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INTRODUCTION



http://stat.columbia.edu/~.porbanz/UN3106S18.html
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What to expect

o This class is an introduction to machine learning.

¢ Topics: Classification; “learning”; basic neural networks; etc

Homework
¢ Programming + “theoretical” questions.

¢ All programming will be done in R.

What this class is not
¢ Applied.

The purpose of this class is to understand how some of
the most important machine learning methods work.
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T. Hastie, J. Friedman and R. Tibshirani:
"The Elements of Statistical Learning".

2nd Edition, Springer, 2009.

Available online.

The Elements of
Statistical Learning

Second Edition

D Springer

<— It’s much prettier inside.

Links to this book and other potentially useful references will be added to the class homepage as they become relevant. All of

these are optional; the relevant material are the course slides.
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¢ Euclidean space; vectors
e Scalar products
¢ Derivatives and gradients of functions

¢ Probability distributions and densities. Example:

P(y|x)=% o pol) =

e Gaussian distribution on R and RY

pY)P ()
p(x)

¢ (Eigenvalues and eigenvectors)

¢ Regression
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CLASSIFICATION

Problem setting

Classification methods subdivide data into several, distinct classes. More formally:
e Dataxy,xp,....
¢ Each observations falls into one of K categories (the classes).
¢ Learning task: Find a classification function

f:X—{1,....K}.

¢ Input of the learning problem: Correctly categorized examples X, . . ., Xj.

Approach
¢ Define:

1. A set of possible classification functions f (the hypothesis set).
2. A cost function which assumes a large value when mistakes are made.

» To find a good classifier, search the hypothesis class for the f which keeps costs as small
as possible.

¢ Different types of errors can be more or less expensive.
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CLASSIFICATION

Previous examples as classification problems

o USPS data: 10 classes (+ one “outlier class”)

¢ Cancer diagnosis: 4 classes

Face recognition

¢ Hard problem, but much recent progress.
¢ Deployable systems can now have around 90+% accuracy on people in their database.

e 1 class per person in data base + 1 class for “none of those”.

Fingerprint recognition
e Again: 1 class per person in data base + 1 class for “none of those”.
¢ Deployable systems have been available for ca. 15 years.

¢ Development of computer systems lead to reassessment of human error rates.
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1. Represent each object as a
point; axes = measurements
(— vector spaces)

2. Separate classes by hyperplane
(— scalar products)
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3. Define a function that measures how well the plane
separates classes; small values indicate a good fit.

4. Find “good” hyperplane by minimizing function
(— derivatives, gradients, Hessians, etc)
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1. Represent each object as a
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(— vector spaces)
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(— scalar products)
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. Define a function that measures how well the plane

separates classes; small values indicate a good fit.

. Find “good” hyperplane by minimizing function

(— derivatives, gradients, Hessians, etc)



PENDULUM

(WORK OF MARC DEISENROTH AND CARL EDWARD RASMUSSEN)

Task

Balance the pendulumn upright by moving the
sled left and right.

¢ The computer can control only the motion
of the sled.

e Available data: Current state of system
(measured 25 times/second).

Formalization

State = 4 variables (sled location, sled velocity, angle, angular velocity)
Actions = sled movements

The system can be described by a function

f: Sx A - S
(state, action) +— state
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ABOUT MACHINE LEARNING

Historical origins: Artificial intelligence and engineering
Machines need to...

e recognize patterns (e.g. vision, language)

¢ make decisions based on experience (= data)

¢ predict

¢ cope with uncertainty

Today

¢ There is no clear dividing line between machine learning and statistics anymore.

¢ Engineering aspects (such as software development and specialized hardware) have
become much more important as machine learning systems get deployed.

Modern applications: (A few) Examples

¢ medical diagnosis e recommender systems

e face detection/recognition e bioinformatics

¢ speech and handwriting recognition natural language processing

e web search e computer vision
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GAUSSIAN DISTRIBUTION

Gaussian density in one dimension 0
1 (x —p)? "
Pl o) i= e 3

e 1 =expected value of x, o2 = variance, o = standard deviation ®'

X—p

¢ The quotient measures deviation of x from its expected value ° = — =% ¢ 3
units of o (i.e. o defines the length scale)

Recall: Standard deviation around the mean

o Recall that the interval [x — o, v + o] (“one standard deviation™) always contains the
same amount of probability mass (ca. 68.27%), regardless of the choice of y and o.

e Similarly, the intervall [z — 20, u + 20] contains ~ 95.45% of the mass, and
4 — 30, 1+ 30] contains ~ 99.73%.
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Recall: Covariance
The covariance of two random variables X, X, is

Cov[X1,Xs] = E[(X; — E[X1])(X> — E[X2])] .
If X; = X, the covariance is the variance: Cov[X, X] = Var[X].
Covariance matrix
IfX = (Xi,...,Xm) is a random vector with values in R™, the matrix of all covariances
Cov[X1,Xi] -+ Cov[Xi, X
Cov[X] := (Cov[Xi, X])i,; = : :
Cov[Xp, X1] -+ Cov[Xm,Xm]
is called the covariance matrix of X.

Notation
It is customary to denote the covariance matrix Cov[X] by 3.
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Gaussian density in m dimensions
The quadratric function

X — 2
R Rl

is replaced by a quadratic form:

p(x;p, %) = \/ﬁ e~ (6=, 57 x - )

Covariance matrix of a Gaussian
If a random vector X € R™ has Gaussian distribution with density p(x; u, ), its covariance
matrix is Cov[X] = 3. In other words, a Gaussian is parameterized by its covariance.
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GAUSSIAN DENSITY: EXAMPLE
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CONTOUR LINES

Intersect density with a horizontal plane, draw intersection Each elliptical line is such a contour,
as a curve, and project it down onto the plane. for planes at different heights.

Contours and standard deviation
o Each ellipse consists of all points x € R? that satisfy the equation
<x, E*1x> =c for some fixed ¢ > 0 .

Changing c changes the size of the ellipse.

¢ The ellipses play the same role as intervals around the mean for 1D Gaussians: The ellipse
with <x, Z_1x> = 1 contains ~ 68.27% of the probability mass, etc.

e That is: The area within the ellipse given by <x, E_]x> = k corresponds to k standard
deviations.
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PARAMETRIC MODELS

Models

A model P is a set of probability distributions. We index each distribution by a parameter value
6 € T we can then write the model as

P:{P9|9€T}.

The set T is called the parameter space of the model.

Parametric model

The model is called parametric if the number of parameters (i.e. the dimension of the vector )
is (1) finite and (2) independent of the number of data points. Intuitively, the complexity of a
parametric model does not increase with sample size.

Density representation

For parametric models, we can assume that 7~ C R? for some fixed dimension d. We usually
represent each Py be a density function p(x|6).
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MAXIMUM LIKELIHOOD ESTIMATION

Setting
 Given: Data xy, . . ., x,, parametric model P = {p(x|0) |0 € T}.

¢ Objective: Find the distribution in 7P which best explains the data. That means we have to
choose a "best" parameter value 6.

Maximum Likelihood approach

Maximum Likelihood assumes that the data is best explained by the distribution in 7 under
which it has the highest probability (or highest density value).

Hence, the maximum likelihood estimator is defined as

O, 1= ¢ ey Xn|0
ML arg Ienea}r([’(xl Xu]0)

the parameter which maximizes the joint density of the data.

Peter Orbanz - Applied Data Mining
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ANALYTIC MAXIMUM LIKELIHOOD

The i.i.d. assumption

The standard assumption of ML methods is that the data is independent and identically
distributed (i.i.d.), that is, generated by independently sampling repeatedly from the same
distrubtion P.

If the density of P is p(x|6), that means the joint density decomposes as

n
[J(X[,. .- ’xﬂ) = H[J(xi|9)
i=1

Maximum Likelihood equation

The analytic criterion for a maximum likelihood estimator (under the i.i.d. assumption) is:

Vo (ITrtwlo)) =0

i=1

‘We use the "logarithm trick" to avoid a huge product rule computation.

Peter Orbanz - Applied Data Mining Not examinable.



Recall: Logarithms turn products into sums
log ([ T#) = > loa()

Logarithms and maxima
The logarithm is monotonically increasing on R .

Consequence: Application of log does not change the location of a maximum or minimum:

max log(g(y)) # max g(y) The value changes.
¥ ¥

arg max log(g(y)) = argmax g(y) The location does not change.
y ¥
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Likelihood and logarithm trick

n n n
O = argmax [ [ p(xi[0) = arg max log (i];[lp(inG)) = argmax ) _logp(xl0)

i=1 i=1

Analytic maximality criterion

" u v P(Xi [}
0= ng log p(xi|0) = Z —;(x(~|6|) )
i=1 i=1 !

Whether or not we can solve this analytically depends on the choice of the model!
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Model: Multivariate Gaussians
The model P is the set of all Gaussian densities on R with fixed covariance matrix X,

P ={s(.|n.2)|p R},
where g is the Gaussian density function. The parameter space is 7~ = RY.

MLE equation

‘We have to solve the maximum equation

n
> Vilogg(ilu, ) =0

i=1

for p.
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O—Zvul g\/m exp (2 5 (=57 - )
—ZV“(I g(m) “"g(e"p(_% (C=m 27 = m)))
-3W. (5 (@ —m 2 - m)) = —znjz—%xi - )

i=1 i=1

Multiplication by (—3) gives
n 1 n
0:2()@-—”) = ;1,:;2)@
= =

Conclusion
The maximum likelihood estimator of the Gaussian expectation parameter for fixed covariance

is
1 n
ﬂML = E Xi
= l

Peter Orbanz - Applied Data Mining Not examinable. 15



EXAMPLE: GAUSSIAN WITH UNKNOWN COVARIANCE

Model: Multivariate Gaussians
The model P is now
P={e(.|In, D) |p e R, T € Ag},
where A is the set of all possible d X d covariance matrices. The parameter space is
T = Rd X Ad.

ML approach

Since we have just seen that the ML estimator of ;o does not depend on 3, we can compute fiv.
first. We then estimate > using the criterion

n
Z Vs log g(xil fime, X) = 0

i=1

Solution
The ML estimator of X is
. 1 <&
Sme = — Z(Xi — fim) (i — fin)"

L
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ASSUMPTIONS AND TERMINOLOGY

In a classification problem, we record measurements X, X3, . . ..

‘We assume:
1. All measurements can be represented as elements of a Euclidean R
2. Each x; belongs to exactly one out of K categories, called classes. We express this using
variables y; € [K], called class labels:
yi=k <& "xjinclass k"

3. The classes are characterized by the (unknown!) joint distribution of (X, Y), whose
density we denote p(x,y). The conditional distribution with density p(x|y = k) is called
the class-conditional distribution of class k.

4. The only information available on the distribution p is a set of example measurements
with labels,
(;‘175’1)7 LR (inyyn) ;
called the training data.
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CLASSIFIERS

Definition
A classifier is a function
fiRT—>[K],

i.e. a function whose argument is a measurement and whose output is a class label.

Learning task

Using the training data, we have to estimate a good classifier. This estimation procedure is also
called training.

A good classifier should generalize well to new data. Ideally, we would like it to perform with
high accuracy on data sampled from p, but all we know about p is the training data.
Simplifying assumption

We first develop methods for the two-class case (K=2), which is also called binary
classification. In this case, we use the notation

ye{-1,+1} instead of ye{1,2}
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SUPERVISED AND UNSUPERVISED LEARNING

Supervised vs. unsupervised

Fitting a model using labeled data is called supervised learning. Fitting a model when only
Xy, ..., X, are available, but no labels, is called unsupervised learning.

