parameter: Number M of weak learners

Training algorithm
1. Initialize the observation weights wi =

1
n for i = 1, 2, ..., n.

2. For m = 1 to M:

2.1 Fit a classifier gm(x) to the training data using weights wi.
2.2 Compute

errm :=

∑n
i=1 wiI{yi ̸= gm(xi)}∑

i wi

2.3 Compute αm = log( 1−errm
errm

)

2.4 Set wi ← wi · exp(αm · I(yi ̸= gm(xi))) for i = 1, 2, ..., n.

3. Output

f (x) := sign

(
M∑

m=1

αmgm(x)

)
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ADABOOST

Weight updates

αm = log
(1− errm

errm

)
w(m)

i = w(m-1)
i · exp(αm · I(yi ̸= gm(xi)))

Hence:

w(m)
i =

{
w(m-1)

i if gm classifies xi correctly
w(m-1)

i · 1−errm
errm

if gm misclassifies xi

0.2 0.4 0.6 0.8 1.0
err

2
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1−errm
errm

Weighted classifier

f (x) = sign

(
M∑

m=1

αmgm(x)

)
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err
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0.5 = random

αm = log
(

1−errm
errm

)
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ILLUSTRATION
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Circle = data points, circle size = weight.
Dashed line: Current weak learner. Green line: Aggregate decision boundary.
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EXAMPLE

AdaBoost test error (simulated data)

• Weak learners used are decision stumps.
• Combining many trees of depth 1 yields much better results than a single large tree.
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BOOSTING: PROPERTIES

Properties
• AdaBoost is one of most widely used classifiers in applications.
• Decision boundary is non-linear.
• Can handle multiple classes if weak learner can do so.

Test vs training error
• Most training algorithms (e.g. Perceptron) terminate when training error reaches

minimum.
• AdaBoost weights keep changing even if training error is minimal.
• Interestingly, the test error typically keeps decreasing even after training error has

stabilized at minimal value.
• It can be shown that this behavior can be interpreted in terms of a margin:

• Adding additional classifiers slowly pushes overall f towards a maximum-margin
solution.

• May not improve training error, but improves generalization properties.
• This does not imply that boosting magically outperforms SVMs, only that minimal

training error does not imply an optimal solution.
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BOOSTING AND FEATURE SELECTION

AdaBoost with Decision Stumps
• Once AdaBoost has trained a classifier, the weights αm tell us which of the weak learners

are important (i.e. classify large subsets of the data well).
• If we use Decision Stumps as weak learners, each fm corresponds to one axis.
• From the weights α, we can read off which axis are important to separate the classes.

Terminology
The dimensions of Rd (= the measurements) are often called the features of the data. The
process of selecting features which contain important information for the problem is called
feature selection. Thus, AdaBoost with Decision Stumps can be used to perform feature
selection.
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SPAM DATA

• Tree classifier: 9.3% overall
error rate

• Boosting with decision stumps:
4.5%

• Figure shows feature selection
results of Boosting.
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HOMEWORK: A PRIMITIVE ENSEMBLE

x−

x+

Idea
• Try to implement the “randomly throwing out hyperplanes” idea directly.
• Strategy: Build a “weak lerner” by selecting two points at random and let them determine

a hyperplane.
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HOMEWORK: A PRIMITIVE ENSEMBLE

x−

x+

Weak classifier
• Choose two training data points x− and x+, one in each class.
• Place an affine plane “in the middle” between the two:

w :=
x+ − x−

∥x+ − x−∥ and c :=
〈

w, x− +
1
2
(x+ − x−)

〉
• Choose the orientation with smaller training error: Define weak classifier as

f ( . ) = sgn(⟨ . , v⟩ − c) where either v := w or v := −w .
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HOMEWORK: A PRIMITIVE ENSEMBLE

x−

x+

Ensemble training
• Split the available data into to equally sized parts (training and test).

• Select m pairs of points (x−1 , x+1 ), . . . , (x−m , x+m ) uniformly (with replacement).

• For each such pair (x−i , x+i ), compute the classifer fi given by (vi, ci) as described above.
• The overall classifier gm is defined as the majority vote

gm(x) = sgn
( m∑

j=1

fi(x)
)
= sgn

( m∑
j=1

sgn(⟨vi, x⟩ − ci)
)
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APPLICATION: FACE DETECTION



FACE DETECTION

Searching for faces in images
Two problems:

• Face detection Find locations of all faces in image. Two classes.
• Face recognition Identify a person depicted in an image by recognizing the face. One

class per person to be identified + background class (all other people).
Face detection can be regarded as a solved problem. Face recognition is not solved.

Face detection as a classification problem
• Divide image into patches.
• Classify each patch as "face" or "not face"

Reference: Viola & Jones, “Robust real-time face detection”, Int. Journal of Computer Vision, 2004.
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CLASSIFIER CASCADES

Unbalanced Classes
• Our assumption so far was that both classes are roughly of the same size.
• Some problems: One class is much larger.
• Example: Face detection.

• Image subdivided into small quadratic
patches.

• Even in pictures with several people, only
small fraction of patches usually represent
faces.

Standard classifier training
Suppose positive class is very small.

• Training algorithm can achieve good error rate by classifiying all data as negative.
• The error rate will be precisely the proportion of points in positive class.

Image source: WikipediaPeter Orbanz · Applied Data Mining 225



CLASSIFIER CASCADES

Addressing class imbalance
• We have to change cost function: False negatives (= classify face as background)

are expensive.
• Consequence: Training algorithm will focus on keeping proportion of false

negatives small.
• Problem: Will result in many false positives (= background classified as face).

Cascade approach
• Use many classifiers linked in a chain structure ("cascade").
• Each classifier eliminates part of the negative class.
• With each step down the cascade, class sizes become more even.
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CLASSIFIER CASCADES

Training a cascade
Use imbalanced loss, with very low false negative
rate for each fj.

1. Train classifier f1 on entire training data set.

2. Remove all x̃i in negative class which f1
classifies correctly from training set.

3. On smaller training set, train f2.

4. ...

5. On remaining data at final stage, train fk .

Classifying with a cascade
• If any fj classifies x as negative, f (x) = −1.
• Only if all fj classify x as positive, f (x) = +1.

x

f1

f2

. . .

fk

−

−

− +

+1

+1

+1

−1

−1

−1 +1
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WHY DOES A CASCADE WORK?

We have to consider two rates

false positive rate FPR(fj) =
#negative points classified as "+1"
#negative training points at stage j

recall (detection rate) Recall(fj) =
#correctly classified positive points
#positive training points at stage j

We want to achieve a low value of FPR(f ) and a high value of Recall(f ).

Class imbalance
In face detection example:

• Number of faces classified as background is (size of face class)× (1− Recall(f ))
• We would like to see a decently high detection rate, say 90%
• Number of background patches classified as faces is

(size of background class)× (FPR(f ))
• Since background class is huge, FPR(f ) has to be very small to yield roughly the same

amount of errors in both classes.
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WHY DOES A CASCADE WORK?

Cascade recall
The rates of the overall cascade classifier f are

FPR( f ) =
k∏

j=1

FPR( fj) Recall( f ) =
k∏

j=1

Recall( fj)

• Suppose we use a 10-stage cascade (k = 10)
• Each Recall( fj) is 99% and we permit FPR( fj) of 30%.

• We obtain Recall( f ) = 0.9910 ≈ 0.90 and FPR( f ) = 0.310 ≈ 6× 10−6
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VIOLA-JONES DETECTOR

Objectives
• Classification step should be computationally efficient.
• Expensive training affordable.

Strategy
• Extract very large set of measurements (features), i.e. d in Rd large.
• Use Boosting with decision stumps.
• From Boosting weights, select small number of important features.
• Class imbalance: Use Cascade.

Classification step
Compute only the selected features from input image.
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FEATURE EXTRACTION

Extraction method
1. Enumerate possible windows (different shapes

and locations) by j = 1, . . . , d.

2. For training image i and each window j,
compute

xij := average of pixel values in gray block(s)
− average of pixel values in white block(s)

3. Collect values for all j in a vector
xi := (xi1, . . . , xid) ∈ Rd .

Robust Real-Time Face Detection 139

together yield an extremely reliable and efficient face
detector. Section 5 will describe a number of experi-
mental results, including a detailed description of our
experimental methodology. Finally Section 6 contains
a discussion of this system and its relationship to re-
lated systems.

2. Features

Our face detection procedure classifies images based
on the value of simple features. There are many moti-
vations for using features rather than the pixels directly.
The most common reason is that features can act to en-
code ad-hoc domain knowledge that is difficult to learn
using a finite quantity of training data. For this system
there is also a second critical motivation for features:
the feature-based system operates much faster than a
pixel-based system.

The simple features used are reminiscent of Haar
basis functions which have been used by Papageorgiou
et al. (1998). More specifically, we use three kinds of
features. The value of a two-rectangle feature is the
difference between the sum of the pixels within two
rectangular regions. The regions have the same size
and shape and are horizontally or vertically adjacent
(see Fig. 1). A three-rectangle feature computes the
sum within two outside rectangles subtracted from the
sum in a center rectangle. Finally a four-rectangle fea-
ture computes the difference between diagonal pairs of
rectangles.

Given that the base resolution of the detector is
24 × 24, the exhaustive set of rectangle features is

Figure 1. Example rectangle features shown relative to the enclos-
ing detection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the grey
rectangles. Two-rectangle features are shown in (A) and (B). Figure
(C) shows a three-rectangle feature, and (D) a four-rectangle feature.

quite large, 160,000. Note that unlike the Haar basis,
the set of rectangle features is overcomplete.3

2.1. Integral Image

Rectangle features can be computed very rapidly using
an intermediate representation for the image which we
call the integral image.4 The integral image at location
x, y contains the sum of the pixels above and to the left
of x, y, inclusive:

i i(x, y) =
∑

x ′≤x,y′≤y

i(x ′, y′),

where i i(x, y) is the integral image and i(x, y) is the
original image (see Fig. 2). Using the following pair of
recurrences:

s(x, y) = s(x, y − 1) + i(x, y) (1)

i i(x, y) = i i(x − 1, y) + s(x, y) (2)

(where s(x, y) is the cumulative row sum, s(x, −1) =
0, and i i(−1, y) = 0) the integral image can be com-
puted in one pass over the original image.

Using the integral image any rectangular sum can be
computed in four array references (see Fig. 3). Clearly
the difference between two rectangular sums can be
computed in eight references. Since the two-rectangle
features defined above involve adjacent rectangular
sums they can be computed in six array references,
eight in the case of the three-rectangle features, and
nine for four-rectangle features.

One alternative motivation for the integral im-
age comes from the “boxlets” work of Simard et al.

Figure 2. The value of the integral image at point (x, y) is the sum
of all the pixels above and to the left.

The dimension is huge
• One entry for (almost) every possible location of a rectangle in image.
• Start with small rectangles and increase edge length repeatedly by 1.5.
• In Viola-Jones paper: Images are 384× 288 pixels, d ≈ 160000.
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SELECTED FEATURES

First two selected features
144 Viola and Jones

Figure 5. The first and second features selected by AdaBoost. The
two features are shown in the top row and then overlayed on a typ-
ical training face in the bottom row. The first feature measures the
difference in intensity between the region of the eyes and a region
across the upper cheeks. The feature capitalizes on the observation
that the eye region is often darker than the cheeks. The second feature
compares the intensities in the eye regions to the intensity across the
bridge of the nose.

features to the classifier, directly increases computation
time.

4. The Attentional Cascade

This section describes an algorithm for constructing a
cascade of classifiers which achieves increased detec-
tion performance while radically reducing computation
time. The key insight is that smaller, and therefore more
efficient, boosted classifiers can be constructed which
reject many of the negative sub-windows while detect-
ing almost all positive instances. Simpler classifiers are
used to reject the majority of sub-windows before more
complex classifiers are called upon to achieve low false
positive rates.

Stages in the cascade are constructed by training
classifiers using AdaBoost. Starting with a two-feature
strong classifier, an effective face filter can be obtained
by adjusting the strong classifier threshold to mini-
mize false negatives. The initial AdaBoost threshold,
1
2

∑T
t=1 αt , is designed to yield a low error rate on the

training data. A lower threshold yields higher detec-
tion rates and higher false positive rates. Based on per-
formance measured using a validation training set, the
two-feature classifier can be adjusted to detect 100% of
the faces with a false positive rate of 50%. See Fig. 5 for
a description of the two features used in this classifier.

The detection performance of the two-feature clas-
sifier is far from acceptable as a face detection system.
Nevertheless the classifier can significantly reduce the

number of sub-windows that need further processing
with very few operations:

1. Evaluate the rectangle features (requires between 6
and 9 array references per feature).

2. Compute the weak classifier for each feature (re-
quires one threshold operation per feature).

3. Combine the weak classifiers (requires one multiply
per feature, an addition, and finally a threshold).

A two feature classifier amounts to about 60 mi-
croprocessor instructions. It seems hard to imagine
that any simpler filter could achieve higher rejection
rates. By comparison, scanning a simple image tem-
plate would require at least 20 times as many operations
per sub-window.

The overall form of the detection process is that of
a degenerate decision tree, what we call a “cascade”
(Quinlan, 1986) (see Fig. 6). A positive result from
the first classifier triggers the evaluation of a second
classifier which has also been adjusted to achieve very
high detection rates. A positive result from the second
classifier triggers a third classifier, and so on. A negative
outcome at any point leads to the immediate rejection
of the sub-window.

The structure of the cascade reflects the fact that
within any single image an overwhelming majority of
sub-windows are negative. As such, the cascade at-
tempts to reject as many negatives as possible at the
earliest stage possible. While a positive instance will

Figure 6. Schematic depiction of a the detection cascade. A series
of classifiers are applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negatives but require
additional computation. After several stages of processing the num-
ber of sub-windows have been reduced radically. Further processing
can take any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.

200 features are selected in total.
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TRAINING THE CASCADE

Training procedure
1. User selects acceptable rates (FPR and Recall) for each level of the cascade.

2. At each level of the cascade:
• Train a boosting classifier.
• Gradually increase the number of selected features until required rates are achieved.

Use of training data
Each training step uses:

• All positive examples (= faces).
• Negative examples (= non-faces) misclassified at previous cascade layer.
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EXAMPLE RESULTS

152 Viola and Jones

Figure 10. Output of our face detector on a number of test images from the MIT + CMU test set.

6. Conclusions

We have presented an approach for face detection
which minimizes computation time while achieving
high detection accuracy. The approach was used to con-
struct a face detection system which is approximately
15 times faster than any previous approach. Preliminary
experiments, which will be described elsewhere, show
that highly efficient detectors for other objects, such as
pedestrians or automobiles, can also be constructed in
this way.

This paper brings together new algorithms, represen-
tations, and insights which are quite generic and may
well have broader application in computer vision and
image processing.

The first contribution is a new a technique for com-
puting a rich set of image features using the integral
image. In order to achieve true scale invariance, almost
all face detection systems must operate on multiple
image scales. The integral image, by eliminating the
need to compute a multi-scale image pyramid, reduces
the initial image processing required for face detection
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RESULTS

Robust Real-Time Face Detection 151

Table 3. Detection rates for various numbers of false positives on the MIT + CMU test set containing 130
images and 507 faces.

False detections

Detector 10 31 50 65 78 95 167 422

Viola-Jones 76.1% 88.4% 91.4% 92.0% 92.1% 92.9% 93.9% 94.1%

Viola-Jones (voting) 81.1% 89.7% 92.1% 93.1% 93.1% 93.2% 93.7% –

Rowley-Baluja-Kanade 83.2% 86.0% – – – 89.2% 90.1% 89.9%

Schneiderman-Kanade – – – 94.4% – – – –

Roth-Yang-Ahuja – – – – (94.8%) – – –

regime (i.e. single point on the ROC curve). To make
comparison with our detector easier we have listed our
detection rate for the same false positive rate reported
by the other systems. Table 3 lists the detection rate
for various numbers of false detections for our system
as well as other published systems. For the Rowley-
Baluja-Kanade results (Rowley et al., 1998), a number
of different versions of their detector were tested yield-
ing a number of different results. While these various
results are not actually points on a ROC curve for a
particular detector, they do indicate a number of dif-
ferent performance points that can be achieved with
their approach. They did publish ROC curves for two
of their detectors, but these ROC curves did not rep-
resent their best results. For the Roth-Yang-Ahuja de-
tector (Roth et al., 2000), they reported their result on
the MIT + CMU test set minus 5 images containing
line drawn faces removed. So their results are for a sub-
set of the MIT + CMU test set containing 125 images
with 483 faces. Presumably their detection rate would
be lower if the full test set was used. The parenthe-
ses around their detection rate indicates this slightly
different test set. The Sung and Poggio face detec-
tor (Sung and Poggio, 1998) was tested on the MIT
subset of the MIT + CMU test set since the CMU
portion did not exist yet. The MIT test set contains
23 images with 149 faces. They achieved a detection
rate of 79.9% with 5 false positives. Our detection
rate with 5 false positives is 77.8% on the MIT test
set.

Figure 10 shows the output of our face detector on
some test images from the MIT + CMU test set.

5.7.1. A Simple Voting Scheme Further Improves
Results. The best results were obtained through the
combination of three detectors trained using different
initial negative examples, slightly different weighting

on negative versus positive errors, and slightly different
criteria for trading off false positives for classifier size.
These three systems performed similarly on the final
task, but in some cases errors were different. The detec-
tion results from these three detectors were combined
by retaining only those detections where at least 2 out
of 3 detectors agree. This improves the final detection
rate as well as eliminating more false positives. Since
detector errors are not uncorrelated, the combination
results in a measurable, but modest, improvement over
the best single detector.

5.7.2. Failure Modes. By observing the performance
of our face detector on a number of test images we have
noticed a few different failure modes.

The face detector was trained on frontal, upright
faces. The faces were only very roughly aligned so
there is some variation in rotation both in plane and out
of plane. Informal observation suggests that the face
detector can detect faces that are tilted up to about ±15
degrees in plane and about ±45 degrees out of plane
(toward a profile view). The detector becomes unreli-
able with more rotation than this.

We have also noticed that harsh backlighting in
which the faces are very dark while the background
is relatively light sometimes causes failures. It is in-
teresting to note that using a nonlinear variance nor-
malization based on robust statistics to remove out-
liers improves the detection rate in this situation. The
problem with such a normalization is the greatly in-
creased computational cost within our integral image
framework.

Finally, our face detector fails on significantly oc-
cluded faces. If the eyes are occluded for example, the
detector will usually fail. The mouth is not as important
and so a face with a covered mouth will usually still be
detected.

Peter Orbanz · Applied Data Mining 235



BAGGING AND RANDOM FORESTS



BACKGROUND: RESAMPLING TECHNIQUES

We briefly review a technique called bootstrap on which bagging and random forests are based.

Bootstrap
Bootstrap (or resampling) is a technique for improving the quality of estimators.

Resampling = sampling from the empirical distribution

Application to ensemble methods
• We will use resampling to generate weak learners for classification.
• We discuss two classifiers which use resampling: Bagging and random forests.
• Before we do so, we consider the traditional application of Bootstrap, namely improving

estimators.
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BOOTSTRAP: BASIC ALGORITHM

Given
• A sample x̃1, . . . , x̃n.

• An estimator Ŝ for a statistic S.

Bootstrap algorithm
1. Generate B bootstrap samples B1, . . . ,BB. Each bootstrap sample is obtained by

sampling n times with replacement from the sample data. (Note: Data points can appear
multiple times in any Bb.)

2. Evaluate the estimator on each bootstrap sample:

Ŝb := Ŝ(Bb)

(That is: We estimate S pretending that Bb is the data.)

3. Compute the bootstrap estimate of S by averaging over all bootstrap samples:

ŜBS :=
1
B

B∑
b=1

Ŝb
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EXAMPLE

Recall: Plug-in estimators for mean and variance

µ̂ :=
1
n

n∑
i=1

x̃i σ̂2 :=
1
n

n∑
i=1

(x̃i − µ̂)2

Bootstrap Variance Estimate
1. For b = 1, . . . ,B, generate a boostrap sample Bb. In detail:

For i = 1, . . . , n:
• Sample an index j ∈ {1, . . . , n}.
• Set x̃(b)

i := x̃j and add it to Bb.

2. For each b, compute mean and variance estimates:

µ̂b :=
1
n

n∑
i=1

x̃(b)
i σ̂2

b :=
1
n

n∑
i=1

(x̃(b)
i − µ̂b)

2

3. Compute the bootstrap estimate:

σ̂2
BS :=

1
B

B∑
b=1

σ̂2
b
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HOW OFTEN DO WE SEE EACH SAMPLE?

Sample {x̃1, ..., x̃n}, bootstrap resamples B1, ...,BB.

In how many sets does a given xi occur?
Probability for xi not to occur in n draws:

Pr{x̃i ̸∈ Bb} = (1− 1
n
)n

For large n:

lim
n→∞

(
1− 1

n

)n

=
1
e
≈ 0.3679

• Asymptotically, any x̃i will appear in ∼ 63% of the bootstrap resamples.
• Multiple occurrences possible.

How often is x̃i expected to occur?
The expected number of occurences of each x̃i is B.

Bootstrap estimate averages over reshuffled samples.
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BOOTSTRAP: APPLICATIONS IN STATISTICS

Estimate variance of estimators
• Since estimator Ŝ depends on (random) data, it is a random variable.
• The more this variable scatters, the less we can trust our estimate.
• If scatter is high, we can expect the values Ŝb to scatter as well.
• In previous example, this means: Estimating the variance of the variance estimator.

Variance reduction
• Averaging over the individual bootstrap samples can reduce the variance in Ŝ.

• In other words: ŜBS typically has lower variance than Ŝ.
• This is the property we will use for classicifation in the following.

As alternative to cross validation
To estimate prediction error of classifier:

• For each b, train on Bb, estimate risk on points not in Bb.
• Average risk estimates over bootstrap samples.
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BAGGING

Idea
• Recall Boosting: Weak learners are deterministic, but selected to exhibit high variance.
• Strategy now: Randomly distort data set by resampling.
• Train weak learners on resampled training sets.
• Resulting algorithm: Bagging (= Bootstrap aggregation)
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REPRESENTATION OF CLASS LABELS

For Bagging with K classes, we represent class labels as vectors:

xi in class k as yi =



0
...
0
1
0
...
0


←− kth entry

This way, we can average together multiple class labels:

1
n
(y1 + . . .+ yn) =



p1
...

pk
...

pK


We can interpret pk as the probability that one of the n points is in class k.
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BAGGING: ALGORITHM

Training
For b = 1, . . . ,B:

1. Draw a bootstrap sample Bb of size n from training data.

2. Train a classifier fb on Bb.

Classification
• Compute

favg(x) :=
1
B

B∑
b=1

fb(x)

This is a vector of the form favg(x) = (p1(x), . . . , pk(x)).
• The Bagging classifier is given by

fBagging(x) := argmax
k
{p1(x), . . . , pk(x)} ,

i.e. we predict the class label which most weak learners have voted for.
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EXAMPLE: BAGGING TREES

• Two classes, each with Gaussian
distribution in R5.

• Note the variance between
bootstrapped trees.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 8
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FIGURE 8.9. Bagging trees on simulated dataset.
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RANDOM FORESTS

Bagging vs. Boosting
• Bagging works particularly well for trees, since trees have high variance.
• Boosting typically outperforms bagging with trees.
• The main culprit is usually dependence: Boosting is better at reducing correlation

between the trees than bagging is.

Random Forests
Modification of bagging with trees designed to further reduce correlation.

• Tree training optimizes each split over all dimensions.
• Random forests choose a different subset of dimensions at each split.
• Optimal split is chosen within the subset.
• The subset is chosen at random out of all dimensions {1, . . . , d}.
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RANDOM FORESTS: ALGORITHM

Training
Input parameter: m (positive integer with m < d)

For b = 1, . . . ,B:
1. Draw a bootstrap sample Bb of size n from training data.

2. Train a tree classifier fb on Bb, where each split is computed as follows:
• Select m axes in Rd at random.
• Find the best split (j∗, t∗) on this subset of dimensions.
• Split current node along axis j∗ at t∗.

Classification
Exactly as for bagging: Classify by majority vote among the B trees. More precisely:

• Compute favg(x) := (p1(x), . . . , pk(x)) := 1
B

∑B
b=1 fb(x)

• The Random Forest classification rule is

fBagging(x) := argmax
k
{p1(x), . . . , pk(x)}
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RANDOM FORESTS

Remarks
• Recommended value for m is m = ⌊

√
d⌋ or smaller.

• RF typically achieve similar results as boosting. Implemented in most packages, often as
standard classifier.

Example: Synthetic Data
• This is the RF classification boundary on

the synthetic data we have already seen a
few times.

• Note the bias towards axis-parallel
alignment.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 15

Random Forest Classifier
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FIGURE 15.11. Random forests versus 3-NN on the
mixture data. The axis-oriented nature of the individ-
ual trees in a random forest lead to decision regions
with an axis-oriented flavor.
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APPLICATION: CANCER DIAGNOSIS



OVERVIEW

Kidney cancer diagnosis: Clinical procedure
• Take tissue sample from patient’s kidney
• Preprocess sample and photograph under microscope
• A pathologist looks at the image and diagnosis patient on scale from healthy to advanced

stage cancer

Task
• Empirically, the results vary significantly between pathologists
• The objective is to build a classifier that produces a diagnosis using the same scale as the

pathologist, hopefully with more stable results.
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DATA ANALYSIS PIPELINE
Experiment

Preprocessing

Raw data (measurements)

Feature extraction

Working data

Mark patterns

Split

Training data
(patterns marked)

Test data
(patterns marked)

Training
(calibration) Trained model

Apply on
test data

Error estimate

Peter Orbanz · Applied Data Mining 251



PREPROCESSING

T.J. Fuchs, J.M. Buhmann / Computerized Medical Imaging and Graphics 35 (2011) 515– 530 521

Fig. 8. Labeling matrix with majority vote (top) and confidence matrix with confidence average (bottom) of five domain experts classifying 180 ccRCC nuclei into atypical
(red)  and normal (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)

Fig. 9. A computational pathology framework for investigating the proliferation marker MIB-1 in clear cell renal cell carcinoma. Following the definition in Section 1.1
the  framework consists of three parts: (i) the covariate data X existing of images of TMA  spots was generated in a trial at the University Hospital Zürich. Extensive labeling
experiments were conducted to generate a gold standard comprising atypical cell nuclei and background samples. (ii) Image analysis consisted of learning a relational detection
forest  (RDF) and conducting mean shift clustering for nuclei detection. Subsequently, the staining of detected nuclei was  determined based on their color histograms. (iii)
Using  this system, TMA  spots of 133 RCC patients were analyzed. Finally, the subgroup of patients with high expression of the proliferation marker was compared to the
group  with low expression using the Kaplan–Meier estimator.

T.J. Fuchs, J.M. Buhmann / Computerized Medical Imaging and Graphics 35 (2011) 515– 530 521

Fig. 8. Labeling matrix with majority vote (top) and confidence matrix with confidence average (bottom) of five domain experts classifying 180 ccRCC nuclei into atypical
(red)  and normal (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)

Fig. 9. A computational pathology framework for investigating the proliferation marker MIB-1 in clear cell renal cell carcinoma. Following the definition in Section 1.1
the  framework consists of three parts: (i) the covariate data X existing of images of TMA  spots was generated in a trial at the University Hospital Zürich. Extensive labeling
experiments were conducted to generate a gold standard comprising atypical cell nuclei and background samples. (ii) Image analysis consisted of learning a relational detection
forest  (RDF) and conducting mean shift clustering for nuclei detection. Subsequently, the staining of detected nuclei was  determined based on their color histograms. (iii)
Using  this system, TMA  spots of 133 RCC patients were analyzed. Finally, the subgroup of patients with high expression of the proliferation marker was compared to the
group  with low expression using the Kaplan–Meier estimator.

T.J. Fuchs, J.M. Buhmann / Computerized Medical Imaging and Graphics 35 (2011) 515– 530 519

Fig. 3. Tissue microarray analysis (TMA): primary tissue samples are taken from a cancerous kidney (a). Then tissue cylinders of a 0.6 mm diameter are extracted from the
primary tumor material of different patients and arrayed in a recipient paraffin block (b). Slices of 0.6 !m are cut off the paraffin block and are immunohistochemically
stained (c). These slices are scanned as whole slide images and tiled into single images representing different patients. Image (d) depicts a TMA  spot of clear cell renal cell
carcinoma stained with MIB-1 (Ki-67) antigen. (e) shows details of the same spot containing stained and non-stained nuclei of normal as well as atypical cells.