Types of supervised learning methods
¢ Classification: Labels are discrete, and we estimate a classifier f : R — K],

e Regression: Labels are real-valued (y € R), and we estimate a continuous function
f : RY — R. This functions is called a regressor.
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Algorithm

1. On training data, fit a Gaussian into each class (by MLE).
Result: Densities g(X|ua, Xg) and g(x|ps, o)

2. Classify a new point x according to which density assigns larger value:

S +1 lfg(XLU/@:E@) >g(X|:u’@726)
b —1 otherwise

Resulting classifier
e Hyperplane if X=X = constant - diag(1, ..., 1) (“isotropic” Gaussians).

e Curved surface otherwise.
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DISCUSSION

Possible weakness
1. Distributional assumption.

2. Density estimates emphasize main bulk of data. Critical region for classification is at
decision boundary, i.e. region between classes.

Consequence

¢ Classification algorithms focus on class boundary.

o Technically, this means: We focus on estimating a good decision surface (e.g. a
hyperplane) between the classes; we do not try to estimate a distribution.

Our program in the following

» First develop methods for the linear case, i.e. separate two classes by a hyperplane.

¢ Then: Consider methods that do not require the decision surface (= the boundary between
classes) to be linear (= a straight line or plane).

¢ Dealing with more than two classes.

Peter Orbanz - Applied Data Mining



MEASURING PERFORMANCE: LOSS FUNCTIONS

Definition
A loss function is a function

L:[K] x [K] —>[0,00) ,
which we read as

L : (true class label y, classifier output f(x)) — loss value .

Example: The two most common loss functions

1. The 0-1 loss is used in classification. It counts mistakes:

(3, (x) = {‘1’ 2

2. Squared-error loss is used in regression:

L*(y,f(x) == |y = f(®)I3

Its value depends on how far off we are: Small errors hardly count, large ones are very
expensive.
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Motivation
It may be a good strategy to allow (even expensive) errors for values of x which are very
unlikely to occur

Definition
The risk R(f) of a classifier f is its expected loss under p. If you prefer equations:

K
RY) = B, [0 (] = [ L0 fDpx sty =3 [ Lo (. )a .
y=1

When we train f, we do not know p, and have to approximate R using the data:

The empirical risk R, (f) is the plug-in estimate of R(f), evaluated on the training sample
(ilz’}jl)v ey (in75}n):

Ra) = 3" LG fR)
i=1
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DEPENDENCE AND INDEPENDENCE

Recall

Two random variables are stochastically independent, or independent for short, if their joint
distribution factorizes:

P(x,y) = P(x)P(y) or  p(xy)=ppQ>)

Dependent means not independent.

Intuitively

X and Y are dependent if knowing the outcome of X provides any information about the
outcome of Y.

More precisely:

e If someone draws (X, Y) simultaneously, and only discloses X = x to you, does that
change your mind about the distribution of ¥'? (If so: Dependence.)

 Once X is given, the conditional distribution of Y is P(Y|X = x).

e If that is still P(Y = y), as before X was drawn, the two are independent. If
P(Y|X = x) # P(Y), they are dependent.
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INDEPENDENCE AS A MODELING ASSUMPTION

A few remarks

¢ Joint distributions of dependent variables can become very complicated. Dealing with
joint distributions of many variables is one of the hardest problems in statistics and
probability.

¢ The math almost always becomes easier if we assume variables are independent.

¢ On the other hand, assuming independence means we neglect all interactions between the
effects represented by the variables.

¢ When we design probability models, there is usually a trade-off between simplicity (e.g.
assuming everything is independent) and accuracy (trying to model all interactions
precisely).
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Simplest form
¢ Random variables X € X and Y € Y, where X, Y are finite sets.
¢ Each possible value of X and Y has positive probability.
Then
P(X =x,Y =y) = POIx)P(x) = P(x[y)P(y)
s e obuin PUPG) _ PEIIPO)
XYY XIY) Yy
P(ylx) = =
P(x) > yey PEY)PG)

It is customary to name the components,

. likelihood X prior
posterior = ———
evidence

In terms of densities
For continuous sets X and Y,
pEy)p(y) — pUly)p(y)

PO =T T FopGh)d
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Classification
We define a classifier as
f(x) := arg max P(y[x)
y€E[K]
where Y = [K] and X = sample space of data variable.
With the Bayes equation, we obtain

p( Y)P()
o)

If the class-conditional distribution is continuous, we use

f(x) = arg mgxp(XIy)P(y)

f(x) = arg = arg myaxp(XIy)P(y)
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Optimal classifier

o In the risk framework, the best possible Biij %615
classifier is the one which minimizes the i s g; RHS
risk. agfiinio o’
o o
¢ Which classifier is optimal depends on the 5 (gg" a 580 8 g
chosen cost function. 5 " Yongp 289 2 % \o o hiio
o 0:@ 20 & d
o 1;"(}% of 19 9
Zero-one loss s \ o, ) %0
Under zero-one loss, the classifier which T B 3'/
minimizes the risk is the classifier P00’ B o
E @::i§:i0
f(x) = argmax P(x|y) P(y) 6700% ©
y D o
from the previous slide. When computed from ’
the true distribution of (X, Y), this classifier is

called the Bayes-optimal classifier (or Bayes
classifier for short).
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BAYES-OPTIMAL CLASSIFIER

Suppose for simplicity we have to classes labeled “1” and “2”, so y € {1,2}.

f(x) = arg mgxp(XIy)P(y)

What do the terms mean?

P(y) = probability to observe class ¥ =y if we draw (X, Y) from p(x, y) and discard X.

Approximately, this is the probability that a training data point is labeled y if we draw it
uniformly from a very large training set (without looking at x).

If both classes are equally probable (in terms of training data: equally large), then
P(Y) = 3.

P(y|x): Fix a point x is space. What is the probability that a data point at this location
belongs to class y?

This is a number strictly between 0 and 1 if the classes “overlap” in space.

If classes are assumed equally large

J(x) = argmax p(x[y)P(y) = arg max p(xly) ; = arg maxp(x[y)

That means: The Bayes-optimal classifier is the one that assigns a point at location x to the class
whose probability at x is larger, e.g. to class 1 if P(1|x) > P(2|x).
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EXAMPLE: SPAM FILTERING

Representing emails
* Y = { spam, email }
« X =R{
o Each axis is labeled by one possible word.
¢ d =number of distinct words in vocabulary
e x; = number of occurrences of word j in email represented by x

For example, if axis j represents the term "the", x; = 3 means that "the" occurs three times in
the email x. This representation is called a vector space model of text.

Example dimensions

‘ george you your hp free hpl ! our re edu remove
spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

With Bayes equation

f) = argmax POIX) = argmax  p(xly)P(y)
y€{spam,email } y€{spam,email }
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Simplifying assumption
The classifier is called a naive Bayes classifier if it assumes

d
p(xly) = [ [ pixily)  forx = (xi,...,xa)
j=1

i.e. if it treats the individual dimensions of x as conditionally independent given y.

In spam example

¢ Corresponds to the assumption that the number of occurrences of a word carries
information about y.

¢ Co-occurrences (how often do given combinations of words occur?) is neglected.
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ESTIMATION

Class prior
The distribution P(y) is easy to estimate from training data:

#observations in class y

P(y) =

#observations

Class-conditional distributions
The class conditionals p(x|y) usually require a modeling assumption. Under a given model:

¢ Separate the training data into classes.

» Estimate p(x|y) on class y by maximum likelihood.

Class-conditional in the spam example
P(x]y) is a multinomial (= categorical distribution). It is estimated as:

# occurrences of word i in emails of class y

P(word i|y) =
( ) # occurrences of word 7 in all emails
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Definition
For two vectors x and y in R?, the scalar product of x and y is

d
(Xy) = xyiteAXyd = Y%y
=1

Note: (x,x) = ||x||%, so the Euclidean norm (= the length) of x is ||x|| = 1/(x, x).

Linearity
The scalar product is additive in both arguments,
x+zy) = xy)+(zy) ad (xy+z) =y + X2
and scales as
(c-x,y) =c-(x,y) = (x,¢-y) foranyc € R.

Functions that are additive and scale-equivariant are called linear, so the scalar product is linear
in both arguments.
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Recall: The cosine rule 0 9 v

If two vectors x and y enclose an angle 6, then

[Ix = 1> = [IxI* + lly[|* — 2 cos 6|x]y]
(If  is a right angle, then cos 6 = 0, and this becomes Pythogoras’ ||x — y||> = ||x||> + |ly]|*>)

Cosine rule for scalar products
It is easy to check that
12 4+ [Iy[I* = lIx = ¥II* = 2 (x,¥)
Substituting gives
2cos Ox|l[lyll = 2 (x,y)

and hence

_ _xy
Iyl
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Consequences of the cosine rule
The scalar product satisfies (x,y) = ||x]||||y|| if and only if x and y are parallel, and

(x,y) =0 if and only if x and y are orthogonal.

X2

Hyperplanes
A hyperplane in R? is a linear subspace of dimension
(d—-1).

« A hyperplane in R? is a line.

« A hyperplane in R is a plane.

1 ¢ A hyperplane always contains the origin, since it is

a linear subspace.
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X2

VH

X1

Hyperplanes

Consider a hyperplane H in R?. Think of H as a set
of points.

Each point x in H is a vector x € R
Now draw a vector vy that is orthogonal to H.

Then any vector x € R? is a point in H if and only
if x is orthogonal to vy.
Hence:

xXcH

& (x,vu) = 0.

If we choose vy to have length ||vu|| = 1, then vy
is called a normal vector of H.

H={xcR*| (x,vu) =0} .

Peter Orbanz - Applied Data Mining
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P Distance from the plane

g « The projection of x onto the direction of vy has length
(x, vu) measured in units of vy, i.e. length
cos 0 - x|l (X, V) /||vu|| in the units of the coordinates.

¢ By cosine rule: The distance of X from the plane is

<X, VH>

[[vall

d(x,H) = =cosf - x| .

Which side of the plane?

o The cosine satisfies cos 6 > 0iff 6 € (=3, 7).
¢ We can decide which side of the plane x is on using

sgn(cos 0) = sgn (X, vy) .
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Affine Hyperplanes

¢ An affine hyperplane Hy, is a hyperplane shifted by a
vector w,
Hy =H+w.

(That means w is added to each point x in H.)

e We choose w in the direction of vy, so

w=c-vy forsomec>0.
\ /
\
AN
S ¢ [lvall

Which side of the plane are we on?
e Which side of Hy a point X is on is determined by
sgn({x —w, va)) = sgn((x, Vi) — ¢ (vis, Vu1)) = sgn({x, vu1) — cl|vul|*) .
e If vy is a unit vector, we can use

sgn({x — w, v)) = sgn((x, V) —¢) .
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sgn((vu,x) —¢) >0

sgn((vi,x) —¢) <0
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LINEAR CLASSIFIERS

Definition

A linear classifier is a function of the form

Ju(x) := sgn((x,vu) —¢) ,

where vy € R? is a vector and ¢ € Ry.

Note:

¢ We usually assume vy to be a unit vector. If it is not, fi; still defines a linear classifier, but
¢ describes a shift of a different length.

« Specifying a linear classifier in R? requires d + 1 scalar parameters.

Definition
Two sets A, B € R? are called linearly separable if there is an affine hyperplane H which
separates them, i.e. which satisfies

(xove) — = <0 ifxcA
e “1>0 ifxeB

er Orbanz - Applied Data Mining
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o Recall that when data is represented by points in RY, each axis represents a quantity that is
measured (a “variable”).

o If there exists a single variable that distinguishes two classes, these classes can be
distinguished along a single axis.

X2

X1

~

o In this illustration, we could classify by a “threshold point” ¢ on the line.
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¢ Even if classes cannot be distinguished by a single variable, they may be distinguishable

by a combination of several variables.

e That is the case for linearly separable data. The threshold point along x; is now a function
of the threshold point along x,, and vice versa. Linearly separable also implies this
function is linear.