Fig. 4. (a) A quarter of an RCC TMA  spot used for the nuclei detection experiment. (b) Annotations of one expert, indicating atypical nuclei in black and normal ones in red.
(c)  Overlay of detected nuclei from expert one (blue circles) and expert two (red crosses). (d) Disagreement between the two  domain experts regarding the detection task.
Nuclei which were labeled only by pathologist one are shown in blue and the nuclei found only by expert two are depicted in red. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of the article.)

Fig. 5. (a) Inter-pathologist classification variability based on 180 nuclei labeled by five domain experts. The experts agree on 105 out of 180 nuclei (blue bars: 24 normal,
81  atypical). (b–d) Confusion matrices including reader confidence for intra-observer variability in nuclei classification: (b) The combined result of all five experts yields an
intra  pathologist classification error of 21.2%. (c) Example of an extremely self-confident pathologist with 30% error. (d) A very cautions pathologist with a misclassification
error  of 18%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

1. Tissue sample is “stained” with
marking fluid

2. Thin slice is cut and placed on
microscope slide

3. Sample is photographed under
microscope

4. Tumor cells absorb more marker
fluid and tend to be darker

From: Fuchs & Buhmann, Computerized Medical Imaging and Graphics Vol. 35, 2011.Peter Orbanz · Applied Data Mining 252



LABELING

518 T.J. Fuchs, J.M. Buhmann / Computerized Medical Imaging and Graphics 35 (2011) 515– 530

Fig. 2. Tablet PC labeling applications for (i) global staining estimation; (ii) nuclei
detection and (iii) nuclei classification (from top to bottom).

(cf. Fig. 2). During the setup phase the user can adjust these views to
simulate his usual workflow as good as possible. During the exper-
iment the expert has to select a class for each nucleus and rate his
confidence. Thus, he has the choice between six buttons: atypical
certainly, atypical probably, atypical maybe, normal certainly, nor-
mal  probably and normal maybe. After classifying all nuclei, which

have been classified as tumor, are displayed again and the patholo-
gist has to estimate if the nucleus is stained or not. Again he has to
rate his confidence in his own  decision on a scale of three levels. To
test the intra pathologist’s variability a subset of nuclei was queried
twice but the images were flipped and rotated by 90◦ at the second
display to hamper recognition.

The results for inter-pathologist variability for the binary classi-
fication task are plotted in Fig. 5a. Out of 180 nuclei all five experts
agreed on 24 nuclei to be normal and 81 nuclei to be atypical,
respectively cancerous. For the other 75 nuclei (42%) the pathol-
ogists disagreed.

The analysis of the intra-pathologist error is shown in Fig. 5b.
The overall intra classification error is 21.2%. This means that every
fifth nucleus was  classified by an expert first as atypical and the
second time as normal or vice versa. The self-assessment of con-
fidence allows us also to analyze single pathologists. For example
Fig. 5c shows the results of a very self-confident pathologist who
is always very certain of his decisions but ends up with an error
of 30% in the replication experiment. Fig. 5d on the other hand is
the result of a very cautious expert who  is rather unsure of his
decision, but with a misclassification error of 18% he performs
significantly better than the previous one. The important lesson
learned is, that self-assessment is not a reliable information to
learn from. The intuitive notion, to use only training samples which
were classified with high confidence by domain experts is not
valid.

In defense of human pathologists it has to be mentioned that
these experiments represent the most general way  to conduct a
TMA  analysis and analogous studies in radiology report similar
results [10,11]. In practice, domain experts focus only on regions
of TMA  spots which are very well processed, which have no stain-
ing artifacts or which are not blurred. The nuclei analyzed in this
experiment were randomly sampled from the whole set of detected
nuclei to mimic  the same precondition which an algorithm would
encounter in routine work. Reducing the analysis to perfectly pro-
cessed regions would most probably decrease the intra-pathologist
error.

2.3.3. Staining estimation
The most common task in manual TMA  analysis requires to esti-

mate the staining. To this end a domain expert briefly (e.g. several
seconds) views the spot of a patients and estimates the number of
stained atypical cells without resorting to actual nuclei counting.
This procedure is iterated for each spot on a TMA-slide to get an esti-
mate for each patient in the study. It is important to note that, due
to the lack of competitive algorithms, the results of nearly all TMA
studies are based on this kind of subjective estimations. To inves-
tigate estimation consistency we presented 9 randomly selected
TMA spots to 14 trained pathologists of the University Hospital
Zurich.

The estimations of the experts varied by up to 20% as shown
in Fig. 6a. As depicted in Fig. 6b the standard deviation between
the experts grows linearly with the average estimated amount of
staining. The high variability demonstrates the subjectivity of the
estimation process. It is interesting to note that the ranking of TMA
spots according to their staining degree is much more consistent
than the direct estimation of the continuous percentage value (cf.
Fig. 7).

This uncertainty is especially critical for types of cancer for
which the clinician chooses the therapy based on the estimated
staining percentage. This result not only motivates but emphasizes
the need for more objective estimation procedures than current
practice. Research in this field should be stimulated by the hope,
that computational pathology approaches do not only automate
such estimation processes but also produce better reproducible and
more objective results than human judgment.
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gist has to estimate if the nucleus is stained or not. Again he has to
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agreed on 24 nuclei to be normal and 81 nuclei to be atypical,
respectively cancerous. For the other 75 nuclei (42%) the pathol-
ogists disagreed.
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The overall intra classification error is 21.2%. This means that every
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second time as normal or vice versa. The self-assessment of con-
fidence allows us also to analyze single pathologists. For example
Fig. 5c shows the results of a very self-confident pathologist who
is always very certain of his decisions but ends up with an error
of 30% in the replication experiment. Fig. 5d on the other hand is
the result of a very cautious expert who  is rather unsure of his
decision, but with a misclassification error of 18% he performs
significantly better than the previous one. The important lesson
learned is, that self-assessment is not a reliable information to
learn from. The intuitive notion, to use only training samples which
were classified with high confidence by domain experts is not
valid.

In defense of human pathologists it has to be mentioned that
these experiments represent the most general way  to conduct a
TMA  analysis and analogous studies in radiology report similar
results [10,11]. In practice, domain experts focus only on regions
of TMA  spots which are very well processed, which have no stain-
ing artifacts or which are not blurred. The nuclei analyzed in this
experiment were randomly sampled from the whole set of detected
nuclei to mimic  the same precondition which an algorithm would
encounter in routine work. Reducing the analysis to perfectly pro-
cessed regions would most probably decrease the intra-pathologist
error.

2.3.3. Staining estimation
The most common task in manual TMA  analysis requires to esti-

mate the staining. To this end a domain expert briefly (e.g. several
seconds) views the spot of a patients and estimates the number of
stained atypical cells without resorting to actual nuclei counting.
This procedure is iterated for each spot on a TMA-slide to get an esti-
mate for each patient in the study. It is important to note that, due
to the lack of competitive algorithms, the results of nearly all TMA
studies are based on this kind of subjective estimations. To inves-
tigate estimation consistency we presented 9 randomly selected
TMA spots to 14 trained pathologists of the University Hospital
Zurich.

The estimations of the experts varied by up to 20% as shown
in Fig. 6a. As depicted in Fig. 6b the standard deviation between
the experts grows linearly with the average estimated amount of
staining. The high variability demonstrates the subjectivity of the
estimation process. It is interesting to note that the ranking of TMA
spots according to their staining degree is much more consistent
than the direct estimation of the continuous percentage value (cf.
Fig. 7).

This uncertainty is especially critical for types of cancer for
which the clinician chooses the therapy based on the estimated
staining percentage. This result not only motivates but emphasizes
the need for more objective estimation procedures than current
practice. Research in this field should be stimulated by the hope,
that computational pathology approaches do not only automate
such estimation processes but also produce better reproducible and
more objective results than human judgment.
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detection and (iii) nuclei classification (from top to bottom).
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Fig. 5c shows the results of a very self-confident pathologist who
is always very certain of his decisions but ends up with an error
of 30% in the replication experiment. Fig. 5d on the other hand is
the result of a very cautious expert who  is rather unsure of his
decision, but with a misclassification error of 18% he performs
significantly better than the previous one. The important lesson
learned is, that self-assessment is not a reliable information to
learn from. The intuitive notion, to use only training samples which
were classified with high confidence by domain experts is not
valid.

In defense of human pathologists it has to be mentioned that
these experiments represent the most general way  to conduct a
TMA  analysis and analogous studies in radiology report similar
results [10,11]. In practice, domain experts focus only on regions
of TMA  spots which are very well processed, which have no stain-
ing artifacts or which are not blurred. The nuclei analyzed in this
experiment were randomly sampled from the whole set of detected
nuclei to mimic  the same precondition which an algorithm would
encounter in routine work. Reducing the analysis to perfectly pro-
cessed regions would most probably decrease the intra-pathologist
error.

2.3.3. Staining estimation
The most common task in manual TMA  analysis requires to esti-

mate the staining. To this end a domain expert briefly (e.g. several
seconds) views the spot of a patients and estimates the number of
stained atypical cells without resorting to actual nuclei counting.
This procedure is iterated for each spot on a TMA-slide to get an esti-
mate for each patient in the study. It is important to note that, due
to the lack of competitive algorithms, the results of nearly all TMA
studies are based on this kind of subjective estimations. To inves-
tigate estimation consistency we presented 9 randomly selected
TMA spots to 14 trained pathologists of the University Hospital
Zurich.

The estimations of the experts varied by up to 20% as shown
in Fig. 6a. As depicted in Fig. 6b the standard deviation between
the experts grows linearly with the average estimated amount of
staining. The high variability demonstrates the subjectivity of the
estimation process. It is interesting to note that the ranking of TMA
spots according to their staining degree is much more consistent
than the direct estimation of the continuous percentage value (cf.
Fig. 7).

This uncertainty is especially critical for types of cancer for
which the clinician chooses the therapy based on the estimated
staining percentage. This result not only motivates but emphasizes
the need for more objective estimation procedures than current
practice. Research in this field should be stimulated by the hope,
that computational pathology approaches do not only automate
such estimation processes but also produce better reproducible and
more objective results than human judgment.

A pathologist uses a software with a graphical user interface to (1) mark the locations of nuclei
and (2) label nuclei as healthy/cancerous.
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COMPARISON BETWEEN EXPERTS (1)

T.J. Fuchs, J.M. Buhmann / Computerized Medical Imaging and Graphics 35 (2011) 515– 530 519

Fig. 3. Tissue microarray analysis (TMA): primary tissue samples are taken from a cancerous kidney (a). Then tissue cylinders of a 0.6 mm diameter are extracted from the
primary tumor material of different patients and arrayed in a recipient paraffin block (b). Slices of 0.6 !m are cut off the paraffin block and are immunohistochemically
stained (c). These slices are scanned as whole slide images and tiled into single images representing different patients. Image (d) depicts a TMA  spot of clear cell renal cell
carcinoma stained with MIB-1 (Ki-67) antigen. (e) shows details of the same spot containing stained and non-stained nuclei of normal as well as atypical cells.

Fig. 4. (a) A quarter of an RCC TMA  spot used for the nuclei detection experiment. (b) Annotations of one expert, indicating atypical nuclei in black and normal ones in red.
(c)  Overlay of detected nuclei from expert one (blue circles) and expert two (red crosses). (d) Disagreement between the two  domain experts regarding the detection task.
Nuclei which were labeled only by pathologist one are shown in blue and the nuclei found only by expert two are depicted in red. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of the article.)

Fig. 5. (a) Inter-pathologist classification variability based on 180 nuclei labeled by five domain experts. The experts agree on 105 out of 180 nuclei (blue bars: 24 normal,
81  atypical). (b–d) Confusion matrices including reader confidence for intra-observer variability in nuclei classification: (b) The combined result of all five experts yields an
intra  pathologist classification error of 21.2%. (c) Example of an extremely self-confident pathologist with 30% error. (d) A very cautions pathologist with a misclassification
error  of 18%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

• Five experts label the same set of nuclei (180 in total)
• For each data point (nucleus), count the number of votes (0, . . . , 5) in favor of “tumor”
• The diagram above is a histogram of the vote counts for the 180 data points
• All five experts agree if the count is 0 (all say healthy) or 5 (all say tumor)
• (The small red/green bars are the vote proportions, so they encode the same information

as the numbers at the bottom.)
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COMPARISON BETWEEN EXPERTS (2)
520 T.J. Fuchs, J.M. Buhmann / Computerized Medical Imaging and Graphics 35 (2011) 515– 530

Fig. 6. (a) Results for 4 TMA  spots from the labeling experiment conducted to investigate the inter pathologist variability for estimating nuclear staining. 14 trained pathologists
estimated MIB-1 staining on 9 TMA  spots. The boxplots show a large disagreement between pathologist on spots with an averages staining of more than 10%. The absolute
estimated percentage is plotted on the y-axis. Spot 1 for example, yields a standard deviation of more than 20%. (b) The standard deviation grows linearly with the average
estimated staining.

2.4. Expert variability in fluorescence microscopy

Complementary to immunohistochemical TMA  analysis, flu-
orescence microscopy is applied often for high-throughput
screening of molecular phenotypes. A comprehensive study evalu-
ating the performance of domain experts regarding the detection of
lymphocytes is presented by Nattkemper et al. [12]. In a best case,
a medium-skilled expert needs on average one hour for analyz-
ing a fluorescence micrograph. Each micrograph contains between
100 and 400 cells and is of size 658 × 517 pixel. Four exemplary
micrographs were blindly evaluated by five experts. To evaluate
the inter-observer variability Nattkemper et al. [12] define a gold
standard comprising all cell positions in a micrograph that were
detected by at least two experts.

Averaged over of CD3, CD4, CD7 and CD8 the sensitivity of the
four biomedical experts is varying between 67.5% and 91.2% and
the positive predictive value (PPV) between 75% and 100%. Thus
the average detection error over all biomedical experts and micro-
graphs is approximately 17%. Although fluorescence images appear
to be easier to analyze due to their homogeneous background,

this high detection error indicates the difficulty of this analysis
task. These results corroborates the findings in the ccRCC detection
experiment described in Section 2.1.

2.5. Generating a gold standard

The main benefit of labeling experiments, like the ones
described before, is not to point out the high variability between
pathologists or even their inconsistencies in repeated annotations
of identical data, but to generate a gold standard. In absence of an
objective ground truth measurement process, a gold standard is
crucial for the use of statistical learning, first for learning a clas-
sifier or regressor and second for validating the statistical model.
Section 5 shows an example how the information gathered in the
experiments of Section 2.3 can be used to train a computational
pathology system.

Besides labeling application which are developed for specific
scenarios as the one described in Section 2.3 several other possi-
bilities exist to acquire data in pathology in a structured manner.
Although software for tablet PCs is the most convenient approach

Fig. 7. Comparison between ranking and continuous staining estimation of nine renal cell carcinoma TMA  spots with MIB-1 staining. The experiment was conducted by 14
trained pathologists and demonstrates the high consistency of the ranking data compared to the conventional direct estimation of the percentage of stained atypical nuclei.

Results for 14 pathologists labeling four patients.
• Each box in the boxplot represents one patient.
• Box plot: The line in the middle of each box is the median. The upper and lower box

boundary are the third and first quartile, respectively. The horizontal bars at either end of
the dashed vertical line represent one standard deviation around the mean.

• In three of the four cases, disagreement between experts is substantial.
• Plot on the right: The standard deviation increases linearly with the overall number of

stained nuclei. (Roughly, the more cancer cells there are, the more volatile the diagnosis
becomes.)

From: Fuchs & Buhmann, Computerized Medical Imaging and Graphics Vol. 35, 2011.Peter Orbanz · Applied Data Mining 255



EXAMPLE
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Fig. 3. Tissue microarray analysis (TMA): primary tissue samples are taken from a cancerous kidney (a). Then tissue cylinders of a 0.6 mm diameter are extracted from the
primary tumor material of different patients and arrayed in a recipient paraffin block (b). Slices of 0.6 !m are cut off the paraffin block and are immunohistochemically
stained (c). These slices are scanned as whole slide images and tiled into single images representing different patients. Image (d) depicts a TMA  spot of clear cell renal cell
carcinoma stained with MIB-1 (Ki-67) antigen. (e) shows details of the same spot containing stained and non-stained nuclei of normal as well as atypical cells.

Fig. 4. (a) A quarter of an RCC TMA  spot used for the nuclei detection experiment. (b) Annotations of one expert, indicating atypical nuclei in black and normal ones in red.
(c)  Overlay of detected nuclei from expert one (blue circles) and expert two (red crosses). (d) Disagreement between the two  domain experts regarding the detection task.
Nuclei which were labeled only by pathologist one are shown in blue and the nuclei found only by expert two are depicted in red. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of the article.)

Fig. 5. (a) Inter-pathologist classification variability based on 180 nuclei labeled by five domain experts. The experts agree on 105 out of 180 nuclei (blue bars: 24 normal,
81  atypical). (b–d) Confusion matrices including reader confidence for intra-observer variability in nuclei classification: (b) The combined result of all five experts yields an
intra  pathologist classification error of 21.2%. (c) Example of an extremely self-confident pathologist with 30% error. (d) A very cautions pathologist with a misclassification
error  of 18%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

input image locations marked by one expert

classification by one expert disagreement between two experts
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RANDOM FOREST CLASSIFIER

Data
“Relative images” of individual cell nuclei, i.e. the difference between a nucleus image and a
background patch from the same tissue sample image. That makes results less sensitive to
variations between tissue samples.

Training
1. Nuclei are hand-labeled by pathologists.

2. A random forest classifier is trained on the relative images (as training data points) and the
labels (as training labels).

Diagnosis of a new tissue sample image
1. Input: Entire tissue sample image.

2. Find nuclei using an image segmentation algorithm.

3. Extract subimages of these nuclei and apply random forest classifier.

4. Diagnose according to ratio of healthy to cancerous cells.
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DATA ANALYSIS PIPELINE
Experiment

Preprocessing

Raw data (measurements)

Feature extraction

Working data

Mark patterns

Split

Training data
(patterns marked)

Test data
(patterns marked)

Training
(calibration) Trained model

Apply on
test data

Error estimate

extract tissue samples

mark and photograph

images

find and extract cell nuclei

cell nuclei images

annotate as healthy/cancerous

images

random forest classifier
classifies cells as healthy/cancerous
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RESULTS
Relational Detection Forests 375

Fig. 2. Precision/Recall plot of cross validation results on the renal clear cell cancer (RCC)
dataset. For Relational Detection Forests (RDF) curves for the nine single patients and their av-
erage (bold) are depicted. RDF with the proposed feature base outperforms previous approaches
based on SVM clustering [14], mathematical morphology and combined methods [15]. The inter
pathologist performance is depicted in the top right corner.

3.2 Clear Cell Renal Cell Carcinoma (ccRCC)

Detection Accuracy: Three fold cross validation was employed to analyze the detec-
tion accuracy of RDFs. The nine completely labeled patients were randomly split up
into three sets. For each fold the ensemble classifier was learned on six patients and
tested on the the other three. During tree induction, at each split 500 features were sam-
pled from the feature generator. Trees were learned to a maximum depth of 10 and the
minimum leave size was set to 1. The forest converges after 150 to an out of bag (OOB)
error of approximately 2%. Finally, on the test images each pixel was classified and
mean shift was run on a grid with δ = 5.

Figure 2 shows precision/recall plot for single patients and the average result of the
RDF object detector. The algorithm is compared to point estimates of several state of
the art methods: SVM clustering was successfully employed to detect nuclei in H&E
stained images of brain tissue by [14]. SVMmorph [15] is an unsupervised morpholog-
ical [16] approach for detection combined with an supervised support vector machine
for filtering. The marker for the pathologists shows the mean detection accuracy if al-
ternately one expert is used as gold standard. On average the pathologists disagree on
15% of the nuclei.

Although only grayscale features were used for RDF it outperforms all previous ap-
proaches which also utilize texture and color. This observation can be a cue for further

Precision/Recall plot for the random forest method (“RDF”) compared to other classifiers. The
“true label” for each data point is a randomly selected pathologist. The performance of
pathologists (red dot) is the average of the aggregate result for all remaining pathologists.
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REMARKS

This application illustrates a number of challenges encountered in applications:
• Generating label information is work-intensive.
• The comparison experiments show that the training/test labels themselves have limited

reliability.
• These methods are now several years old. Neural networks developed in the last few years

might be able to improve the feature extraction step. (More on neural networks and
feature extraction later.)
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NEURAL NETWORKS



THE MOST IMPORTANT BIT

A neural network represents a function f : Rd1 → Rd2 .
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BUILDING BLOCKS

Units
The basic building block is a node or unit:

ϕ

• The unit has incoming and outgoing arrows. We think of
each arrow as “transmitting” a signal.

• The signal is always a scalar.
• A unit represents a function ϕ.

We read the diagram as: A scalar value (say x) is transmitted to the unit, the function ϕ is
applied, and the result ϕ(x) is transmitted from the unit along the outgoing arrow.

Weights

w

f (x)

x

ϕ

• If we want to “input” a scalar x, we represent it as a unit, too.
• We can think of this as the unit representing the constant

function g(x) = x.
• Additionally, each arrow is usually inscribed with a (scalar)

weight w.
• As the signal x passes along the edge, it is multiplied by the

edge weight w.

The diagram above represents the function f (x) := ϕ(wx).
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READING NEURAL NETWORKS

f : R3 → R3 with input x =

x1
x2
x2



w11
w12

w13 w21

w22

w23
w31

w32
w33

f1(x)=ϕ1(⟨w1, x⟩) f2(x)=ϕ2(⟨w2, x⟩) f3(x)=ϕ3(⟨w3, x⟩)

x1 x2 x3

ϕ1 ϕ2 ϕ3

f (x) =

 f1(x)
f2(x)
f3(x)

 with fi(x) = ϕi

( 3∑
j=1

wijxj

)
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FEED-FORWARD NETWORKS

A feed-forward network is a neural network whose units can be arranged into groups
L1, . . . ,LK so that connections (arrows) only pass from units in group Lk to units in group
Lk+1. The groups are called layers. In a feed-forward network:

• There are no connections within a layer.
• There are no backwards connections.
• There are no connections that skip layers, e.g. from Lk to units in group Lk+2.

feed-forward

L1

L2

L3

not feed-forward not feed-forward

Peter Orbanz · Applied Data Mining 265



LAYERS

w1
11

w1
12 w1

21

w1
22

w2
11 w2

21

x1 x2

ϕ1
1 ϕ1

2

ϕ2
1

f (x)

• This network computes the function

f (x1, x2) = ϕ2
1

(
w2

11ϕ
1
1
(
w1

11x1+w1
21x2

)
+w2

12ϕ
1
2
(
w1

21x1+w1
22x2

))
• Clearly, writing out f gets complicated fairly quickly as the

network grows.

First shorthand: Scalar products
• Collect all weights coming into a unit into a vector, e.g.

w2
1 := (w2

11,w2
21)

• Same for inputs: x = (x1, x2)

• The function then becomes

f (x) = ϕ2
1

(〈
w2

1,

(
ϕ1

1(
〈

w1
1, x
〉
)

ϕ1
2(
〈

w1
2, x
〉
)

)〉)
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LAYERS

w1
11

w1
12 w1

21

w1
22

ϕ1
1 ϕ1

2 f (2)

• Each layer represents a function, which takes the
output values of the previous layers as its
arguments.

• Suppose the output values of the two nodes at the
top are y1, y2.

• Then the second layer defines the
(two-dimensional) function

f (2)(y) =

(
ϕ1

1(
〈

w1
1, y
〉
)

ϕ1
2(
〈

w1
2, y
〉
)

)
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COMPOSITION OF FUNCTIONS

Basic composition
Suppose f and g are two function R→ R. Their composition g ◦ f is the function

g ◦ f (x) := g(f (x)) .

For example:
f (x) = x + 1 g(y) = y2 g ◦ f (x) = (x + 1)2

We could combine the same functions the other way around:

f ◦ g(x) = x2 + 1

In multiple dimensions
Suppose f : Rd1 → Rd2 and g : Rd2 → Rd3 . Then

g ◦ f (x) = g(f (x)) is a function Rd1 → Rd3 .

For example:

f (x) = ⟨x, v⟩ − c g(y) = sgn(y) g ◦ f (x) = sgn(⟨x, v⟩ − c)
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LAYERS AND COMPOSITION

w1
11

w1
12 w1

21

w1
22

w2
11 w2

21

x1 x2

ϕ1
1 ϕ1

2

ϕ2
1

f (x)

f (2)

f (3)

• As above, we write

f (2)( • ) =

(
ϕ1

1(
〈

w1
1, •

〉
)

ϕ1
2(
〈

w1
2, •

〉
)

)
• The function for the third layer is similarly

f (3)( • ) = ϕ2
1(
〈

w2
1, •

〉
)

• The entire network represents the function

f (x) = f (3)( f (2)(x)) = f (3) ◦ f (2)(x)

A feed-forward network represents a function as a composition of several functions, each
given by one layer.
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x1 x2

. . .

xd

. . .

. . .

...
...

...

. . .

. . .

= f (1)

= f (2)

= f (K)

f (x) = f (K)(· · · f (2)(f (1)(x))) = f (K) ◦ . . . ◦ f (1)(x)
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LAYERS AND COMPOSITIONS

General feed-forward networks
A feed-forward network with K layers represents a function

f (x) = f (K) ◦ . . . ◦ f (1)(x)

Each layer represents a function f (k). These functions are of the form:

f (k)( • ) =


ϕ
(k)
1 (
〈

w(k)
1 , •

〉
)

...
ϕ
(k)
d (
〈

w(k)
d , •

〉
)

 typically: ϕ(k)(x) =



σ(x) (sigmoid)
I{±x > τ} (threshold)
c (constant)
x (linear)
max{0, x} (rectified linear)

Dimensions
• Each function f (k) is of the form

f (k) : Rdk → Rdk+1

• dk is the number of nodes in the kth layer. It is also called the width of the layer.
• We mostly assume for simplicity: d1 = . . . = dK =: d.
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ORIGIN OF THE NAME

If you look up the term “neuron” online, you will find illustrations like this:

This one comes from a web site called easyscienceforkids.com, which means it is likely to be scientifically more accurate than
typical references to “neuron” and “neural” in machine learning.

Roughly, a neuron is a brain cell that:
• Collects electrical signals (typically from other neurons)
• Processes them
• Generates an output signal

What happens inside a neuron is an intensely studied problem in neuroscience.
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HISTORICAL PERSPECTIVE: MCCULLOCH-PITTS NEURON

A neuron is modeled as a “thresholding device” that combines input signals:

v1 v2 v3

x1 x2 x3

y

I{• > 0}

McCulloch-Pitts neuron model (1943)
• Collect the input signals x1, x2, x3 into a vector x = (x1, x2, x3) ∈ R3

• Choose fixed vector v ∈ R3 and constant c ∈ R.
• Compute:

y = I{⟨v, x⟩ > 0} for some c ∈ R .

• In hindsight, this is a neural network with two layers, and function ϕ( • ) = I{⟨v, x⟩ > 0}
at the bottom unit.
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RECALL: LINEAR CLASSIFICATION

v

x

⟨x,v⟩
∥v∥

f (x) = sgn(⟨v, x⟩ − c)
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LINEAR CLASSIFIER IN R2 AS TWO-LAYER NN

v1 v2 −1

x1 x2 c

f (x)

I{• > 0}

f (x) = I{ v1x1 + v2x2 + (−1)c > 0 } = I{⟨v, x⟩ > c}

Equivalent to linear classifier
The linear classifier on the previous slide and f differ only in whether they encode the “blue”
class as -1 or as 0:

sgn(⟨v, x⟩ − c) = 2f (x)− 1
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REMARKS

v1 v2 −1

y = I{vtx > c}

x1 x2 c

• This neural network represents a linear two-class classifier (on R2).
• We can more generally define a classifier on Rd by adding input units, one per dimension.
• It does not specify the training method.
• To train the classifier, we need a cost function and an optimization method.
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TYPICAL COMPONENT FUNCTIONS

Linear units

ϕ(x) = x

This function simply “passes on” its incoming signal. These are used for example to represent
inputs (data values).

Constant functions

ϕ(x) = c

These can be used e.g. in combination with an indicator function to define a threshold, as in the
linear classifier above.
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TYPICAL COMPONENT FUNCTIONS

Indicator function

ϕ(x) = I{x > 0}

Example: Final unit is indicator

v1 v2 −1

x1 x2 c

f (x)

I{• > 0}
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TYPICAL COMPONENT FUNCTIONS

Sigmoids

ϕ(x) =
1

1 + e−x

-10 -5 5 10

0.2

0.4

0.6

0.8

1.0

Example: Final unit is sigmoid

v1 v2 −1

x1 x2 c

f (x)

σ(•)
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TYPICAL COMPONENT FUNCTIONS

Rectified linear units

ϕ(x) = max{0, x}

These are currently perhaps the most commonly used unit in the “inner” layers of a neural
network (those layers that are not the input or output layer).
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HIDDEN LAYERS AND NONLINEAR FUNCTIONS

Hidden units
• Any nodes (or “units”) in the network that are neither input nor output nodes are called

hidden.
• Every network has an input layer and an output layer.
• If there any additional layers (which hence consist of hidden units), they are called hidden

layers.