X2

separable by a single measurement

Peter Orbanz - Applied Data Mining
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MULTIPLE CLASSES



More than two classes

For some classifiers, multiple classes are natural. We have already seen one:
¢ Simple classifier fitting one Gaussian per class.

We will discuss more examples soon:
o Trees.

¢ Ensembles: Number of classes is determined by weak learners.
Exception: All classifiers based on hyperplanes.

Linear Classifiers

Approaches:
¢ One-versus-all (more precisely: one-versus-the-rest) classification.
¢ One-versus-one classification.

o Multiclass discriminants.
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C1
R3
Ca

not C;

not Cy
¢ One linear classifier per class.

o Classifies "in class k" versus "not in class k".
o This is a two-class classifier that defines:

o Positive class = Cy.
¢ Negative class = U;jxC;.

¢ Problem: Ambiguous regions (green in figure).

Applied Data Mining
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I@ in total).

¢ One linear classifier for each pair of classes (i.e.
¢ Classify by majority vote.

¢ Problem again: Ambiguous regions.
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MULTICLASS DISCRIMINANTS

Linear classifier

o Recall: Decision rule is f(x) = sgn((X, vu) — ¢)

¢ Idea: Combine classifiers before computing sign. Define

gk(X) 1= (X, Vi) — ¢

Multiclass linear discriminant

¢ Use one classifier g; (as above) for each class k.

e Trained e.g. as one-against-rest.

¢ Classify according to

J(x) := arg max{gx(x)}
o If gx(x) is positive for several classes, a larger value of g; means that x lies “further” into
class k than into any other class j.

o If g¢(x) is negative for all k, the maximum means we classify x according to the class
represented by the closest hyperplane.
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Problem

Peter Orbanz

¢ Multiclass discriminant idea: Compare distances to hyperplanes.
e Works if the orthogonal vectors vy determining the hyperplanes are normalized.

¢ For some of the best training methods for linear classifiers, that does not work well.

Applied Data Mining



OPTIMIZATION



MOTIVATION

Recall from classification

We “train” e.g. a linear classifier by finding the affine plane for which the empirical risk
defined by a given loss function becomes as small as possible.

This is an example of phrasing a problem as an “optimization problem”:

There is a real-valued function (here: the empirical risk) that measures how good a given
solution is.

We choose that solution for which this function is minimal.

More generally

A variety of problems in statistics, machine learning and data mining are phrased as
optimization problems:

Fitting a parametric model: Maximum likelihood

Training a classifier: Minimize an empirical risk under a given loss function
Linear regression: Minimize a least squares error

Sparse regression: Minimize a penalized least squares error

Training neural networks: Minimize an empirical risk; loss can be chosen for
classification or for regression task.
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TERMINOLOGY

Min and Argmin

minf(x) = smallest value of f(x) for any x
X

argminf(x) = value of x for which f(x) is minimal
X

Minimum with respect to subset of arguments

minf(x,y) = smallest value of f(x,y) for any x if y is kept fixed
X

Optimization problem
For a given function f : R? — R, a problem of the form

find x* := argminf(x)
X
is called an minimization problem. If arg min is replaced by arg mazx, it is a maximization

problem. Minimization and maximization problems are collectively referred to as
optimization problems.

Peter Orbanz - Applied Data Mining
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For any function f, we have

minf(x) = — max(—f(x)) and arg minf(x) = arg max(—f(x))
That means:
o If we know how to minimize, we also know how to maximize, and vice versa.

¢ We do not have to solve both problems separately; we can just generically discuss
minimization.
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Local and global minima
A minimum of f at x is called:
¢ Global if f assumes no smaller value on its domain.

e Local if there is some open interval (a, b) containing x such that f(x) is a global minimum
of f restricted to that interval.

Peter Orbanz - Applied Data Mining 58



Typical situation

o Given is a function f : RY — R.

¢ The dimension d is usually very large.
(In neural network training problems: Often in the millions.)

¢ We cannot plot or “look at” the function.

» We can only evaluate its value f(x) point by point.

One-dimensional illustration
Here, d = 1 (but keep in mind we are interested in very large d.)

)

The minimizer we are interested in is x*.
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e Our goal is to find x*.

¢ We can evaluate the function at points
of our choice, say x| and x;.

X1 x X2

e However, we cannot “see” the function.

o All we know are values at a few points.

X1 X2

Task

Based on the values we know, we have to:
o Either make a decision what x* is.

¢ Or gather more information, by evaluating f at additional points. In that case, we have to
decide which point to evaluate next.
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o We will first consider how we would proceed if we had access to the entire function in a
small neighborhood around each of the points xj,x3, . . ., i.e. if we could see something

like this:

X1 x2

To this end, we discuss the concept of a derivative.

¢ We then consider what we can actually implement on a computer, given that we only have
access to point-wise information:

Rt *
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Observation
¢ Each time we zoom in, the curve looks more like a straight line.

¢ If we zoom in far enough, we can replace the curve in a small area around the marked
point by a straight line.

¢ In mathematical jargon, that is called an approximation: We replace the curve around the
marked point by a surrogate curve. If that surrogate is a straight line (i.e. a linear
function), it is a linear approximation.
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Z0OOMING IN ON A SMOOTH FUNCTION

f&)

A counter example

¢ Not every function has this property.

e Here, we consider the absolute value function
f(x) = |x|, and zoom in on the point x = 0.

¢ In this case, the shape of f never seems to change.

¢ Note this would be different if we had picked any
other point than x = 0.

We observe

¢ Whether a function is “locally straight” is a
property that may be true at some points, but not at
others.

¢ Clearly it matters whether the function is “smooth”
around the point we focus on.
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x r — ¢ T T +c

¢ We consider a function (blue) and approximate it at a point x by a straight line (red).

¢ To measure how good the approximation is, we fix a constant ¢ > 0 and enclose x in the
interval [x — ¢, x + .

¢ On this interval, we compute the area between the two functions (shaded in gray).
Suppose this area is A(x, c).

o Of course, A(x, ¢) will grow if we make c¢ larger. To make the area comparable for
different values of ¢, we use the relative approximation error

o) = A(x,¢) :A(x,c)
©) [[x—c,x+ ]| 2¢
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APPROXIMATING BY A STRAIGHT LINE

S
__— //

—_— —_— —_—
[z — 1,2+ 1] [z — 5,2+ 3] [z— 4,2+ 1)

¢ Now consider what happens if we zoom in, by making ¢ smaller and smaller.
o If the function is smooth, we observe the relative error becomes smaller each time.

¢ The function can be approximated by the line to arbitrary precision, that is: If we are
permitted any error € > 0, we can always find a small enough ¢ such that r(¢) < e.

¢ In this sense, the linear approximation (= approximation by a straight line) is locally exact.

o If a straight line can be chosen for f and x such that the relative approximation error can
be made arbitrarily small by making the intervall sufficiently small, then f is called
differentiable at x.
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Now try the same for the absolute value function:
¢ Approximate it at x = 0 by a horizontal line.
¢ Here, the relative error around x = 0 remains the same regardless of how we choose c.

¢ We could also use an approximating line with a different slope, and would encounter the
same problem.

e Thus, |x] is not differentiable at x = 0 (although it is differentiable at every other point x).
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b=

o If f is differentiable at x, there is a unique approximating line at x for which the relative
error is minimal as ¢ gets smaller.

¢ We can measure the slope of this line by substracting its values at x 4+ 1 and x.
» We denote this slope by f/(x) and call it the derivative of f at x.

o If f is differentiable at every point x, we can compute the value f/(x) at every point, so f’
is again a function. In general, it takes different values at different points x.
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o If f increases around x, then f/(x) > 0. If f decreases, then f (x) < 0.

¢ Recall that we are interested in finding minima and maxima. If f is differentiable at x and
x is a local minimum or maximum, the approximating line is horizontal:

f)

X*

That means: At a (differentiable) maximum or minimum x*, we have f’(x*) = 0.
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x T+ r T+ co

We fix a constant ¢ > 0 and draw a straight line through the points (x, f(x)) and
(x4 ¢,f(x+ ¢)). The slope of that line is
flrte) —f(x)
c

Now make ¢ smaller and smaller: Choose ¢; > ¢, > ..., for example ¢, = i

‘We then ask what happens as ¢ gets infinitely small, i.e. we try to find the limit
o fG e /()
n—o0 Ccn
If f is differentiable, this limit exists, and its slope is exactly that of the best possible linear
approximation. That is, the limit is f/ (x).
If the limit does not exist, f is not differentiable at x.
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The derivative of a function f at a point x is the the slope of the locally best linear
approximation to f around x.

If you are not familiar with calculus, keep in mind:
o The derivative f/(x) exists if f is “sufficiently smooth” at x.

¢ Sign: The derivative is positive if f increases at x, negative if it decreases, and 0 if f is a
maximum or minimum.

e Magnitude: The absolute value | f/(x)] is the larger the more rapidly f changes around x.
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Recall that we had asked: How can would we find a minimum if we had access to the entire
function in a small neighborhood around points x, xp, . . . that we are allowed to choose?

[T

X1

« If we can compute the derivatives f/(x;) and f” (x2), we have (the slope of) linear
approximations to f at both points that are locally exact.

e That is: We can substitute the derivatives for the two short blue lines in the figure.
¢ We can tell from the sign of the derivative in which direction the function decreases.

o We also know that f’(x) = 0 if x is a minimum.
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MINIMIZATION STRATEGY

Basic idea
Start with some point xo. Compute the derivative f’(xo) at x. Then:

e “Move downhill”: Choose some ¢ > 0, and set x; = xo + ¢ if f'(x9) < 0 and
X =Xxp—¢C iff/(xo) > 0.

e Compute f/(x1). If it is O (possibly a minimum), stop.

e Otherwise, move downhill from x, etc.

Observations

o Since the sign of f/ is determined by whether f increases or decreases, we can summarize
the case distinction above by setting

x1 = xo — sign(f'(x0)) - ¢

o If f changes rapidly, it may be a good strategy to make a large step (choose a large c), since
we presumably are still far from the minimum. If f changes slowly, ¢ should be small.

« One way of doing so is to choose c as the magnitude of f/, since |f/| has exactly this
property. In that case:

x1 = xo — sign(f’ (x0)) - |f' (x0)| = x0 — f" (x0)

The algorithm obtained by replying this step repeatedly is called gradient descent.
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Gradient descent searches for a minimum of a differentiable function f.

Algorithm
Start with some point xy € R and fix a precision € > 0.
Repeat forn = 1,2, .. .:
1. Check whether | f’(x,)| < e. If so, report the solution x* := x, and terminate.

2. Otherwise, set
X1 = X — [ (o)

f(x)

I'(x)
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DERIVATIVES IN MULTIPLE DIMENSIONS

)

¢ We now ask how to define a derivative in multiple dimensions.
o Consider a function f : RY — R. What is the derivative of f at a point x?

¢ For simplicity, we assume d = 2 (so that we can plot the function).

Peter Orbanz - Applied Data Mining
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DERIVATIVES IN MULTIPLE DIMENSIONS

X2 f(x)

X1

o We fix a point x = (x,x;) in R?, marked red above.

e We will try to turn this into a 1-dimensional problem, so that we can use the definition of a
derivative we already know.
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REDUCING TO ONE DIMENSION

X2

/x
X+

_l’_

X1

¢ To make the problem 1-dimensional, fix some vector v € R, and draw a line through x in
direction of v.

¢ Then intersect f with a plane given by this line: In the coordinate system of f, choose the
plane that contains the line and is orthogonal to R?.

¢ The plane contains the point x.