Linear and nonlinear networks
• If a network has no hidden units, then

fi(x) = ϕi(
〈

wi, x
〉
)

That means: f is a linear functions, except perhaps for the final application of ϕ.
• For example: In a classification problem, a two layer network can only represent linear

decision boundaries.
• Networks with at least one hidden layer can represent nonlinear decision surfaces.
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TWO VS THREE LAYERS

10 CHAPTER 6. MULTILAYER NEURAL NETWORKS

While we can be confident that a complete set of functions, such as all polynomi-
als, can represent any function it is nevertheless a fact that a single functional form
also suffices, so long as each component has appropriate variable parameters. In the
absence of information suggesting otherwise, we generally use a single functional form
for the transfer functions.

While these latter constructions show that any desired function can be imple-
mented by a three-layer network, they are not particularly practical because for most
problems we know ahead of time neither the number of hidden units required, nor
the proper weight values. Even if there were a constructive proof, it would be of little
use in pattern recognition since we do not know the desired function anyway — it
is related to the training patterns in a very complicated way. All in all, then, these
results on the expressive power of networks give us confidence we are on the right
track, but shed little practical light on the problems of designing and training neural
networks — their main benefit for pattern recognition (Fig. 6.3).
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Figure 6.3: Whereas a two-layer network classifier can only implement a linear decision
boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex, nor simply connected.

6.3 Backpropagation algorithm

We have just seen that any function from input to output can be implemented as a
three-layer neural network. We now turn to the crucial problem of setting the weights
based on training patterns and desired output.
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based on training patterns and desired output.
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THE XOR PROBLEM

6.2. FEEDFORWARD OPERATION AND CLASSIFICATION 7
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Figure 6.1: The two-bit parity or exclusive-OR problem can be solved by a three-layer
network. At the bottom is the two-dimensional feature space x1 − x2, and the four
patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their (feature) values through multiplicative
weights to the hidden units. The hidden and output units here are linear threshold
units, each of which forms the linear sum of its inputs times their associated weight,
and emits a +1 if this sum is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive (“excitatory”) weights are denoted by solid lines, negative
(“inhibitory”) weights by dashed lines; the weight magnitude is indicated by the
relative thickness, and is labeled. The single output unit sums the weighted signals
from the hidden units (and bias) and emits a +1 if that sum is greater than or equal
to 0 and a -1 otherwise. Within each unit we show a graph of its input-output or
transfer function — f(net) vs. net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers.
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Solution regions we would like to represent Neural network representation

• Two ridges at different locations are substracted from each other.
• That generates a region bounded on both sides.
• A linear classifier cannot represent this decision region.
• Note this requires at least one hidden layer.
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6.2. FEEDFORWARD OPERATION AND CLASSIFICATION 9

input feature xi. Each hidden unit emits a nonlinear function Ξ of its total input; the
output unit merely emits the sum of the contributions of the hidden units.

Unfortunately, the relationship of Kolmogorov’s theorem to practical neural net-
works is a bit tenuous, for several reasons. In particular, the functions Ξj and ψij

are not the simple weighted sums passed through nonlinearities favored in neural net-
works. In fact those functions can be extremely complex; they are not smooth, and
indeed for subtle mathematical reasons they cannot be smooth. As we shall soon
see, smoothness is important for gradient descent learning. Most importantly, Kol-
mogorov’s Theorem tells us very little about how to find the nonlinear functions based
on data — the central problem in network based pattern recognition.

A more intuitive proof of the universal expressive power of three-layer nets is in-
spired by Fourier’s Theorem that any continuous function g(x) can be approximated
arbitrarily closely by a (possibly infinite) sum of harmonic functions (Problem 2). One
can imagine networks whose hidden units implement such harmonic functions. Proper
hidden-to-output weights related to the coefficients in a Fourier synthesis would then
enable the full network to implement the desired function. Informally speaking, we
need not build up harmonic functions for Fourier-like synthesis of a desired function.
Instead a sufficiently large number of “bumps” at different input locations, of different
amplitude and sign, can be put together to give our desired function. Such localized
bumps might be implemented in a number of ways, for instance by sigmoidal transfer
functions grouped appropriately (Fig. 6.2). The Fourier analogy and bump construc-
tions are conceptual tools, they do not explain the way networks in fact function. In
short, this is not how neural networks “work” — we never find that through train-
ing (Sect. 6.3) simple networks build a Fourier-like representation, or learn to group
sigmoids to get component bumps.

y1

y2

y4

y3

y3 y4y2y1

x1 x2

z1

z1

x1

x2

Figure 6.2: A 2-4-1 network (with bias) along with the response functions at different
units; each hidden and output unit has sigmoidal transfer function f(·). In the case
shown, the hidden unit outputs are paired in opposition thereby producing a “bump”
at the output unit. Given a sufficiently large number of hidden units, any continuous
function from input to output can be approximated arbitrarily well by such a network.
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NUMBER OF LAYERS

We have observed
• We have seen that two-layer classification networks always represent linear class

boundaries.
• With three layers, the boundaries can be non-linear.

Obvious question
• What happens if we use more than three layers? Do four layers again increase expressive

power?
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WIDTH VS DEPTH

A neural network represents a (typically) complicated function f by simple functions ϕ(k)
i .

What functions can be represented?
A well-known result in approximation theory says: Every continuous function f : [0, 1]d → R
can be represented in the form

f (x) =
2d+1∑
j=1

ξj

( d∑
i=1

τij(xi)
)

where ξi and τij are functions R→ R. A similar result shows one can approximate f to
arbitrary precision using specifically sigmoids, as

f (x) ≈
M∑

j=1

w(2)
j σ

( d∑
i=1

w(1)
ij xi + ci

)
for some finite M and constants ci.
Note the representations above can both be written as neural networks with three layers (i.e.
with one hidden layer).
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WIDTH VS DEPTH

Depth rather than width
• The representations above can achieve arbitrary precision with a single hidden layer

(roughly: a three-layer neural network can represent any continuous function).
• In the first representation, ξj and τij are “simpler” than f because they map R→ R.
• In the second representation, the functions are more specific (sigmoids), and we typically

need more of them (M is large).
• That means: The price of precision are many hidden units, i.e. the network grows wide.
• The last years have shown: We can obtain very good results by limiting layer width, and

instead increasing depth (= number of layers).
• There is no coherent theory yet to properly explain this behavior.

Limiting width
• Limiting layer width means we limit the degrees of freedom of each function f (k).
• That is a notion of parsimony.
• Again: There seem to be a lot of interesting questions to study here, but so far, we have no

real answers.
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TRAINING NEURAL NETWORKS

Task
• We decide on a neural network “architecture”: We fix the network diagram, including all

functions ϕ at the units. Only the weights w on the edges can be changed during by
training algorithm. Suppose the architecture we choose has d1 input units and d2 output
units.

• We collect all weights into a vector w. The entire network then represents a function fw(x)
that maps Rd1 → Rd2 .

• To “train” the network now means that, given training data, we have to determine a
suitable parameter vector w, i.e. we fit the network to data by fitting the weights.

More specifically: Classification
Suppose the network is meant to represent a two-class classifier.

• That means the output dimension is d2 = 1, so fw is a function Rd1 → R.
• We are given data x1, x2, . . . with labels y1, y2, . . ..
• We split this data into training, validation and test data, according to the requirements of

the problem we are trying to solve.
• We then fit the network to the training data.
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TRAINING NEURAL NETWORKS

x̃

fw(x̃)

• We run each training data point x̃i through the network fw
and compare fw(x̃i) to ỹi to measure the error.

• Recall how gradient descent works: We make “small”
changes to w, and choose the one which decreases the error
most. That is one step of the gradient scheme.

• For each such changed value w′, we again run each training
data point x̃i through the network fw′ , and measure the error
by comparing fw′ (x̃i) to ỹi.

Peter Orbanz · Applied Data Mining 289



TRAINING NEURAL NETWORKS

Error measure
• We have to specify how we compare the network’s output fw(x) to the correct answer y.
• To do so, we specify a function D with two arguments that serves as an error measure.
• The choice of D depends on the problem.

Typical error measures
• Classification problem:

D(ŷ, y) := y log ŷ (with convention 0 log 0 = 0)

• Regression problem:
D(ŷ, y) := ∥y− ŷ∥2

Training as an optimization problem
• Given: Training data (x1, y1), . . . , (xn, yn) with labels yi.
• We specify an error measure D, and define the total error on the training set as

J(w) :=
n∑

i=1

D( fw(x̃i), ỹi)
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BACKPROPAGATION

Training problem
In summary, neural network training attempts to solve the optimization problem

w∗ = argmin
w

J(w)

using gradient descent. For feed-forward networks, the gradient descent algorithm takes a
specific form that is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

In practice: Stochastic gradient descent
• The vector w can be very high-dimensional. In high dimensions, computing a gradient is

computationally expensive, because we have to make “small changes” to w in many
different directions and compare them to each other.

• Each time the gradient algorithm computes J(w′) for a changed value w′, we have to
apply the network to every data point, since J(w′) =

∑n
i=1 D( fw′ (x̃i), ỹi).

• To save computation, the gradient algorithm typically computes D( fw′ (x̃i), ỹi) only for
some small subset of a the training data. This subset is called a mini batch, and the
resulting algorithm is called stochastic gradient descent.
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BACKPROPAGATION

Neural network training optimization problem

min
w

J(w)

The application of gradient descent to this problem is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

Deriving backpropagation
• We have to evaluate the derivative∇wJ(w).
• Since J is additive over training points, J(w) =

∑
n Jn(w), it suffices to derive∇wJn(w).
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The next few slides were written for a different class, and you are not expected to know their content. I show them only to
illustrate the interesting way in which gradient descent interleaves with the feed-forward architecture.



BACKPROPAGATION

Deriving backpropagation
• We have to evaluate the derivative∇wJ(w).
• Since J is additive over training points, J(w) =

∑
n Jn(w), it suffices to derive∇wJn(w).
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CHAIN RULE

Recall from calculus: Chain rule
Consider a composition of functions f ◦ g(x) = f (g(x)).

d(f ◦ g)
dx

=
df
dg

dg
dx

If the derivatives of f and g are f ′ and g′, that means: d(f◦g)
dx (x) = f ′(g(x))g′(x)

Application to feed-forward network
Let w(k) denote the weights in layer k. The function represented by the network is

fw(x) = f (K)
w ◦ · · · ◦ f (1)

w (x) = f (K)

w(K) ◦ · · · ◦ f (1)
w(1) (x)

To solve the optimization problem, we have to compute derivatives of the form

d
dw

D(fw(xn), yn) =
dD( • , yn)

dfw

dfw
dw
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DECOMPOSING THE DERIVATIVES

• The chain rule means we compute the derivates layer by layer.
• Suppose we are only interested in the weights of layer k, and keep all other weights fixed.

The function f represented by the network is then

fw(k) (x) = f (K) ◦ · · · ◦ f (k+1) ◦ f (k)
w(k) ◦ f (k−1) ◦ · · · ◦ f (1)(x)

• The first k − 1 layers enter only as the function value of x, so we define

z(k) := f (k−1) ◦ · · · ◦ f (1)(x)

and get
fw(k) (x) = f (K) ◦ · · · ◦ f (k+1) ◦ f (k)

w(k) (z
(k))

• If we differentiate with respect to w(k), the chain rule gives

d
dw(k)

fw(k) (x) =
df (K)

df (K−1)
· · · df (k+1)

df (k)
·

df (k)
w(k)

dw(k)
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WITHIN A SINGLE LAYER

• Each f (k) is a vector-valued function f (k) : Rdk → Rdk+1 .
• It is parametrized by the weights w(k) of the kth layer and takes an input vector z ∈ Rdk .

• We write f (k)(z,w(k)).

Layer-wise derivative
Since f (k) and f (k−1) are vector-valued, we get a Jacobian matrix

df (k+1)

df (k)
=



∂f (k+1)
1

∂f (k)
1

. . .
∂f (k+1)

1

∂f (k)
dk

...
...

∂f (k+1)
dk+1

∂f (k)
1

. . .
∂f (k+1)

dk+1

∂f (k)
dk


=: ∆(k)(z,w(k+1))

• ∆(k) is a matrix of size dk+1 × dk .

• The derivatives in the matrix quantify how f (k+1) reacts to changes in the argument of
f (k) if the weights w(k+1) and w(k) of both functions are fixed.
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BACKPROPAGATION ALGORITHM

Let w(1), . . . ,w(K) be the current settings of the layer weights. These have either been
computed in the previous iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass
We start with an input vector x and compute

z(k) := f (k) ◦ · · · ◦ f (1)(x)

for all layers k.

Step 2: Backward pass
• Start with the last layer. Update the weights w(K) by performing a gradient step on

D
(

f (K)(z(K),w(K)), y
)

regarded as a function of w(K) (so z(K) and y are fixed). Denote the updated weights w̃(K).
• Move backwards one layer at a time. At layer k, we have already computed updates

w̃(K), . . . , w̃(k+1). Update w(k) by a gradient step, where the derivative is computed as

∆(K−1)(z(K−1), w̃(K)) · . . . ·∆(k)(z(k), w̃(k+1))
df (k)

dw(k)
(z,w(k))

On reaching level 1, go back to step 1 and recompute the z(k) using the updated weights.
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SUMMARY: BACKPROPAGATION

• Backpropagation is a gradient descent method for the optimization problem

min
w

J(w) =
N∑

i=1

D(fw(xi), yi)

D must be chosen such that it is additive over data points.

• It alternates between forward passes that update the layer-wise function values z(k) given
the current weights, and backward passes that update the weights using the current z(k).

• The layered architecture means we can (1) compute each z(k) from z(k−1) and (2) we can
use the weight updates computed in layers K, . . . , k + 1 to update weights in layer k.
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FEATURE EXTRACTION

Features
• Raw measurement data is typically not used directly as input for a learning algorithm.

Some form of preprocessing is applied first.
• We can think of this preprocessing as a function, e.g.

F : raw data space −→ Rd

(Rd is only an example, but a very common one.)
• If the raw measurements are m1, . . . ,mN , the data points which are fed into the learning

algorithm are the images xn := F(mn).

Terminology
• F is called a feature map.
• Its dimensions (the dimensions of its range space) are called features.
• The preprocessing step (= application of F to the raw data) is called feature extraction.
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EXAMPLE PROCESSING PIPELINE

This is what a typical processing
pipeline for a supervided learning
propblem might look like.

Raw data (measurements)

Feature extraction
(preprocessing)

Working data

Mark patterns

Split

Training data
(patterns marked)

Test data
(patterns marked)

Training
(calibration) Trained model

Apply on
test data

Error estimate
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FEATURE EXTRACTION VS LEARNING

Where does learning start?
• It is often a matter of definition where feature extraction stops and learning starts.
• If we have a perfect feature extractor, learning is trivial.
• For example:

• Consider a classfication problem with two classes.
• Suppose the feature extractor maps the raw data measurements of class 1 to a single

point, and all data points in class to to a single distinct point.
• Then classification is trivial.
• That is of course what the classifier is supposed to do in the end (e.g. map to the

points 0 and 1).

Multi-layer networks and feature extraction
• An interesting aspect of multi-layer neural networks is that their early layers can be

intepreted as feature extraction.
• For certain types of problems (e.g. computer vision), features were long “hand-tuned” by

humans.
• Features extracted by neural networks give much better results.
• Several important problems, such as object recognition and face recognition, have

basically been solved in this way.
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DEEP NETWORKS AS FEATURE EXTRACTORS

• The network on the right is a classifier
f : Rd → {0, 1}.

• Suppose we subdivide the network into
the first K − 1 layer and the final layer, by
defining

F(x) := f (K−1) ◦ . . . ◦ f (1)(x)

• The entire network is then

f (x) = f (K) ◦ F(x)

• The function f (K) is a two-class logistic
regression classifier.

• We can hence think of f as a feature
extraction F followed by linear
classification f (K).

x1 x2

. . .

xd

. . .

. . .

...
...

...

. . .

= f (1)

= f (2)

= f (K)

f (K)( • ) = σ(
〈

w(K), •
〉
)
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A SIMPLE EXAMPLE

6.6. BACKPROPAGATION, BAYES THEORY AND PROBABILITY 25

sample training patterns

learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑

i=1

P (x|ωi)P (ωi)
=

P (x,ωk)

P (x)
, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =

{
1 if x ∈ ωk

0 otherwise.
(23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑

x

[gk(x; w)− tk]
2

(24)

. . .x1 x64

f1 f2 f3

h1 h2

w11
w12 w64,1

w64,2

• Problem: Classify characters into three
classes (E, F and L).

• Each digit given as a 8× 8 = 64 pixel
image

• Neural network: 64 input units (=pixels)
• 2 hidden units
• 3 binary output units, where fi(x) = 1

means image is in class i.
• Each hidden unit has 64 input weights,

one per pixel. The weight values can be
plottes as 8× 8 images.
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[gk(x; w)− tk]
2

(24)
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sample training patterns

learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑

i=1

P (x|ωi)P (ωi)
=

P (x,ωk)

P (x)
, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =

{
1 if x ∈ ωk

0 otherwise.
(23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑

x

[gk(x; w)− tk]
2

(24)

training data (with random noise) weight values of h1 and h2 plotted as images

h1 h2

• Dark regions = large weight values.
• Note the weights emphasize regions that distinguish characters.
• We can think of weight (= each pixel) as a feature.
• The features with large weights for h1 distinguish {E,F} from L.
• The features for h2 distinguish {E,L} from F.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Peter Orbanz · Applied Data Mining 304



EXAMPLE: AUTOENCODERS

An example for the effect of layer are autoencoders.
• An autoencoder is a neural network that is trained on its own input: If the network has

weights W and represents a function fW, training solves the optimization problem

min
W
∥x− fW(x)∥2

or something similar for a different norm.
• That seems pointless at first glance: The network tries to approximate the identity

function using its (possibly nonlinear) component functions.
• However: If the layers in the middle have much fewer nodes that those at the top and

bottom, the network learns to compress the input.
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AUTOENCODERS

x

f (1)

f (2)

f (3)

f (x) ≈ x

Layers have same width: No effect

x

f (1)

f (2)

f (3)

f (x) ≈ x

Narrow middle layers: Compression effect

• Train network on many images.
• Once trained: Input an image x.

• Store x′ := f (2)(x). Note x′ has fewer dimensions than x→ compression.

• To decompress x′: Input it into f (3) and apply the remaining layers of the network
→ reconstruction f (x) ≈ x of x.

Peter Orbanz · Applied Data Mining 306



AUTOENCODERS
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CROSS-CORRELATION OPERATIONS

Definition
Suppose we define a small (here: 3× 3) matrix

K =

k−1,−1 k−1,0 k−1,1
k0,−1 k0,0 k0,1
k1,−1 k1,0 k1,1


For a large matrix A, we define the cross-correlation of A and K as the matrix A⊙ K with
entries

(A⊙ K)ij := aijk0,0 + ai−1,j−1k−1,−1 + . . . =
1∑

m,n=−1

ai+m,j+nkm,n

Remarks
• K is sometimes called a kernel. Caution: The term kernel is used for several, different

concepts in both mathematics and machine learning.
• We can similarly define the cross-correlation if K is of size 5× 5 etc. The numbers of

rows and columns should be odd, so that k00 is at the center of K.
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CROSS-CORRELATION FOR IMAGES

A = =

• Recall that we can represent a grayscale image as a matrix A.
• We can then define a kernel matrix K and compute the cross-correlation A⊙ K.
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EFFECT OF CROSS-CORRELATION ON IMAGES

• Consider again a 3× 3 kernel

K =

k−1,−1 k−1,0 k−1,1
k0,−1 k0,0 k0,1
k1,−1 k1,0 k1,1

 with (A⊙ K)ij =
1∑

m,n=−1

ai+m, j+nkm,n

• Consider the pixel value aij at location i, j in A. In the new image A⊙ K, aij is the sum of
element-wise producs of K and the direct neighborhood of aij:

(A⊙ K)ij = sum of entries of

k−1,−1ai−1,j−1 k−1,0ai−1,j k−1,1ai−1,j+1
k0,−1ai,j−1 k0,0aij k0,1ai,j+1

k1,−1ai+1,j−1 k1,0ai+1,j k1,1ai+1,j+1


• In other words, (A⊙ K)ij is a weighted average of aij and its neighbors.
• The next few slides illustrate the effect of different choices of K.
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EXAMPLES

For the identity kernel, nothing happens:

A = K =

0 0 0
0 1 0
0 0 0



A⊙ K =
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EXAMPLES

If all entries of K are identical, each pixel in the image is “averaged together” with its
neighbors. That results in blurring:

A = K =

 1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9



A⊙ K =
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EXAMPLES

Since diagonal neighbors are further away than horizontal/vertical ones, we can give them
smaller weights. This is also called a “Gaussian blur”:

A = K =
1
16

1 2 1
2 4 2
1 2 1



A⊙ K =
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EXAMPLES

We can increase the size of K, which means we are mixing aij with more neighbors. Here is a
5× 5 Gaussian blur:

A = K =
1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1



A⊙ K =
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EXAMPLES

The opposite effect is sharpening: We give the neighbors negative weights. If two adjacent
points look different, A⊙ K substracts them from each other, so they look even more different:

A = K =

 0 −1 0
−1 5 −1
0 −1 0



A⊙ K =

Note the entries of K add up to 1.
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EXAMPLES

A more drastic form of sharpening is edge detection:

A = K =

− 1
8 − 1

8 − 1
8

− 1
8 1 − 1

8
− 1

8 − 1
8 − 1

8



A⊙ K =

Here, the entries of K add up to 0, so (A ⊙ K)ij is visible only if aij is very different from its neighbors.

Peter Orbanz · Applied Data Mining 316



EXAMPLES

This kernel find points that are similar to their lower left and upper right neighbor, and different
from their upper left and lower right one. That means it detects diagonal edges:

A = K =

−1 0 1
0 1 0
1 0 −1



A⊙ K =

Peter Orbanz · Applied Data Mining 317



CROSS-CORRELATION AS A NEURAL NETWORK

k1,−1 k1,0 k1,1

a31 a32 a33

k0,−1 k0,0 k0,1

a21 a22 a23

k−1,−1 k−1,0
k−1,1

a11 a12 a13

f (A) = (A ⊙ K)22

ϕ(x)= x

• Suppose we build a neural network one input unit for each entry of

a11 a12 a13
a21 a22 a23
a31 a32 a33

.

• We use the entries of K as weights and connect everything to a single linear unit (“linear
unit” means ϕ(x) = x).

• The network then computes the sum of the weighted inputs, which by definition of A⊙K
is just (A⊙K)22.

• We can obtain another entry (A⊙K)ij by replacing the input values with another
submatrix of A.
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k1,−1 k1,0 k1,1

a31 a32 a33

k0,−1 k0,0 k0,1

a21 a22 a23

k−1,−1 k−1,0
k−1,1

a11 a12 a13

f (A) = (A ⊙ K)22

ϕ(x)= x

a 11
a 12

a 13

a 21
a 22

a 23

a 31
a 32

a 33

ϕ

(A⊙K)22

(A⊙K)23

(i) (ii) (iii)

• Neural network layers whose units are arranged in a two-dimensional grid are often
visualized as “sheets” as in (ii) and (iii).

• The network (i) collects information from a small portion of the input layer, as visualized
in (ii).

• We can use a similar network (with different input values but identical weights) to
similarly compute (A⊙K)23, (A⊙K)24, etc as in (iii).

• In that manner, we can compute every entry of (A⊙K) and arrange these entries on
another grid of units as the next layer.

• In other words: We attach a network of the form (i) to every 3× 3 patch of input values.
All these networks use the same weights, given by the matrix K. The two-layer network so
obtained computes (A⊙K). If we changed the weights to some other matrix K′, it would
compute (A⊙K′).
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A =

A⊙K =

• Here, the input layer representing A and the consecutive layer representing A⊙K are
visualized as sheets.

• The layer that computes A⊙K is often called a convolutional layer, although
cross-correlation layer would be more accurate. (There is another operation called a
convolution that is similar to cross-correlation, but not identical.)

• Neural networks that contain convolutional layers are called convolutional neural
networks, even if not every layer is a convolution. Typically, the first hidden layer
performs a convolution.

• Almost all networks used for image processing and computer vision problems are
convolutional neural networks.
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COMPUTING SEVERAL CROSS-CORRELATIONS IN
PARRALEL

a31 a32 a33

a21 a22 a23

a11 a12 a13

(A ⊙ K)22 (A ⊙ K′)22

• We start with the same network as before that computes (A⊙K)22.
• For each input vertex, we add a second connection and collect all of these in a second

(linear) unit. That is, the second layer now has two units.
• The connections to the first node on the second layer still use the weights given by K.

(The weights are omitted above since the figure would get too crowded.)
• Now specify a second 3× 3 matrix K′. Use its entries as weights for the additional

connections, collected by the second linear unit.
• The network now computes (A⊙K)22 (as output of one unit in the second layer) and

(A⊙K′)22 (as output of the other one).
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OBJECT RECOGNITION TASKS

• An important benchmark problem is object recognition.
• The task is, roughly: An image is fed into a multiclass classifier, and the classifier should

output the label of a/the “dominant” object in the image.
• For a picture of a car with background, the label would be “car”, possibly plus a specific

type or model.
• The current state of the art for this problem are (convolutional) neural networks whose

input is the entire image (i.e. there is no prior feature extraction step).
• The next two slides illustrate models that performed best in comparisons organized as a

contest in 2012 and 2014.
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STATE-OF-THE-ART IN 2012

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

• This is an illustration (taken from the research article) of the convolutional network that
first demonstrated enourmous improvements in computer vision benchmark tasks.

• “Stride of 4” refers to a convolutional layer that applies 96 kernels in parallel.
• Each of the big blocks in the figure represents a convolutional layer.
• In between the convolutional layers, additional operations are performed (“pooling” and a

form of normalization).
• “Pooling” refers to operations that collect outputs from a rectangular patch adjacent units

and summarize them in a single unit. That reduces layer size.
• “Dense” refers to a layer that is fully connected (all possible edges from one layer to the

next are present). These are located at towards the output end of the network, where layer
size has already been reduced.
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STATE-OF-THE-ART IN 2014
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• Layers: Convolution (blue), pooling (red), various others.
• This network was designed by Google (the one of the previous page in academia).
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MACHINE LEARNING BENCHMARKS

How do we evaluate which methods work?
• The basic evaluation of data mining/machine learning methods is conducted by individual

research groups and reported in scientific articles.
• These results use different data sets, different cross-validation setups, etc. That makes

them hard to compare.
• It is easy to cheat, too. That is not in anyone’s long-term interest as a researcher, but it

happens.
• It is easy to make mistakes, e.g. by getting your cross-validation wrong.

Benchmark data sets
• Benchmark data sets are sets of labelled data used by many researchers to make results

more comparable.
• Early examples in computer vision are the Berkeley Segmentation Dataset and Benchmark

(2001, for image segmentation) and the Caltech 101 dataset (2004, for object
categorization).
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BENCHMARK COMPETITIONS

Challenges
• To make evaluation (not just data) comparable, some research groups organize

competitions (often called “challenges” in computer vision and machine learning).
• The organizers specify a task (e.g. a classification problem) and a performance goal (e.g.

“achieve minimal classification error on the test data”).
• Research groups can sign up to participate.
• A set of labelled data is made available to participants, for use as training data.
• The organizers hold out a test data set (which is kept secret). At the end of the

competition, all participating groups submit their final trained model, the organizers run it
on the test data, and report the results.

ILSVRC
• The best-known example is the ImageNet Large-Scale Visual Recognition Challenge (or

ILSVRC). which evaluates how well an algorithm can perform certain vision tasks, like
classifiying and locating objects in images.

• In 2012, a “deep” neural network drastically improved on previous ILSVRC results. That
was one of the triggers for the current interest of the tech industry in machine learning.
The network is the one picture on slide 323.
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ILSVRC TASKS

Int J Comput Vis (2015) 115:211–252 213

of objects in 636,748 images and video frames, but it is not
available for free. Several datasets provide pixel-level seg-
mentations: for example, MSRC dataset (Criminisi 2004)
with 591 images and 23 object classes, Stanford Background
Dataset (Gould et al. 2009) with 715 images and 8 classes,
and the Berkeley Segmentation dataset (Arbelaez et al. 2011)
with 500 images annotated with object boundaries. Open-
Surfaces segments surfaces from consumer photographs and
annotates them with surface properties, including material,
texture, and contextual information (Bell et al. 2013).