¢ Note we can do that even if d > 2. We still obtain a plane.
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REDUCING TO ONE DIMENSION

X2

/'x
Hx +v

X1

¢ To make the problem 1-dimensional, fix some vector v € R, and draw a line through x in
direction of v.

¢ Then intersect f with a plane given by this line: In the coordinate system of f, choose the
plane that contains the line and is orthogonal to R?.

¢ The plane contains the point x.

¢ Note we can do that even if d > 2. We still obtain a plane.
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¢ The intersection of f with the plane is a 1-dimensional function fz, and x corresponds to a
point x in its domain.

¢ We can now compute the derivative f1f1 of fi at xy. The idea is to use this as the derivative
of f at x.
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X1

¢ In the domain of f, we draw a vector from x in direction of H such that:
1. The vector is oriented to point in the direction in which fg increases.
2. Its length is the value of the derivative f}; (x).

¢ That completely determines the vector (shown in red above).

o There is one problem still to be solved: fy depends on H, that is, on the direction of the
vector v. Which direction should we use?
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;_\ |

X2

X2

X1

¢ We now rotate the plane H around x. For each position of the plane, we get a new

X1

derivative f};(x), and a new red vector.

» We choose the plane for which f}; is largest:

Provided that fy is differentiable for all H, one can show that this is always unique (or

f#(x) is zero for all H).

H* :=arg max  f(x)

all rotations of H'

¢ We then define the vector

Vf(x) := vector given by H* as above

The vector Vf(x) is called the gradient of /" at x.

Peter Orbanz - Applied Data Mining
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The gradient Vf(x) of f : R? — R at a point x € R? is a vector in the domain R? in the
direction in which f most rapidly increases at x.

¢ The length of the gradient measures steepness: The more rapidly f increases at x, the
larger [[V/ (x)]].

¢ The gradient has length 0 if x is a maximum or minimum of . A constant function has
gradient of length O at every point x.

¢ The gradient operation is linear:

V(af(x) + Bg(x)) = aVf(x) + BVg(x)
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¢ Recall that a contour line (or contour set) of f is a set of points along which f remains
constant,
Clf,c] == {x e RY|f(x) = ¢} for some ¢ € R.

 One can show that if C[f, c] contains x, the gradient at x is orthogonal to the contour:
Vf(x) L C[f,c] ifx e C[f,c].

« Intuition: The gradient points in the direction of maximal local change, whereas C|f, c| is
a direction in which there is no change. Locally, these two are orthogonal.

Gradients are orthogonal to contour lines.
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¢ For this parabolic function, all contour lines are concentric circles around the minimum.

¢ The picture above shows the gradients plotted at various points in the plane.
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Algorithm
Start with some point xp € R and fix a precision € > 0.
Repeat forn =1,2,...:
1. Check whether || Vf(x,)|| < e. If so, report the solution x* := x,, and terminate.

2. Otherwise, set

St = X — Vf ()
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R SR

Algorithm
Start with some point xop € R and fix a precision € > 0.
Repeatforn = 1,2,...:
1. Check whether || Vf(x,)|| < e. If so, report the solution x* := x, and terminate.
2. Otherwise, set
Xp41 1= Xp — a(n)Vf(xn)

Here, a(n) > 0 is a coefficient that may depend on n. It is called the step size in optimization,
or the learning rate in machine learning.
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GRADIENT DESCENT AND LOCAL MINIMA

[ . e , .
3 =2 -1

Peter Orbanz

¢ Suppose for both functions above, gradient descent is started at the point marked red.
o It will “walk downhill” as far as possible, then terminate.

¢ For the function on the left, the minimum it finds is global. For the function on the right, it
is only a local minimum.

Since the derivative at both minima is 0, gradient descent cannot detect whether they are
global or local.

For smooth functions, gradient descent finds local minima. If the function is complicated,
there may be no way to tell whether the solution is also a global minimum.

Applied Data Mining
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OUTLOOK

Summary so far
e The derivative/gradient provides local information about how a function changes around a
point x.

¢ Optimization algorithms: If we know the gradient at our current location x, we can use this
information to make a step in “downhill” direction, and move closer to a (local) minimum.

What we do not know yet
That assumes that we can compute the gradient. There are two possibilities:

» For some functions, we are able to derive Vf (x) as a function of x. Gradient descent can
evaluate the gradient by evaluating that function.

o Otherwise, we have to estimate Vf(x) by evaluating the function /" at points close to x.

For now, we will assume that we can compute the gradient as a function.
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RECAP: OPTIMIZATION AND LEARNING

Given
e Training data (X1,31), ..., (X, Yn)-

The data analyst chooses

e A class H of possible solutions (e.g. H = all linear classifier).

e A loss function L (e.g. 0-1 loss) that measures how well the solution represents the data.

Learning from training data

¢ Define the empirical risk of a solution f € H on the training data,
1 n
Ra(f) =~ > LX), 51)
i=1

¢ Find an optimal solution f* by minimizing the empirical risk using gradient descent (or
another optimization algorithm).
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We want to determine a linear classifier in R? using 0-1 loss.

Recall

¢ A solution is determined by a normal vy; € R4 and an offset ¢ > 0.

e For training data (X;,531), . . . , (X1, )., the empirical risk is
1 n
Ru(va, ) = -~ D " sen((vu, x))) — ¢) # yi}
i=1

 The empirical risk minimization approach would choose a classifer given by (v};, ¢*) for
which .
(v, €*) = arg min R, (vu, ¢)
VH,C

Idea

Can we use gradient descent to find the minimizer of 1?,,?
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PROBLEM

Example

In the example on the right, the two dashed classifiers both
get a single (blue) training point wrong. e

Both of them have different values of (vy, ¢), but for both of o NI
these values, the empirical risk is identical. . SN

Suppose we shift one of the to dashed lines to obtain the : \
dotted line. On the way, the line moves over a single red o o M
point. The moment it passes that point, the empirical risk o o
jumps from % to % [

Conclusion A
Consider the empirical risk function Ry (vy, ¢):

e If (vu, ¢) defines an affine plain that contains one of the training points, i?,, is
discontinuous at (vy, ¢) (it “jumps”). That means it is not differentiable.

o At all other points (vy, ¢), the function is constant. It is differentiable, but the length of
the gradient is 0.

Peter Orbanz - Applied Data Mining
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The empirical risk of a linear classifer under O-1 loss is piece-wise constant.

Peter Orbanz - Applied Data Mining
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CONSEQUENCES FOR OPTIMIZATION

Formal problem

Even if we can avoid points where R, jumps, the gradient is always 0. Gradient descent never
moves anywhere.

Intuition
« Remember that we can only evaluate local information about R, around a given point
(va, c).
e In every direction around (vy, ¢), the function looks identical.

¢ The algorithm cannot tell what a good direction to move in would be.

¢ Note that is also the case for every other optimization algorithm, since optimization
algorithms depend on local information.

Solution idea
Find an approximation to R, that is not piece-wise constant, and decreases in direction of an
optimal solution. We try to keep the approximation as simple as possible.
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We replace the empirical risk Ry, (i, ¢) = % i1 I{sgn((vu, X;)) — ¢) # yi} by the
piece-wise linear function

measures distance to plane

—_——
n

Su(v,0) = % D Hsen((vi, %)) —¢) # i} - | (v, %) —¢]

i=1

“switches off” correctly classified points

Sy is called the perceptron cost function.
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Training
 Given: Training data (X1,51), - - - , (Xn, n)-

¢ Training: Fix a precision € and a learning rate o, and run gradient descent on the
perceptron cost function to find an affine plane (v;;, ¢*)

 Define a classifier as f(x) := sgn({va, X) — ¢).
(If the gradient algorithm returns ¢ < 0, flip signs: Use (—v;;, —c*).)

Prediction
o For a given data point x € RY, predict the class label y := f(x).

This classifier is called the perceptron. It was first proposed by Rosenblatt in 1962.
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One can show that the gradient of the cost function is
n ~
N - -y o~ (X
TSu(vsc) = — SOHFR) # i} - (1) .
i=1

This is an example of gradient descent where we do not have to approximate the derivative
numerically. Gradient descent steps then look like this:

(k+1) (k) %
V, |V ~ [ Xi
<c?k+1)> = <C?k)> o> (1)

i|X; misclassified
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(k+1) (k) %
v, |V ~ [ Xi
62)-(8) 2 50

i|X; misclassified

Effect for a single training point

Step k: X (in class -1) classified incorrectly Stepk + 1
Hk X o X
Vi
vE—x Ve kg

Simplifying assumption: H contains origin, so ¢ = 0.
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DOES THE PERCEPTRON WORK?

Theorem: Perceptron convergence

If the training data is linearly separable, the Perceptron learning algorithm (with fixed step size)
terminates after a finite number of steps with a valid solution (vy, ¢) (i.e. a solution which
classifies all training data points correctly).

Issues
The perceptron selects some hyperplane between the two classes. The choice depends on
initialization, step size etc.

The solution on the right will probably predict better than the one on the left, but the perceptron may return either.
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A classifier is a piece-wise constant function, which means it “jumps” at the decision boundary:

¢ We had already noted that that is inconvenient for optimization: The function is either
constant (optimization algorithms cannot extract local information) or not differentiable.

¢ The function does not distinguish between points close to and far from the boundary. That
allows e.g. the perceptron to place the decision boundary very close to data points.

Idea
‘We replace the piece-wise constant function by a smooth function that otherwise looks similar.
There is a canonical way of doing so, called logistic regression.

Keep in mind: Logistic regression is a classification method.

Peter Orbanz - Applied Data Mining 102



Sigmoid function

1.0
0.8
o(x) = ! o
1 +e* .
0.2
~10 -5 5 10
Note 10
08
l+e ™ — 1 1
l—o(x) = lter e+l =o(—x) 06
0,
Derivative -
X -10 -5 5 10
(x) m =o(x) (1 —o(x))

Sigmoid (blue) and its derivative (red)
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¢ In linear classification: Decision
boundary is a discontinuity

« Boundary is represented either by 06
indicator function I{e > c} or sign
function sign(e — ¢)

o These representations are equivalent: 02
Note sign(e —c¢) =2 -I{e > c} — 1

The most important use of the sigmoid function in machine learning is as a smooth
approximation to the indicator function.

Given a sigmoid o and a data point x, we decide which side of the approximated boundary we
are own by thresholding

o(x) >

N =
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We can add a scale parameter by definining

og(x) :==o(Ox) = for € R

1 —e 0

08
0.6
04

02

Influence of 0
¢ As 6 increases, oy approximates I more closely.

¢ For 8 — oo, the sigmoid converges to I pointwise, that is: For every x # 0, we have

og(x) = I{x > 0} as @ — 4o0 .

» Note 09(0) = % always, regardless of 6.
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So far, we have considered R, but linear classifiers usually live in RY.

The decision boundary of a linear classifier in We can “stretch” o into a ridge function on R?:
R? is a discontinuous ridge:

o This is a linear classifier of the form e This is the function
X = (x1,%2) — o(x1).
I{(v,x) — c}.

o The ridge runs parallel to the x-axes.
e Here: v=(1,1)andc = 0.

« If we use o(x) instead, we rotate by 90
degrees (still axis-parallel).
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Just as for a linear classifier, we use a normal vector v € RY.

The function o ((v,x) — ¢) is a sigmoid ridge, where the ridge is orthogonal to the normal
vector v, and c is an offset that shifts the ridge “out of the origin”.

« The plot on the right shows the normal vector (here: v = (1, 1)) in black.

o The parameters v and ¢ have the same meaning for I and o, that is, o ((v,X) — ¢)
approximates I{(v,x) > c}.

Peter Orbanz - Applied Data Mining 107



Logistic regression is a classification method that approximates decision boundaries by
sigmoids.

Setup

¢ Two-class classification problem

e Observations Xi, . .., X, € RY, class labels y; € {0,1}.

The logistic regression model
‘We model the conditional distribution of the class label given the data as

P(y|x) := Bernoulli(a({v,x) — c)) .

 Recall o((v,x) — c) takes values in [0, 1] for all 6, and value % on the class boundary.

¢ The logistic regression model interprets this value as the probability of being in class y.
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Since the model is defined by a parametric distribution, we can apply maximum likelihood.

Likelihood function of the logistic regression model
[Tottv. %) —epi(1 = (o (v %) =)™
i=1

Negative log-likelihood

L(w) = —Z(yiloga((v,f(i)—6)+(1—yi)log(l—0(((V,ii)—6))))

i=1
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MAXIMUM LIKELIHOOD

Note
¢ Each training data point x; contributes to the sum proportionally to the approximation

error o ({v,X;) — ¢) — y; incurred at x; by approximating the linear classifier by a
sigmoid.

Learning logistic regression

To learn a logistic regression classifier from training data, we minimize L(v, ¢) using
gradient descent or another optimization algorithm.

o The function L is convex (= U-shaped). That means there is only a single local minimum,
which is also the global minimum.

¢ FYI: You may encounter an algorithm called iteratively reweighted least squares for
training logistic regression in the literature. The algorithm is obtained by applying a more
sophisticated version of gradient descent (called Newton’s method) to minimize L.
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LOGISTIC REGRESSION FOR MULTIPLE CLASSES

Bernoulli and multinomial distributions

¢ The mulitnomial distribution of N draws from K categories with parameter vector
(01,-..,0k) (where 3, - 6 = 1) has probabililty mass function

n£
P(my,...,mkl0y,...,0k) = ——— H 6, where my = # draws in category k
il mg! L1
» Note that Bernoulli(p) = Multinomial(p, 1 — p; N = 1).

Logistic regression
 Recall two-class logistic regression is defined by P(Y|x) = Bernoulli(c((v,x) — ¢)).

o Idea: To generalize logistic regression to K classes, choose a separate weight vector vy
and offset ¢y, for each class k, and define P(Y|x) by

Multinomial (& ((vi,x) — c1), ..., &((Vk,X) — cx))

where & ((vi,X) — cx) = 7 ((Vi,X) —cx)

= W This definition ensures the &-values add up

to 1 over all classes.
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LOGISTIC REGRESSION FOR MULTIPLE CLASSES

Logistic regression for K classes
The label y now takes values in {1,...,K}.

K

P(y|x) =H (Vi, X) — cp)HO=K

The negative log-likelihood becomes

L(vi,er,-. o, Vkck) = — > Hy=k}loga((vi, %) — cx)
i<n, k<K

This can again be optimized numerically.
Comparison to two-class case

e Recall that 1 — o(x) = o(—x), and
Bernoulli(p) = Multinomial(p, 1 — p) (with N = 1 draws)

e That means
Bernoulli (o({v,x) — ¢)) = Multinomial (o ((v,x) — ¢, 0 ({(—v,X) + ¢))

¢ That is: Two-class logistic regression as above is equivalent to multiclass logistic
regression with K = 2 provided we choose wy, = —wj.
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MAXIMUM MARGIN CLASSIFIERS



Setting

Linear classification, two linearly separable classes.

Recall Perceptron

¢ Selects some hyperplane between the two classes.

¢ Choice depends on initialization, step size etc.

Maximum margin idea

To achieve good generalization (low prediction error), place the hyperplane “in the middle”
between the two classes.

More precisely

Choose plane such that distance to closest point in each class is maximal. This distance is called
the margin.
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GENERALIZATION ERROR

Good generalization under a specific distribution

Possible Perceptron solution (here: Gaussian)

Example: Gaussian data

e The ellipses represent lines of constant standard deviation (1 and 2 STD respectively).

Maximum margin solution

® The 1 STD ellipse contains ~ 68.3% of the probability mass (~ 95.5% for 2 STD; ~ 99.7% for 3 STD).

Optimal generalization: Classifier should cut off as little probability mass as possible from
either distribution.

Without distributional assumption: Max-margin classifier

¢ Philosophy: Without distribution assumptions, best guess is symmetric.

¢ In the Gaussian example, the max-margin solution would not be optimal.
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NEXT: TWO TOOLS

Convex sets

¢ There is an inherent relationship between linear classification and a geometric property of
shapes called convexity.

¢ Convex shapes have very useful properties, and we can use those for classification.

Constrained optimization

¢ The optimization problems we have considered before asked: What is the value of x for
which f(x) is as small as possible?

¢ A constrained optimization problem asks: Among all x which satisfy the property, which
value makes f (x) as small as possible?

¢ We use that to formulate the maximum margin problem as: Among all classifiers that
separate the two classes, which one makes the margin as large as possible?
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Definition

A set A C R? is called convex if, for every two points X,y € A, the straight line connecting x
and y is completely contained in A.

Examples

convex convex not convex
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Extreme points

Let A be a convex set and x € A. If x can be removed from A and A \ {x} is still convex, then x
is called an extreme point of A.

Examples

Extreme points are marked black.

finitely many extreme points infinitely many extreme points removing a point from the straight part of
the boundary would leave a “hole”, and
the set would not be convex anymore.

Informally

o If all segments of the boundary are straight lines or planes, the extreme points are exactly
the “corner points” of the set.
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Definition

If C is a finite set of points in R?, the convex hull conv(C) of C is the smallest convex set that
contains all points in C.

Note
 Each extreme point of conv(C) is a point in the original set C.

o The convex hull is uniquely determined by C. (Every other convex in R? either contains
conv(C), or does not contain all points in C.)

¢ Think of the convex hull as the shape we get by connecting the “outer” point of C.

¢ The importance of the convex hull for classification is that it defines which points in each
training class are “outer” points (namely those which are extreme points of the convex
hull).
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Observation

Where a separating affine plane may be placed depends on the "outer" points of the sets. Points
in the center do not matter.

In geometric terms
Substitute each class by its convex hull:
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Key idea
There is an inherent relationship between convexity and linear classification: An affine plane
separates two classes if and only if it separates their convex hulls.

Next

‘We have to formalize what it means for a hyperplane to be "in the middle" between two classes.
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Definition

The distance between a point x and a set A the Euclidean distance between x and the closest
point in A:
d(x,A) := min ||x —
(%.4) 1= min |x — y]

In particular, if A = H is a hyperplane, d(x, H) := néllril [Ix =yl
y
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The margin of a classifier hyperplane H given two training classes is the shortest distance
between the plane and any point in either set:

margin = min  d(x,H)
X€ training data

Equivalently: The shortest distance to either of the convex hulls.

Idea in the following: H is "in the middle" when margin maximal.
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MAXIMUM MARGIN PROBLEM

Basic problem
We want to find the affine plane H(v, ¢) that maximizes the distance to both data sets:

maximize d(H(v, c), training data) over all v, ¢

Problem: The optimization algorithm can just move the plane further and further away from the
data. We have to make sure H is “between the classes”.

Maximum margin optimization problem
The problem we actually solve is
maximize d(H(v,c), training data) over all v, ¢
such that H(v, c) separates the training data classes
‘We can express that as:
maximize d(H(v,c), training data) over all v, ¢
such that y;sgn((v,X;) —c¢) >0

This is an example of a so-called constrained optimization problem.
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CONSTRAINED OPTIMIZATION

Recall that a basic optimization problem searches for an argmument x* that makes f'(x*)) as
small as possible.

Contstrains
Suppose we fix some property of x that is either true or false (e.g. “x > 0”). The problem

among all x that satisfy the property, find the one that makes f as small as possible

is called a constrained optimization problem. The property is called the constrained.

Customary notation

If we call the property A, say, this is often written as:

minimize  f(x)

subject to  x satisifies A
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How CONSTRAINED PROBLEMS ARE SOLVED

Idea
¢ An optimization algorithm tries to make f as small as possible.
¢ We have exclude values of x that violate the constraint.

¢ Solution: Change the function f so that it is very large at values x that should be excluded.

Implementation

e Choose a function 3(x) that is very large for all x that violate the constraint, and 0 at those
x that are permitted.

e Add S tof: Minimize f + (3 instead of f.

¢ Remember: We should not introduce jumps, so g should transition smoothly from 0 to
“very large”.

For example
Say we want to minimize f. For another function g, we impose the constraint g(x) < 0.

minf(x) st g(x) <0
The constraint g(x) < 0 be expressed as an indicator function of g(x) > 0:
minf(x) + const. - Ijg o0y (8(x))

The constant must be chosen large enough to enforce the constraint.
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Choice of the function we add ()

¢ The indicator function jumps, which we know is
not useful for optimization. We replace it by a
smooth function. Bi(x) Tjo,00) (*)

e A common choice is

Bi(x) :== —% log(—x) . %

In the example above
To solve min f(x) subject to g(x) < 0, we apply gradient descent to

)+ Bi(g(x)) -

The value ¢ is a “tuning parameter” of the optimization method.
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Remarks
« If the constraint changes (e.g. to “g(x) > —3”), it is easier to modify g than to tinker with
8.

¢ The method above is an example of a principle we have seen before: We express what we
want to do in terms of an indicator function, then replace it by something smooth, and
apply graident descent.

¢ Data mining, statistics and machine learning are only a few examples of applications of
constrained optimization methods. Much of the research on constrained optimization is
driven by operations research and financial engineering.
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SUPPORT VECTOR MACHINE

Maximum margin optimization problem
For n training points (X;, ;) with labels 3; € {—1, 1}, solve optimization problem:
maximize d(H(v,¢), {X1,...,%n})

s.t. yi((va, Xi) —¢) >0 fori=1,...,n

e The first line says: Make sure the plane is a far away from every data point as possible.

e The second line says: Only planes that classify the training data correctly are permitted.

Remarks

¢ The classifier obtained by solving this optimization problem is called a support vector
machine.

o If training data is separable: There is a unique solution (in contrast to the perceptron,
whose solution is not unique).
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Definition

Those extreme points of the convex hulls which
are closest to the hyperplane are called the
support vectors.

There are at least two support vectors, one in
each class.

Implications

¢ The maximum-margin criterion focuses all attention to the area closest to the decision
surface.

¢ One can show that the computational cost of solving the optimization problem grows
quadratically in the number of data points.
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SUPPORT VECTOR MACHINES

Advantages
e The SVM often works well for high-dimensional classification.

e It can be generalized to non-linear decision boundaries using a method called the kernel
trick.

¢ It can also be generalized to overlapping classes.

Disadvantages

¢ The quadratic training cost means SVMs cannot be trained on very large data sets.
The support vector machine (with kernel trick) is, aside from a method called a random forest,

probably the most widely used classifier for non-vision/audio data. For vision and audio data,
neural networks dominate applications.
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NEAREST NEIGHBOR CLASSIFICATION



NEAREST NEIGHBOR ALGORITHM

Given: Training data (X1,51), - .., (Xn, n).
m-nearest neighbor rule
Fixm € N.
Classify data point X as:
1. Find m training data points that are closest to x in RY.

2. Assign x to the class the majority of these m points belong to.

Remarks
e Works for any number of classes.

e For two classes, m is usually chosen as an odd number to avoid ties. For more than two
classes, one has to decide on a tie-breaking strategy in case no single class produces a
majority (e.g. choose one of the classes that are in majority at random).

¢ There is no training algorithm. The training data is used directly to compute the
prediction.

Peter Orbanz - Applied Data Mining



Peter Orbanz -

Applied Data Mining



Peter Orbanz - Applied Data Mining

o
s

Training Error: 0.145
TestEror:  0.225
Bayes Error:  0.210

7-NN solution
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NEIGHBORHOOD REGIONS

For m = 1, one can plot subdivide R? into regions closest to each training point:

If a data point x falls into one of the cells, the 1-NN rule will assign it to the class label of the
point defining the cell.