The closest to ILSVRC is the PASCAL VOC dataset
(Everingham et al. 2010, 2014), which provides a standard-
ized test bed for object detection, image classification, object
segmentation, person layout, and action classification. Much
of the design choices in ILSVRC have been inspired by
PASCAL VOC and the similarities and differences between
the datasets are discussed at length throughout the paper.
ILSVRC scales up PASCAL VOC’s goal of standardized
training and evaluation of recognition algorithms by more
than an order of magnitude in number of object classes
and images: PASCAL VOC 2012 has 20 object classes and
21,738 images compared to ILSVRC2012 with 1000 object
classes and 1,431,167 annotated images.

The recently released COCO dataset (Lin et al. 2014b)
contains more than 328,000 images with 2.5 million object
instances manually segmented. It has fewer object categories
than ILSVRC (91 in COCO versus 200 in ILSVRC object
detection) but more instances per category (27K on average
compared to about 1K in ILSVRC object detection). Further,
it contains object segmentation annotations which are not
currently available in ILSVRC. COCO is likely to become
another important large-scale benchmark.

Large-Scale Annotation ILSVRC makes extensive use of
Amazon Mechanical Turk to obtain accurate annotations
(Sorokin and Forsyth 2008). Works such as (Welinder et al.
2010; Sheng et al. 2008;Vittayakorn andHays2011) describe
quality control mechanisms for this marketplace. Vondrick
et al. (2012) provides a detailed overview of crowdsourc-
ing video annotation. A related line of work is to obtain
annotations through well-designed games, e.g. (von Ahn
and Dabbish 2005). Our novel approaches to crowdsourc-
ing accurate image annotations are in Sects. 3.1.3, 3.2.1
and 3.3.3.

Standardized Challenges There are several datasets with
standardized online evaluation similar to ILSVRC: the afore-
mentioned PASCALVOC (Everingham et al. 2012), Labeled
Faces in the Wild (Huang et al. 2007) for unconstrained
face recognition, Reconstruction meets Recognition (Urta-
sun et al. 2014) for 3D reconstruction and KITTI (Geiger
et al. 2013) for computer vision in autonomous driving. These
datasets alongwith ILSVRC help benchmark progress in dif-

ferent areas of computer vision. Works such as (Torralba and
Efros 2011) emphasize the importance of examining the bias
inherent in any standardized dataset.

1.2 Paper Layout

We begin with a brief overview of ILSVRC challenge tasks
in Sect. 2. Dataset collection and annotation are described at
length in Sect. 3. Section 4 discusses the evaluation criteria
of algorithms in the large-scale recognition setting. Section 5
provides an overview of the methods developed by ILSVRC
participants.

Section6 contains an in-depth analysis of ILSVRCresults:
Sect. 6.1 documents the progress of large-scale recognition
over the years, Sect. 6.2 concludes that ILSVRC results are
statistically significant, Sect. 6.3 thoroughly analyzes the cur-
rent state of the field of object recognition, and Sect. 6.4
compares state-of-the-art computer vision accuracy with
human accuracy. We conclude and discuss lessons learned
from ILSVRC in Sect. 7.

2 Challenge Tasks

The goal of ILSVRC is to estimate the content of photographs
for the purpose of retrieval and automatic annotation. Test
images are presented with no initial annotation, and algo-
rithms have to produce labelings specifying what objects are
present in the images. New test images are collected and
labeled especially for this competition and are not part of the
previously published ImageNet dataset (Deng et al. 2009).

ILSVRC over the years has consisted of one or more of
the following tasks (years in parentheses):3

(1) Image classification (2010–2014): Algorithms produce a
list of object categories present in the image.

(2) Single-object localization (2011–2014): Algorithms pro-
duce a list of object categories present in the image, along
with an axis-aligned bounding box indicating the position
and scale of one instance of each object category.

(3) Object detection (2013–2014): Algorithms produce a list
of object categories present in the image along with an
axis-aligned bounding box indicating the position and
scale of every instance of each object category.

This section provides an overview and history of each of the
three tasks. Table 1 shows summary statistics.

3 In addition, ILSVRC in 2012 also included a taster fine-grained clas-
sification task, where algorithms would classify dog photographs into
one of 120 dog breeds (Khosla et al. 2011). Fine-grained classification
has evolved into its own Fine-Grained classification challenge in 2013
(Berg et al. 2013), which is outside the scope of this paper.
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Fig. 7 Tasks in ILSVRC. The first column shows the ground truth labeling on an example image, and the next three show three sample outputs
with the corresponding evaluation score

4.1 Image Classification

The scale of ILSVRCclassification task (1000 categories and
more than a million of images) makes it very expensive to
label every instance of every object in every image. There-
fore, on this dataset only one object category is labeled in
each image. This creates ambiguity in evaluation. For exam-
ple, an image might be labeled as a “strawberry” but contain
both a strawberry and an apple. Then an algorithmwould not
know which one of the two objects to name. For the image
classification task we allowed an algorithm to identify mul-
tiple (up to 5) objects in an image and not be penalized as
long as one of the objects indeed corresponded to the ground
truth label. Figure 7 (top row) shows some examples.

Concretely, each image i has a single class label Ci . An
algorithm is allowed to return 5 labels ci1, . . . ci5, and is con-
sidered correct if ci j = Ci for some j .

Let the error of a prediction di j = d(ci j ,Ci ) be 1 if ci j ̸=
Ci and 0 otherwise. The error of an algorithm is the fraction
of test images on which the algorithm makes a mistake:

error = 1
N

N∑

i=1

min
j

di j (1)

We used two additional measures of error. First, we evalu-
ated top-1 error. In this case algorithmswere penalized if their
highest-confidence output label ci1 did not match ground
truth class Ci . Second, we evaluated hierarchical error. The
intuition is that confusing two nearby classes (such as two
different breeds of dogs) is not as harmful as confusing a dog
for a container ship. For the hierarchical criteria, the cost of
one misclassification, d(ci j ,Ci ), is defined as the height of
the lowest common ancestor of ci j and Ci in the ImageNet
hierarchy. The height of a node is the length of the longest
path to a leaf node (leaf nodes have height zero).

However, in practice we found that all three measures
of error (top-5, top-1, and hierarchical) produced the same
ordering of results. Thus, since ILSVRC2012 we have been
exclusively using the top-5 metric which is the simplest and
most suitable to the dataset.
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Table 2 Scale of ILSVRC image classification task (minimum per class - maximum per class)

Year Train images
(per class)

Val images
(per class)

Test images
(per class)

Image classification annotations (1000 object classes)

ILSVRC2010 1,261,406 (668–3047) 50,000 (50) 150,000 (150)

ILSVRC2011 1,229,413 (384–1300) 50,000 (50) 100,000 (100)

ILSVRC2012-14 1,281,167 (732–1300) 50,000 (50) 100,000 (100)

The numbers in parentheses correspond to (minimum per class–maximum per class). The 1000 classes change from year to year but are consistent
between image classification and single-object localization tasks in the same year. All images from the image classification task may be used for
single-object localization

Table 3 Scale of additional annotations for the ILSVRC single-object localization task (minimum per class - maximum per class)

Year Train images
with bbox
annotations
(per class)

Train bboxes
annotated (per
class)

Val images
with bbox
annotations
(per class)

Val bboxes
annotated
(per class)

Test images
with bbox
annotations

Additional annotations for single-object localization (1000 object classes)

ILSVRC2011 315,525 (104–1256) 344,233 (114–1502) 50,000 (50) 55,388 (50–118) 100,000

ILSVRC2012-14 523,966 (91–1268) 593,173 (92–1418) 50,000 (50) 64,058 (50–189) 100,000

The numbers in parentheses correspond to (minimum per class–maximum per class). The 1000 classes change from year to year but are consistent
between image classification and single-object localization tasks in the same year. All images from the image classification task may be used for
single-object localization

test image and a subset of the training images are annotated
with axis-aligned bounding boxes around every instance of
this object.

Every bounding box is required to be as small as possi-
ble while including all visible parts of the object instance.
An alternate annotation procedure could be to annotate the
full (estimated) extent of the object: e.g., if a person’s legs
are occluded and only the torso is visible, the bounding box
could be drawn to include the likely location of the legs.How-
ever, this alternative procedure is inherently ambiguous and
ill-defined, leading to disagreement among annotators and
among researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only anno-
tating visible object parts (Russell et al. 2007; Everingham
et al. 2010).5

3.2.1 Bounding Box Object Annotation System

We summarize the crowdsourced bounding box annotation
system described in detail in Su et al. (2012). The goal is
to build a system that is fully automated, highly accurate,
and cost-effective. Given a collection of images where the

5 Some datasets such as PASCAL VOC (Everingham et al. 2010)
and LabelMe (Russell et al. 2007) are able to provide more detailed
annotations: for example, marking individual object instances as being
truncated. We chose not to provide this level of detail in favor of anno-
tating more images and more object instances.

object of interest has been verified to exist, for each image
the system collects a tight bounding box for every instance
of the object.

There are two requirements:

– Quality Each bounding box needs to be tight, i.e. the
smallest among all bounding boxes that contains all visi-
ble parts of the object. This facilitates the object detection
learning algorithms by providing the precise location of
each object instance;

– CoverageEvery object instance needs to have a bounding
box. This is important for training localization algorithms
because it tells the learning algorithms with certainty
what is not the object.

The core challenge of building such a system is effectively
controlling the data qualitywithminimal cost. Our key obser-
vation is that drawing a bounding box is significantly more
difficult and time consuming than giving answers to multi-
ple choice questions. Thus quality control through additional
verification tasks ismore cost-effective than consensus-based
algorithms. This leads to the followingworkflowwith simple
basic subtasks:

(1) Drawing A worker draws one bounding box around one
instance of an object on the given image.

123

size of smallest
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size of largest
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• The data is split into a large training set, plus a validation and a test set.
• Research groups download the training set.
• The validation data sits on a server on which research groups can upload their trained

models. The server runs the model on the validation data and reports the accuracy
estimate to the researchers, who can use this feedback to improve their model.

• The test data is withheld. After a submission deadline, all submitted models are run on the
test data to produce an “official” result.
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EXAMPLE ILSVRC RULES

Example Rules
• Each research group is limited to two validation steps per week. (One team famously

cheated its way around this rule in 2015.)
• There are separate contests that do or do not permit additional training data to be used.

Crowdsourcing
• The data is collected from image search engines.
• It does not come with reliable labels for training, validation and testing.
• The class labels are added by crowdsourcing.
• The labels are structured hierarchically, i.e. there is a meta-category “cars” which contains

specific types of cars as subcategories. The challenge task is to predict the most specific
labels (the leaves in the hierarchy tree).

• The next two slides illustrate how the categories are structured.
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Fig. 5 Consider the problem of
binary multi-label annotation.
For each input (e.g., image) and
each label (e.g., object), the goal
is to determine the presence or
absense (plus or minus) of the
label (e.g., decide if the object is
present in the image).
Multi-label annotation becomes
much more efficient when
considering real-world structure
of data: correlation between
labels, hierarchical organization
of concepts, and sparsity of
labels

Fig. 6 Our algorithm dynamically selects the next query to efficiently determine the presence or absence of every object in every image. Green
denotes a positive annotation and red denotes a negative annotation. This toy example illustrates a sample progression of the algorithm for one
label (cat) on a set of images

categorize at higher semantic levels (Thorpe et al. 1996),
e.g. humans can determine the presence of an animal in
an image as fast as every type of animal individually.
This leads to substantial cost savings.

(3) Sparsity The values of labels for each image tend to be
sparse, i.e. an image is unlikely to contain more than a
dozen types of objects, a small fraction of the hundreds
of object categories. This enables rapid elimination of
many objects by quickly filling in no.With a high degree
of sparsity, an efficient algorithm can have a cost which
grows logarithmicallywith the number of objects instead
of linearly.

We propose algorithmic strategies that exploit the above
intuitions. The key is to select a sequence of queries for
humans such that we achieve the same labeling results with
only a fraction of the cost of the naïve approach. The main
challenges include how tomeasure cost and utility of queries,
how to construct good queries, and how to dynamically order
them. A detailed description of the generic algorithm, along
with theoretical analysis and empirical evaluation, is pre-
sented in Deng et al. (2014).

Application of the Generic Multi-class Labeling Algorithm
to Our Setting The generic algorithm automatically selects
the most informative queries to ask based on object label sta-
tistics learned from the training set. In our case of 200 object

classes, since obtaining the training set was by itself chal-
lenging we chose to design the queries by hand. We created
a hierarchy of queries of the type “is there a... in the image?”
For example, one of the high-level questions was “is there an
animal in the image?” We ask the crowd workers this ques-
tion about every image we want to label. The children of the
“animal” question would correspond to specific examples of
animals: for example, “is there a mammal in the image?” or
“is there an animal with no legs?” To annotate images effi-
ciently, these questions are asked only on images determined
to contain an animal. The 200 leaf node questions correspond
to the 200 target objects, e.g., “is there a cat in the image?”.
A few sample iterations of the algorithm are shown in Fig. 6.