For m > 1, this becomes harder to plot.






EXAMPLE: LAND USAGE CLASSIFICATION

¢ These are the four “channels” (spectral bands) of a LANDSAT image.
¢ The land it shows is used for agriculture.

o There are 7 types of land usage (red soil, cotton, ... ).

¢ For some images, training data is available.

e The goal is to build a classifier that can classify land use in new images.
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Extracting local image statistics

1. Place a small window (size [ x [) at the
location.

2. Extract the pixel values inside the
window. Write them into a vector
(— dimension [2).

Resulting data
e We use / = 3, so each window contains 3 X 3 = 9 pixels.
¢ Since there are four channels we obtain 9 X 4 = 36 scalars characterizing each location.
o We use a nearest neighbor classifier on R3°.

¢ To classify locations in a new image: Again extract a vector using a window, and feed that
vector into the NN classifier.
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LAND USAGE PREDICTION

Spectral Band 1 Spectral Band 2 Spectral Band 3
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e |-NN: Classified as “red”.
e 2-NN: Tie.
e m-NN with m > 2: Classified as “blue”.
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1-NN solution 15-NN solution
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Advantages
¢ Simple.
¢ Can be applied to any number of classes.

¢ Often works very well.

Disadvantages
For large training data sets:

¢ Requires a lot of memory.

¢ The entire training set has to be searched for each decision.
Also:

¢ We are not “learning” anything, even though we can predict.
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EVALUATING AND TUNING A CLASSIFIER



We will consider two problems:
1. Once we have trained a classifier, how do we decide whether it is “good”?

2. We have already seen classifiers with a tuning parameter (e.g. the number of neighbors m
in m-NN.) How do we choose the parameter?
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EVALUATING A CLASSIFIER

Suppose we have trained a classifier f on training data (X,51), - - -, (Xn, n)-
(We use 0-1 loss, so we simply count mistakes.)

Measuring performance
‘We can measure performance as an “error rate’:

error rate of f = percentage of data points produced by the data source that f misclassifies

Note: For 0-1 loss and i.i.d. data, this coincides with the risk of f.

Interpreting the error rate
Consider a two class problem, where each class is equally probable.
o The “baseline” error rate is 50%. Classifiers that do worse than that are irrelevant.
Explanation:
¢ If we predict by flipping a fair coin (and completely ignore the data), we will achieve 50%
error rate.

o If f has error rate > 50%, we can turn it into a classifier with error rate < 50% by
swapping the classes.

Peter Orbanz - Applied Data Mining



How do we measure the error rate in practice?
e We don’t have access to the data source itself.
¢ We only have access to data from the source.

e We can estimate the error rate by measuring it on data: If (X1,y1), ..., (Xm, ym) are data
points, we can compute

S H{f(xi) #yi} _ number of misclassified data point
m - number of data points

error rate of f =

¢ To do so, we need labeled data points.

Can we use the training data?
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e We observe a sample of n observations from a given data source.

¢ If we observe a pattern in the data, it can reflect a property of the data source, or it can be
arandom effect.

e When we train a classifier, it should ideally adapt to properties of the source, but ignore
random effects.

¢ We cannot distinguish the two cases without looking at another sample.
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TRAINING AND TEST DATA

What happens if we measure the error rate on the training data?

o If the classifier has over-adapted to the idiosyncrasies of the training data, it will perform
better on the training data then on new data from the same source.

o Estimates of error rates computed on the training data tend to underestimate the actual
error rate.

Solution: Data splitting
e Before we train the classifier, we split the labeled data into two parts.
e We call these training data and test data.
¢ We use the training data to train the classifier.

o We then use the test data to estimate the error rate.
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TRAINING AND TEST ERROR

Types of errors

¢ The error rate (or, more generally, the empirical risk) evaluated on the training data is
called the training error.

¢ The error rate or empirical risk evaluated on the test data is the test error.
The distinction between these quantities is crucial.

Interpretation

o The training error measures how well the classifier fits the training data.
o The test error estimates how well the classifier predicts.

¢ Note this is an estimate rather than a measurement. Measuring the test error would require
access to the data distribution. Since we do not have that distribution, we estimate the
error from data.

Important

The test data must not be used for training in any way.

Once the training method has used any information extracted from the test data, the test error
estimate is confounded.
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training test

(X17 Yl)) ey (X"a Yn)7 (Xn+17 Yn+1)7 ey (Xn+m7 Yﬂ+m)

A
f

Data
¢ Suppose a data source generates n + m labelled data points.

¢ We split these into n training and m test points:
(X17 Y1)7 ey (Xn: Yﬂ)a (XIH-I’ Yn+1)7 e (Xn+m, Y’H'm)
» We assume that (X;, ¥;) is independent of (X;, Y;), for i # j.

¢ That means the data are i.i.d., since they have the same distribution (the data source).
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STATISTICAL EXPLANATION

training test

(Xh Y1)1 feey (Xn1 yn)7 (Xn+17 Yn+1)7 ey (Xn+m7 y)H»m)
;—L—A
f
Using the data

e We train a classifier f on the training data. The classifier is obtained from the data by a
deterministic procedure. Since the data is random, the classifier is random.

(XI ) Y1)7 ey (Xm Yn)y (Xn-H» Yn+1)7 ey (Xn+m: Yn+m)

Since the test data is independent of the training data, the classifier is stochastically
independent of the test data.

¢ That means an estimate of the classifier’s error obtained from the test data is unbiased.

If training uses any information from the test data, the classifier and the test data become
dependent.

Typically, the effect of this dependence is that the test error systematically underestimates
the actual prediction error on data from the source.
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TREE CLASSIFIERS



Idea
o Recall: Classifiers classify according to location in RY
¢ Linear classifiers: Divide space into two halfspaces

¢ What if we are less sophisticated and divide space only along axes? We could classify e.g.

X1
X . Class + ifx3 > 0.5
= ding t (S .
X X3 according fo X {Class - ifx3 <05
X4

¢ This decision would correspond to an affine hyperplane perpendicular to the x3-axis, with
offset 0.5.

Tree classifier

¢ A tree classifier combines several simple decision rules as the one above into a classifier
using a so-called decision tree.
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¢ A tree is a diagram consisting of nodes (marked as gray boxes above) and edges (the
connecting lines).

¢ The topmost node is called the root. Each (except the root) is connected to exactly one
node above it, called its parent.

* Nodes can be connected other nodes below them, called their children.
o Nodes at the bottom (those with no children) are called leaves.

o If each node has either two or no children, the tree is called a binary tree.
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false true

| Outcome 2 | | Outcome 3 |

¢ Binary trees can be used as decision diagrams.
¢ Each inner node (a node that is not a leaf) represents a property.
¢ The two children of the node represent the cases “property is false” or “property is true”.

¢ Each leaf represents an outcome. That means: An outcome is a combination of true and
false properties.

e Such a tree is called a decision tree.
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o A tree classifier in R is a decision tree.

¢ Each property at an inner node corresponds to a decision of the form x; > ¢, where
j €{1,...,d} is one of the coordinates, and ¢ € R is a constant.

¢ Each leaf corresponds to a class.

o We classify a data point x € R? by starting at the root, and following the decisions
through the diagram until we reach a leaf. We then assign x to the class inscribed at that
leaf.
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Example: Data in quadratic domain, three classes, class 3 is the largest class.
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Example: Data in quadratic domain, three classes, class 3 is the largest class.
y
class 2
y==5b
class 3
false true
y=c¢
e
class 1 H
©
X
x=a x=d
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¢ Each leaf of the tree corresponds to a re§ion Ry, of RY
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Approach
The basic strategy is very simple:
¢ At each step, decide where to place the next split.
¢ That replaces one of the regions represented by the tree by two new regions.

¢ Assign each new region by majority vote among the training data points in that region.

Where do we split?
‘We have to decide:
¢ Which region should be split.
¢ Along which axis.
¢ At which split point.
Idea: Find the split that results in the largest reduction in training error.
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FINDING A SPLIT POINT

Cost of a split
¢ Suppose we split region R,, along axis j at value ¢.
o That results in two new regions, say R}, and R2,.

e In the tree, that means we replace the node Ry, by the criterion x; > ¢, and add RL and
R2, as child nodes.

¢ We define the cost of this split as
cost(m,j, 1) := +# of misclassified points in R,ln + # of misclassified points in R,zn
(That means: We assign R}, and R2, class labels by majority vote, and check how many
training points are misclassified by these class labels.)
Training a tree classifier
« For each region m and each axis j, find the split point ¢ that minimizes cost(m, j, 1),

tyj = arg min cost(m, j, t) .
mj g/ER ( s Js )

e From the list of all such points #,;, pick the one with the smallest cost.

e Perform that split.

We keep doing so until the number of regions m reaches some specified, maximal value M.
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Example: Data in quadratic domain, three classes, class 3 is the largest class. We specify the maximum number of regions as M = 5.
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Example: Data in quadratic domain, three classes, class 3 is the largest class. We specify the maximum number of regions as M = 5.

class 1 class 3
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Example: Data in quadratic domain, three classes, class 3 is the largest class. We specify the maximum number of regions as M = 5.
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class 1

Peter Orbanz - Applied Data Mining 161



Example: Data in quadratic domain, three classes, class 3 is the largest class. We specify the maximum number of regions as M = 5.
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Example: Data in quadratic domain, three classes, class 3 is the largest class. We specify the maximum number of regions as M = 5.

y
class 2
y=5b
class 3
class 1
y=c¢c

o

class 1 §

w

x=a x=d
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Data
e 4601 email messages

¢ Classes: email, spam

george you your hp free hpl ! our re edo Temove
spam 0.00 226 1.38 0.02 052 001 051 051 013 001 028
email | 1.27 1.27 044 0.00 0.07 043 0.11 0.18 042 020 0.01

Tree classifier
¢ 17 nodes
¢ Performance:
| Predicted
True | Email  Spam

Email | 573%  4.0%
Spam | 53%  33.4%
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Tree Size
o Complete tree of height D defines 2 regions.
¢ D too small: Insufficient accuracy. D too large: Overfitting.

¢ D can be determined by cross validation or more sophisticated methods ("complexity
pruning" etc), which we will not discuss here.
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¢ The simplest possible tree classifier is a tree of depth 1. Such a classifier is called a
decision stump.

* A decision stump is parameterized by a pair (j, #;) of an axis j and a splitting point 7.
« Splits R into two regions.

¢ Decision boundary is an affine hyperplane which is perpendicular to axis j and intersects
the axis at #;.

¢ Decision stumps are often used in so-called ensemble methods. These are algorithms that
combine many poor classifiers into a good classifier. We will discuss ensemble methods
later.
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¢ We had already noted that a classifier can adapt “too closely” to a training data set.

o If the classifier represents idiosyncracies of the training sample rather than the properties
of the data source, it achieves small training error, but will not perform well on new data
generated by the same data source.

¢ This phenomenon is called overfitting.

o}

1-NN: Overfitting 15-NN: Better generalization
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COMPLEXITY AND OVERFITTING

Overfitting and flexibility

¢ How prone a classifier is to overfitting depends on how “flexible” it is.

¢ Linear classifier are not very likely to overfit.

Example: Trees
o A tree of depth 1 is a linear classifier, and will not overfit any reasonably large data set.
¢ A tree with many splits can subdivide the sample space into small regions.

¢ Suppose we train a tree with M splits on n training points. If M & n, the tree can separate
almost every training point off into a separate region. That is overfitting: The tree
memorizes the training data.

More complex (= flexible) models are more likely to overfit.
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Conceptual illustration

Test Error

Training Error—

Vertical: Error Horizontal: Model complexity (e.g. number of splits in tree)

o If classifier can adapt (too) well to data: Small training error, but possibly large test error.
o If classifier can hardly adapt at all: Large training and test error.
¢ Somewhere in between, there is a sweet spot.

¢ Trade-off is controlled by the parameter.
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Implications for Training

¢ If we permit the training algorithm to make a classifier more flexible, it is likely to overfit.

¢ Example: If the training algorithm for a tree classifier can perform an arbitrary number of
splits, it can achieve zero training error.
Avoiding overfitting

o Parameters that control flexibility (like the maximal number of splits in a tree) should be
fixed during training.

¢ We have to develop alternative strategies to choose values for those parameters.
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TYPES OF PARAMETERS

It is customary to separate parameters into two types:

1. Model parameters
The parameters that specify the solution.
Examples:

¢ Normal vector and offset of a linear classifier
¢ Split points and tree structure of a tree classifier.

(m-nearest neighbor classifiers are an exception: They have no such parameters.)

2. Hyperparameters
Parameters that control the complexity of the solution.
Examples:

¢ Number of splits of tree classifier
* number m of neighbors in m-nearest neighbor

Hyperparameters cannot be chosen by the training algorithm.

Selecting values for the parameters

o The model parameters are estimated by the training algorithm.

¢ Hyperparameters are often determined using data splitting methods.
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TERMINOLOGY: MODELS

Models

¢ Data mining and machine learning often loosely refers to a method as a model. It is
difficult to give a definition that is both general and precise.

o A definition that often works for classification is: A model is the set of all possible
classifiers that a given method can fit to training data. Each individual solution is often
called a hypothesis.

Examples

e Linear classifier in R?: Model = all possible affine planes in RY,
hypothesis = a specific affine plane.

e Tree classifer in RY: Model = all possible tree classifiers with a fixed number M of splits,
hypothesis = classifier defined by one particular tree.
Models and hyperparameters

o Typically, all classifiers within a model should have the same complexity.
¢ For example: We think of trees with 1 split and trees with 2 splits as two distinct models.

e More generally: Different hyperparameter values define different models.
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Objective

¢ Cross validation is a method which tries to select the best model (e.g. all tree classifiers
with 3 splits) from a given family of models (e.g. all tree classifiers).

¢ This is done using data splitting. Cross validation is a data splitting “protocol”.
¢ Assumption: Quality measure is predictive performance.

¢ "Set of models" can simply mean "set of different parameter values".

Terminology

o The process of choosing a good model within a family of models is called model
selection.
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(From now on, we just write ~y to denote the entire set of hyperparameters.)

Model selection
1. Randomly split data into three sets: training, validation and test data.

2. Train classifier on training data for different values of ~.

3. Evaluate each trained classifier on validation data (ie compute error rate).

4. Select the value of « with lowest error rate.

Model assessment
5. Finally: Estimate the error rate of the selected classifier on test data.

Peter Orbanz - Applied Data Mining
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CV procedure

Split labeled data into a training, validation
and test set.

For each M in {1,2,3}: Train a tree classifier
with M splits on the training set.

For each M, estimate the error rate of the
trained classifier on the validation set.

Select the value of M with the smallest error
rate; say this is M = 2.

Estimate the error rate for M = 2 on the test
set.

For prediction on new data, you now use the tree
classifier with M = 2, and report its estimated error

rate as that estimated on the test set.

Peter Orbanz - Applied Data Mining
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STATISTICAL ANALYSIS

Meaning

¢ The quality measure by which we are comparing different classifiers f., (for different
parameter values <) is the risk

R(f—y) = E[L(y,fy(x))] -

¢ Since we do not know the true risk, we estimate it from data as R(fy).

Importance of model assessment step

¢ We always have to assume: Classifier is better adapted to any data used to select it than to
actual data distribution.

e Model selection: Adapts classifier to both training and validation data.

¢ If we estimate error rate on any part of the training or validation data, we will in general
underestimate it.
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Procedure in detail
‘We consider possible parameter values 7y, . .., Ym.

1. For each value ~;, train a classifier f5; on the training set. (That is: ~; is fixed, and the
training algorithm outputs a fitted classifier f for this value of ~;.)

2. Use the validation set to estimate R(f-;) as the empirical risk

R = 231Gy 5)
V=1

ny is the size of the validation set.
3. Select the value v* which achieves the smallest estimated error.

4. Re-train the classifier with parameter v* on all data except the test set
(i.e. on training + validation data).

5. Report error estimate R( fy+) computed on the est set.
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Idea
Each of the error estimates computed on validation set is computed from a single example of a
trained classifier. Can we improve the estimate?

Strategy
¢ Set aside the test set.
¢ Split the remaining data into K blocks.

¢ Use each block in turn as validation set. Perform cross validation and average the results
over all K combinations.

This method is called K-fold cross validation.

Example: K=5
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Idea
Each of the error estimates computed on validation set is computed from a single example of a
trained classifier. Can we improve the estimate?
Strategy
¢ Set aside the test set.
¢ Split the remaining data into K blocks.

¢ Use each block in turn as validation set. Perform cross validation and average the results
over all K combinations.

This method is called K-fold cross validation.
Example: K=5
Stepk =1
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Idea
Each of the error estimates computed on validation set is computed from a single example of a
trained classifier. Can we improve the estimate?
Strategy
¢ Set aside the test set.
¢ Split the remaining data into K blocks.

¢ Use each block in turn as validation set. Perform cross validation and average the results
over all K combinations.

This method is called K-fold cross validation.
Example: K=5
Stepk =2
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Idea
Each of the error estimates computed on validation set is computed from a single example of a
trained classifier. Can we improve the estimate?
Strategy
¢ Set aside the test set.
¢ Split the remaining data into K blocks.

¢ Use each block in turn as validation set. Perform cross validation and average the results
over all K combinations.

This method is called K-fold cross validation.
Example: K=5
Step k =3
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Idea
Each of the error estimates computed on validation set is computed from a single example of a
trained classifier. Can we improve the estimate?
Strategy
¢ Set aside the test set.
¢ Split the remaining data into K blocks.

¢ Use each block in turn as validation set. Perform cross validation and average the results
over all K combinations.

This method is called K-fold cross validation.
Example: K=5
Stepk =4
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Idea
Each of the error estimates computed on validation set is computed from a single example of a
trained classifier. Can we improve the estimate?
Strategy
¢ Set aside the test set.
¢ Split the remaining data into K blocks.

¢ Use each block in turn as validation set. Perform cross validation and average the results
over all K combinations.

This method is called K-fold cross validation.
Example: K=5
Stepk =5
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K-FOLD CV FOR A TREE

‘ ‘ ‘ ‘ ‘ ‘ ‘ o ‘

CV procedure (for K = 5)

o Split off test data.
¢ Split remaining data into K equal parts.
e Foreachk=1,...,5:
1. Use kth block as validation set.
2. Foreach M in {1,2,3}: Train a tree
classifier with M splits on the remaining
blocks.

3. For each M, estimate the error rate of the
trained classifier on the validation block.

e For each M, average the K error rate estimates
over all values of k.

o Select the value of M with the smallest average
error rate.

o Estimate the error rate for the optimal M on
the test set.
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K-FOLD CV FOR A TREE

Stepk = 1

Validation

Taing ‘ ‘ Tt ‘

CV procedure (for K = 5)

o Split off test data.
¢ Split remaining data into K equal parts.
e Foreachk=1,...,5:
1. Use kth block as validation set.
2. Foreach M in {1,2,3}: Train a tree
classifier with M splits on the remaining
blocks.

3. For each M, estimate the error rate of the
trained classifier on the validation block.

¢ For each M, average the K error rate estimates
over all values of k.

o Select the value of M with the smallest average
error rate.

o Estimate the error rate for the optimal M on
the test set.
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K-FOLD CV FOR A TREE

Stepk =2

‘ Training Validation

Training ‘ ‘ Test set ‘

CV procedure (for K = 5)

o Split off test data.
¢ Split remaining data into K equal parts.
e Foreachk=1,...,5:
1. Use kth block as validation set.
2. Foreach M in {1,2,3}: Train a tree
classifier with M splits on the remaining
blocks.

3. For each M, estimate the error rate of the
trained classifier on the validation block.

¢ For each M, average the K error rate estimates
over all values of k.

o Select the value of M with the smallest average
error rate.

o Estimate the error rate for the optimal M on
the test set.
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K-FOLD CV FOR A TREE

Stepk =3

‘ Training Validation

Training ‘ ‘ Test set ‘

CV procedure (for K = 5)

o Split off test data.
¢ Split remaining data into K equal parts.
e Foreachk=1,...,5:
1. Use kth block as validation set.
2. Foreach M in {1,2,3}: Train a tree
classifier with M splits on the remaining
blocks.

3. For each M, estimate the error rate of the
trained classifier on the validation block.

¢ For each M, average the K error rate estimates
over all values of k.

o Select the value of M with the smallest average
error rate.

o Estimate the error rate for the optimal M on
the test set.
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K-FOLD CV FOR A TREE

Stepk =4

‘ Training Validation

Training ‘ ‘ Test set ‘

CV procedure (for K = 5)

o Split off test data.
¢ Split remaining data into K equal parts.
e Foreachk=1,...,5:
1. Use kth block as validation set.
2. Foreach M in {1,2,3}: Train a tree
classifier with M splits on the remaining
blocks.

3. For each M, estimate the error rate of the
trained classifier on the validation block.

¢ For each M, average the K error rate estimates
over all values of k.

o Select the value of M with the smallest average
error rate.

o Estimate the error rate for the optimal M on
the test set.
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K-FOLD CV FOR A TREE

Stepk =5

‘ Training Validation

BN

CV procedure (for K = 5)

o Split off test data.
¢ Split remaining data into K equal parts.
e Foreachk=1,...,5:
1. Use kth block as validation set.
2. Foreach M in {1,2,3}: Train a tree
classifier with M splits on the remaining
blocks.

3. For each M, estimate the error rate of the
trained classifier on the validation block.

e For each M, average the K error rate estimates
over all values of k.

o Select the value of M with the smallest average
error rate.

o Estimate the error rate for the optimal M on
the test set.
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K-FOLD CROSS VALIDATION: IN DETAIL

Risk estimation
To estimate the risk of a classifier f( ., 7;):

1. Split data into K equally sized blocks.
2. Train an instance f.; x of the classifier, using all blocks except block k as training data.

3. Compute the cross validation estimate

K
N 1 1
Rev(fy)i= =D o D L.fya(®)
K (= Iblock | (%,5) € block k
Repeat this for all parameter values vy, . . . , Ym-
Selecting a model

¢ Choose the parameter value v* for which estimated risk is minimal.

Model assessment

¢ Report risk estimate for f.,« computed on test data.
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How 1O CHOOSE K?

Extremal cases
e K = n, called leave one out cross validation (loocv)
« K =2

An often-cited problem with loocv is that we have to train many (= n) classifiers, but there is
also a deeper problem.

Argument 1: K should be small, e.g. K = 2

¢ Unless we have a lot of data, variance between two distinct training sets may be
considerable.

¢ Important concept: By removing substantial parts of the sample in turn and at random,
we can simulate this variance.

¢ By removing a single point (loocv), we cannot make this variance visible.
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K=2,n=20
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K=2,n=20
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K=2,n=20
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How 1O CHOOSE K?

Argument 2: K should be large, e.g. K = n

¢ Classifiers generally perform better when trained on larger data sets.
¢ A small K means we substantially reduce the amount of training data used to train each f,
so we may end up with weaker classifiers.

¢ This way, we will systematically overestimate the risk.