Algorithm 1 is the formal algorithm for labeling an image
with the presence or absence of each target object category.
With this algorithm in mind, the hierarchy of questions was
constructed following the principle that false positives only
add extra cost whereas false negatives can significantly affect
the quality of the labeling. Thus, it is always better to stick
with more general but less ambiguous questions, such as “is
there a mammal in the image?” as opposed to asking overly
specific but potentially ambiguous questions, such as “is
there an animal that can climb trees?” Constructing this hier-
archy was a surprisingly time-consuming process, involving
multiple iterations to ensure high accuracy of labeling and
avoid question ambiguity. Appendix 1 shows the constructed
hierarchy.
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◦ wind instrument: a musical instrument in which the sound is produced by an enclosed column of air that is moved
by the breath (such as trumpet, french horn, harmonica, flute, etc)

◦ (17) trumpet: a brass musical instrument with a narrow tube and a flared bell, which is played by means of
valves. often has 3 keys on top
◦ (18) french horn: a brass musical instrument consisting of a conical tube that is coiled into a spiral, with a flared
bell at the end
◦ (19) trombone: a brass instrument consisting of a long tube whose length can be varied by a u-shaped slide
◦ (20) harmonica
◦ (21) flute: a high-pitchedmusical instrument that looks like a straight tube and is usually played sideways (please
do not confuse with oboes, which have a distinctive straw-like mouth piece and a slightly flared end)
◦ (22) oboe: a slender musical instrument roughly 65cm long with metal keys, a distinctive straw-like mouthpiece
and often a slightly flared end (please do not confuse with flutes)
◦ (23) saxophone: a musical instrument consisting of a brass conical tube, often with a u-bend at the end

• food: something you can eat or drink (includes growing fruit, vegetables and mushrooms, but does not include living
animals)

◦ food with bread or crust: pretzel, bagel, pizza, hotdog, hamburgers, etc
◦ (24) pretzel
◦ (25) bagel, beigel
◦ (26) pizza, pizza pie
◦ (27) hotdog, hot dog, red hot
◦ (28) hamburger, beefburger, burger

◦ (29) guacamole
◦ (30) burrito
◦ (31) popsicle (ice cream or water ice on a small wooden stick)
◦ fruit

◦ (32) fig
◦ (33) pineapple, ananas
◦ (34) banana
◦ (35) pomegranate
◦ (36) apple
◦ (37) strawberry
◦ (38) orange
◦ (39) lemon

◦ vegetables
◦ (40) cucumber, cuke
◦ (41) artichoke, globe artichoke
◦ (42) bell pepper
◦ (43) head cabbage

◦ (44) mushroom
• items that run on electricity (plugged in or using batteries); including clocks, microphones, traffic lights, computers,
etc

◦ (45) remote control, remote
◦ electronics that blow air

◦ (46) hair dryer, blow dryer
◦ (47) electric fan: a device for creating a current of air by movement of a surface or surfaces (please do not
consider hair dryers)

◦ electronics that can play music or amplify sound
◦ (48) tape player
◦ (49) iPod

◦ (50) microphone, mike
◦ computer and computer peripherals: mouse, laptop, printer, keyboard, etc

◦ (51) computer mouse
◦ (52) laptop, laptop computer
◦ (53) printer (please do not consider typewriters to be printers)
◦ (54) computer keyboard

◦ (55) lamp
◦ electric cooking appliance (an appliance which generates heat to cook food or boil water)

◦ (56) microwave, microwave oven
◦ (57) toaster
◦ (58) waffle iron
◦ (59) coffee maker: a kitchen appliance used for brewing coffee automatically

◦ (60) vacuum, vacuum cleaner
◦ (61) dishwasher, dish washer, dishwashing machine
◦ (62) washer, washing machine: an electric appliance for washing clothes
◦ (63) traffic light, traffic signal, stoplight
◦ (64) tv or monitor: an electronic device that represents information in visual form
◦ (65) digital clock: a clock that displays the time of day digitally

• kitchen items: tools,utensils and appliances usually found in the kitchen
◦ electric cooking appliance (an appliance which generates heat to cook food or boil water)

◦ (56) microwave, microwave oven
◦ (57) toaster
◦ (58) waffle iron
◦ (59) coffee maker: a kitchen appliance used for brewing coffee automatically

◦ (61) dishwasher, dish washer, dishwashing machine
◦ (66) stove
◦ things used to open cans/bottles: can opener or corkscrew

◦ (67) can opener (tin opener)
◦ (68) corkscrew

◦ (69) cocktail shaker
◦ non-electric item commonly found in the kitchen: pot, pan, utensil, bowl, etc

◦ (70) strainer
◦ (71) frying pan (skillet)
◦ (72) bowl: a dish for serving food that is round, open at the top, and has no handles (please do not confuse with
a cup, which usually has a handle and is used for serving drinks)
◦ (73) salt or pepper shaker: a shaker with a perforated top for sprinkling salt or pepper
◦ (74) plate rack
◦ (75) spatula: a turner with a narrow flexible blade
◦ (76) ladle: a spoon-shaped vessel with a long handle; frequently used to transfer liquids from one container to
another

◦ (77) refrigerator, icebox
• furniture (including benches)

◦ (78) bookshelf: a shelf on which to keep books
◦ (79) baby bed: small bed for babies, enclosed by sides to prevent baby from falling
◦ (80) filing cabinet: office furniture consisting of a container for keeping papers in order
◦ (81) bench (a long seat for several people, typically made of wood or stone)
◦ (82) chair: a raised piece of furniture for one person to sit on; please do not confuse with benches or sofas, which
are made for more people
◦ (83) sofa, couch: upholstered seat for more than one person; please do not confuse with benches (which are made
of wood or stone) or with chairs (which are for just one person)
◦ (84) table

• clothing, article of clothing: a covering designed to be worn on a person’s body
◦ (85) diaper: Garment consisting of a folded cloth drawn up between the legs and fastened at the waist; worn by
infants to catch excrement
◦ swimming attire: clothes used for swimming or bathing (swim suits, swim trunks, bathing caps)

◦ (86) swimming trunks: swimsuit worn by men while swimming
◦ (87) bathing cap, swimming cap: a cap worn to keep hair dry while swimming or showering
◦ (88) maillot: a woman’s one-piece bathing suit

◦ necktie: a man’s formal article of clothing worn around the neck (including bow ties)
◦ (89) bow tie: a man’s tie that ties in a bow

◦ (90) tie: a long piece of cloth worn for decorative purposes around the neck or shoulders, resting under the shirt
collar and knotted at the throat (NOT a bow tie)

◦ headdress, headgear: clothing for the head (hats, helmets, bathing caps, etc)
◦ (87) bathing cap, swimming cap: a cap worn to keep hair dry while swimming or showering
◦ (91) hat with a wide brim
◦ (92) helmet: protective headgear made of hard material to resist blows

◦ (93) miniskirt, mini: a very short skirt
◦ (94) brassiere, bra: an undergarment worn by women to support their breasts
◦ (95) sunglasses

• living organism (other than people): dogs, snakes, fish, insects, sea urchins, starfish, etc.
◦ living organism which can fly

◦ (96) bee
◦ (97) dragonfly
◦ (98) ladybug
◦ (99) butterfly
◦ (100) bird

◦ living organism which cannot fly (please don’t include humans)
◦ living organism with 2 or 4 legs (please don’t include humans):

◦ mammals (but please do not include humans)
◦ feline (cat-like) animal: cat, tiger or lion

◦ (101) domestic cat
◦ (102) tiger
◦ (103) lion

◦ canine (dog-like animal): dog, hyena, fox or wolf
◦ (104) dog, domestic dog, canis familiaris
◦ (105) fox: wild carnivorous mammal with pointed muzzle and ears and a bushy tail (please do not
confuse with dogs)

◦ animals with hooves: camels, elephants, hippos, pigs, sheep, etc
◦ (106) elephant
◦ (107) hippopotamus, hippo
◦ (108) camel
◦ (109) swine: pig or boar
◦ (110) sheep: woolly animal, males have large spiraling horns (please do not confuse with antelope
which have long legs)
◦ (111) cattle: cows or oxen (domestic bovine animals)
◦ (112) zebra
◦ (113) horse
◦ (114) antelope: a graceful animal with long legs and horns directed upward and backward

◦ (115) squirrel
◦ (116) hamster: short-tailed burrowing rodent with large cheek pouches
◦ (117) otter
◦ (118) monkey
◦ (119) koala bear
◦ (120) bear (other than pandas)
◦ (121) skunk (mammal known for its ability fo spray a liquid with a strong odor; they may have a single
thick stripe across back and tail, two thinner stripes, or a series of white spots and broken stripes
◦ (122) rabbit
◦ (123) giant panda: an animal characterized by its distinct black and white markings
◦ (124) red panda: Reddish-brown Old World raccoon-like carnivore

◦ (125) frog, toad
◦ (126) lizard: please do not confuse with snake (lizards have legs)
◦ (127) turtle
◦ (128) armadillo
◦ (129) porcupine, hedgehog

◦ living organism with 6 or more legs: lobster, scorpion, insects, etc.
◦ (130) lobster: large marine crustaceans with long bodies and muscular tails; three of their five pairs of legs
have claws
◦ (131) scorpion
◦ (132) centipede: an arthropod having a flattened body of 15 to 173 segments each with a pair of legs, the
foremost pair being modified as prehensors
◦ (133) tick (a small creature with 4 pairs of legs which lives on the blood of mammals and birds)
◦ (134) isopod: a small crustacean with seven pairs of legs adapted for crawling
◦ (135) ant

◦ living organism without legs: fish, snake, seal, etc. (please don’t include plants)
◦ living organism that lives in water: seal, whale, fish, sea cucumber, etc.

◦ (136) jellyfish
◦ (137) starfish, sea star
◦ (138) seal
◦ (139) whale
◦ (140) ray: a marine animal with a horizontally flattened body and enlarged winglike pectoral fins with
gills on the underside
◦ (141) goldfish: small golden or orange-red fishes

◦ living organism that slides on land: worm, snail, snake
◦ (142) snail
◦ (143) snake: please do not confuse with lizard (snakes do not have legs)

• vehicle: any object used to move people or objects from place to place
◦ a vehicle with wheels

◦ (144) golfcart, golf cart
◦ (145) snowplow: a vehicle used to push snow from roads
◦ (146) motorcycle (or moped)
◦ (147) car, automobile (not a golf cart or a bus)
◦ (148) bus: a vehicle carrying many passengers; used for public transport
◦ (149) train
◦ (150) cart: a heavy open wagon usually having two wheels and drawn by an animal
◦ (151) bicycle, bike: a two wheeled vehicle moved by foot pedals
◦ (152) unicycle, monocycle

◦ a vehicle without wheels (snowmobile, sleighs)
◦ (153) snowmobile: tracked vehicle for travel on snow
◦ (154) watercraft (such as ship or boat): a craft designed for water transportation

◦ (155) airplane: an aircraft powered by propellers or jets
• cosmetics: toiletry designed to beautify the body

◦ (156) face powder
◦ (157) perfume, essence (usually comes in a smaller bottle than hair spray
◦ (158) hair spray
◦ (159) cream, ointment, lotion
◦ (160) lipstick, lip rouge

• carpentry items: items used in carpentry, including nails, hammers, axes, screwdrivers, drills, chain saws, etc
◦ (161) chain saw, chainsaw
◦ (162) nail: pin-shaped with a head on one end and a point on the other
◦ (163) axe: a sharp tool often used to cut trees/ logs
◦ (164) hammer: a blunt hand tool used to drive nails in or break things apart (please do not confuse with axe, which
is sharp)
◦ (165) screwdriver
◦ (166) power drill: a power tool for drilling holes into hard materials

• school supplies: rulers, erasers, pencil sharpeners, pencil boxes, binders
◦ (167) ruler,rule: measuring stick consisting of a strip of wood or metal or plastic with a straight edge that is used
for drawing straight lines and measuring lengths
◦ (168) rubber eraser, rubber, pencil eraser
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Fig. 9 Performance ofwinning entries in the ILSVRC2010-2014 com-
petitions in each of the three tasks (details about the entries and
numerical results are in Sect. 5.1). There is a steady reduction of error
every year in object classification and single-object localization tasks,
and a 1.9× improvement in mean average precision in object detection.
There are two considerations in making these comparisons. (1) The
object categories used in ISLVRC changed between years 2010 and
2011, and between 2011 and 2012. However, the large scale of the data

(1000 object categories, 1.2 million training images) has remained the
same, making it possible to compare results. Image classification and
single-object localization entries shown here use only provided train-
ing data. (2) The size of the object detection training data has increased
significantly between years 2013 and 2014 (Sect. 3.3). Section 6.1 dis-
cusses the relative effects of training data increase versus algorithmic
improvements

region proposals (Arbeláez et al. 2014) pretrained on PAS-
CAL VOC 2012 data are used to extract region proposals,
regions are represented using convolutional networks, and a
multiple instance learning strategy is used to learn weakly
supervised object detectors to represent the image.

In the single-object localization with provided data track,
the winning team was VGG, which explored the effect of
convolutional neural network depth on its accuracy by using
three different architectures with up to 19 weight layers with
rectified linear unit non-linearity, building off of the imple-
mentation of Caffe (Jia 2013). For localization they used
per-class bounding box regression similar to OverFeat (Ser-
manet et al. 2013). In the single-object localization with
external data track, Adobe used 2000 additional ImageNet
classes to train the classifiers in an integrated convolutional
neural network framework for both classification and local-
ization, with bounding box regression. At test time they used
k-means to find bounding box clusters and rank the clusters
according to the classification scores.

In the object detection with provided data track, the win-
ning team NUS used the RCNN framework (Girshick et al.
2013) with the network-in-networkmethod (Lin et al. 2014a)
and improvements of (Howard 2014). Global context infor-
mation was incorporated following (Chen et al. 2014). In the
object detection with external data track, the winning team
was GoogLeNet (which also won image classification with
provided data). It is truly remarkable that the same team was
able to win at both image classification and object detection,
indicating that their methods are able to not only classify the
imagebasedon scene informationbut also accurately localize
multiple object instances. Just like most teams participating
in this track,GoogLeNet used the image classification dataset
as extra training data.

5.2 Large Scale Algorithmic Innovations

ILSVRC over the past 5 years has paved the way for several
breakthroughs in computer vision.

The field of categorical object recognition has dramati-
cally evolved in the large-scale setting. Section 5.1 docu-
ments the progress, starting from coded SIFT features and
evolving to large-scale convolutional neural networks domi-
nating at all three tasks of image classification, single-object
localization, and object detection. With the availability of so
much trainingdata (alongwith an efficient algorithmic imple-
mentation andGPU computing resources) it became possible
to learn neural networks directly from the image data, with-
out needing to create multi-stage hand-tuned pipelines of
extracted features and discriminative classifiers. The major
breakthrough came in 2012 with the win of the SuperVision
team on image classification and single-object localization
tasks (Krizhevsky et al. 2012), and by 2014 all of the top
contestants were relying heavily on convolutional neural net-
works.

Further, over the past few years there has been a lot of
focus on large-scale recognition in the computer vision com-
munity . Best paper awards at top vision conferences in
2013 were awarded to large-scale recognition methods: at
CVPR 2013 to “Fast, Accurate Detection of 100,000 Object
Classes on a Single Machine” (Dean et al. 2013) and at
ICCV 2013 to “From Large Scale Image Categorization to
Entry-Level Categories” (Ordonez et al. 2013). Additionally,
several influential lines of research have emerged, such as
large-scale weakly supervised localization work of (Kuet-
tel et al. 2012) which was awarded the best paper award in
ECCV 2012 and large-scale zero-shot learning, e.g., (Frome
et al. 2013).
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