Common recommendation: K =5to K = 10
Intuition:
e K = 10 means number of samples removed from training is one order of magnitude
below training sample size.
¢ This should not weaken the classifier considerably, but should be large enough to make
measure variance effects.
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Purpose
Estimates the risk R(f) = E[L(y,f(x))] of a classifier (or regression function) from data.
Application to parameter tuning

» Compute one cross validation estimate of R(f) for each parameter value.

¢ Note again: Cross validation procedure does not involve the test data.

for K-fold cv, split this
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CV for a m-NN classifier

¢ The nearest neighbor classifier is particularly simple since it does not require a training
algorithm.

« Since it uses training data, we still need to distinguish between training, validation and
test data.

Task
¢ We want to classify handwritten digits (according to the value of the digit).
¢ We use an m-nearest neighbor classifer.

¢ That means we have to choose a suitable value for m.
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DIGIT CLASSIFICATION: DATA

Peter Orbanz
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e Grayscale values O, . . ., 255 (where 0 means white and 255 black).

o Each matrix is “rolled off” into a vector. These vectors are collected in a matrix.

« Each image is of size 16 x 16 = 256 pixels, so we obtain vectors in R>°,
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Basic cross validation for m-NN

¢ Choose candidate values for m, say m = 1, 3, 5.
¢ Split data into training, validation and test set.

e Foreachm € {1,3,5}, implement the m-NN classifier f;,. Each of these uses the training
data set to classify.

¢ Compute the misclassification rate for each m on the validation set.
¢ Choose the m with the smallest misclassification rate.

¢ Compute the misclassifation rate on the test set for the optimal m.

Are we allowed to use the validation set for prediction?
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MEASURING CLASSIFIER PERFORMANCE



ERROR COUNTING

Error types in a two-class problem

¢ False positives (type I error): True label is -1, predicted label is +1.
« False negative (type II error): True label is +1, predicted label is -1.

We write TP = # true positives, FP = # false positives, TN = # true negatives,
FN = # false negatives

Error rate

ER = # wrong predictions FP + FN

# observations ~ FP+FN+TP+TN
Does not distinguish errors between classes.

Relevance
Distinction between error types is crucial e.g. if:

¢ Classes differ significantly in size

¢ One type of error has worse consequences than other

Peter Orbanz - Applied Data Mining
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The different types of errors can be summarized in a matrix as

positive label

negative label

predicted positive

TP/n

FP/n

predicted negative

where 7 is the number of observations.

FN/n

This is called a confusion matrix or contingency table.

Peter Orbanz - Applied Data Mining
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» Suppose a classifier is determined by some parameter 6.
* As we change 6, the number of false positives and false negatives changes.

e We hence have parameter-dependent quantities TP(6), TN(9), etc.
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» Suppose a classifier is determined by some parameter 6.
* As we change 6, the number of false positives and false negatives changes.

e We hence have parameter-dependent quantities TP(6), TN(9), etc.
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PRECISION AND RECALL

One summary measure of classifier performance are precision and recall:

. . TP(@) L TP(Q)
Precision(0) := TP(6) + FP(0) Recall(9) := TP(6) + FN(6)

A precision/recall plot eveluates precision and recall on validation/test data for a range of
different values of 6, and plots precision (vertical axis) against recall (horizontal axis):

e Sl —
. D
™.

™

¢ Each point in the plot represents a classifier, for one value of 6.

o Ideally, both precision and recall are high, so “good values” are in the upper right corner.
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ROC DIAGRAMS

A plot of the true positive rate (TPR) versus the false positive rate (FPR) is called a receiver
operating characteristic (ROC) curve:
TP FP

TPR = ———— FPR = ——
# Positives # Negatives

e “Good” region: Upper left
corner. (P/R: Upper right
corner.)

o Classifier below diagonal (lower
left to upper right): Worse than
random decision.
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INTERPOLATION IN ROC CURVES

Linear interpolation of classifiers
* Given: Classifiers fy, , fo,, interpolation parameter A € [0, 1].

¢ Define new classifier fy as: Randomly choose output of fy, with probability A, output of
fo, with probability 1 — A.

Error rates under interpolation

TPR(fx) = ATPR(fy,) + (1 — A)TPR(fy,)
The same holds for FPR, ER (but not for Precision and Recall).

%, ¢ ROC plot: Every point represents a classifier
performance.

¢ Consequence: A classifier with performance represented

! by a point on a straight line between fp, and fp, in the

plot can be constructed by linear interpolation.

¢ The perfomance values constructable from existing
classifiers in this way are called achievable.
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INTERPOLATION IN ROC CURVES

Linear interpolation of classifiers
* Given: Classifiers fy, , fo,, interpolation parameter A € [0, 1].

¢ Define new classifier fy as: Randomly choose output of fy, with probability A, output of
fo, with probability 1 — A.

Error rates under interpolation

TPR(fx) = ATPR(fy,) + (1 — A)TPR(fy,)
The same holds for FPR, ER (but not for Precision and Recall).

%, ¢ ROC plot: Every point represents a classifier
performance.
Ix ¢ Consequence: A classifier with performance represented

! by a point on a straight line between fp, and fp, in the
plot can be constructed by linear interpolation.

¢ The perfomance values constructable from existing
classifiers in this way are called achievable.
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ROC INTERPOLATION: CONVEX HULL

* Suppose classifiers fy, , fo,, g, are given:
P ; ¢ If the objective is to optimize ROC
1 performance, fy, is worthless.
¢ We can always obtain a better classifiers
by interpolating fp, and fp, .
In general

* Recall the interpolation formula ATPR(fy, ) + (1 — A\)TPR(fp, ) is a convex combination.

o If {fa,,...,f, } are given: Any convex combination of these is achievable.

For given classifiers {fgl 5000 alfE), }, the convex hull of these classifiers in the ROC plot is
achievable.
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ROC vS PRECISION/RECALL

In Precision/Recall graphs, linear interpolation of classifiers does not correspond to linear
interpolation of points in the plot.
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ROC FOR IMBALANCED CLASSES

Disadvantage of ROC

¢ If the TNR is high, any system can easily achive good FPR or ER by biasing towards the
negative class.

¢ High TNR problems are typically those where one tries to pick out a few interesting
points against a large background class (e.g. face detection).

Example

¢ Two classes are given. Increase the size of the negative class by a factor 10.

¢ The TP value of a given classifier and # Positives in training data do not depend on the
negative class, so the TPR does not change.

¢ Since FP increases roughly by a factor ten, the FPR does not change either:

10 - FPqyq
FPRpey A ——————— = FPRoy
10 - # Negatives

¢ Consequence: The ROC curve does not change, up to small fluctuations.
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Parametrization by a threshold 7

¢ Many classifiers we have seen can be written as comparing a function g to a threshold 7.

e The classification result f(x) is then computed as
+1 gx) =27
X) =
Fx) {—1 gx) <1

For example

f 8(x) T
linear classifier (v,x) — ¢ T=0
logistic regression o({v,x) —¢) T= %
one gaussian density p perclass  p, (x) —p_,(x) T7=0
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Varying 7
¢ We can denote the classifier f above as f; for a given value of 7, and vary that value.
¢ As 7 changes, the values of TP, FN, etc change.

¢ For a larger value of 7, fewer points are classified as positive, so we expect fewer false
positives and more false negatives.

o If we regard 7 as the parameter 6 above, we can draw a ROC curve or Precision/Recall
diagram for f, where each point correspond to a value of 7.

If you see a ROC or P/R curve reported for a single classifier, this is usually what it means.
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Definition
The Area Under the Curve (AUC) the area under an ROC curve. Note this is a value between
Oand 1.

I1lustration

¢ The blue curve is an ROC curve.

e AUC is a summary statistic that summarizes a ROC
diagram in a single number.

AUC of a classifier
When AUC is reported for a single classifier, it typically refers to the AUC defined by the ROC
diagram obtained by varying a threshold 7 as above.

Peter Orbanz - Applied Data Mining
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Suppose we are given a data source with two classes, and manage to generate a random
hyperplane classifier with expected error of 0.5 (i.e. 50%).

(Informally, think of this as not knowing the data source and generating a “uniformly distributed
classifier”.)
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A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).
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A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).
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A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

¢ Many random hyperplanes combined by majority vote: Still 0.5.
* A single classifier slightly better than random: 0.5 + €.

¢ What if we use m such classifiers and take a majority vote?
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Decision by majority vote
e mindividuals (or classifiers) take a vote. m is an odd number.
¢ They decide between two choices; one is correct, one is wrong.

¢ After everyone has voted, a decision is made by simple majority.
Note: For two-class classifiers fi, . . . , fin (With output £1):

m
majority vote = sgn (Z j})
j=1

Assumptions
Before we discuss ensembles, we try to convince ourselves that voting can be beneficial. We
make some simplifying assumptions:

« Each individual makes the right choice with probability p € [0, 1].

¢ The votes are independent, i.e. stochastically independent when regarded as random
outcomes.
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Condorcet’s rule
If the individual votes are independent, the answer is

m
m! ; ;
Pr{ majority makes correct decision } = Z — (1 —-p)"
it JHm = j)!
="

This formula is known as Condorcet’s jury theorem.

Probability as function of the number of votes
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p=0.55 p=0.45 p=0.85
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ENSEMBLE METHODS

Terminology

¢ An ensemble method makes a prediction by combining the predictions of many
classifiers into a single vote.

¢ The individual classifiers are usually required to perform only slightly better than random.

For two classes, this means slightly more than 50% of the data are classified correctly.
Such a classifier is called a weak learner.

Strategy

o We have seen above that if the weak learners are random and independent, the prediction
accuracy of the majority vote will increase with the number of weak learners.

¢ Since the weak learners all have to be trained on the training data, producing random,
independent weak learners is difficult.

¢ Different ensemble methods (e.g. Boosting, Bagging, etc) use different strategies to train
and combine weak learners that behave relatively independently.

Peter Orbanz - Applied Data Mining
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Boosting

o After training each weak learner, data is modified using weights.
¢ Deterministic algorithm.
Bagging

o Each weak learner is trained on a random subset of the data.

Random forests
¢ Bagging with tree classifiers as weak learners.

o Uses an additional step to remove dimensions in R? that carry little information.
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BOOSTING

Boosting

¢ Arguably the most popular (and historically the first) ensemble method.
o Weak learners can be trees (decision stumps are popular), Perceptrons, etc.

¢ Requirement: It must be possible to train the weak learner on a weighted training set.

Overview
¢ Boosting adds weak learners one at a time.
o A weight value is assigned to each training point.

¢ At each step, data points which are currently classified correctly are weighted down (i.e.
the weight is smaller the more of the weak learners already trained classify the point
correctly).

¢ The next weak learner is trained on the weighted data set: In the training step, the error
contributions of misclassified points are multiplied by the weights of the points.

¢ Roughly speaking, each weak learner tries to get those points right which are currently not
classified correctly.
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Example: Decision stump
A decision stump classifier for two classes is defined by

. )+l D >t
fxlpr) = {—1 otherwise

where j € {1,...,d} indexes an axis in R4,

Weighted data
e Training data (X1,31), ..., (Xu, Yn)-

» With each data point X; we associate a weight w; > 0.

Training on weighted data
Minimize the weighted misclassifcation error:
(711 = arg min Doy willyi # f(%ili 1)}
o bt i wi
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Input
e Training data (X1,31), ..., (Xu, ¥n)

o Algorithm parameter: Number M of weak learners

Training algorithm
1. Initialize the observation weights w; = % fori=1,2,...,n.
2. Form=1toM:
2.1 Fita classifier g, (x) to the training data using weights w;.
2.2 Compute
_ E?:l Wi]I{)’i # SM(xi)}
Do Wi

erty, :

2.3 Compute ayy = log(%ﬂ)
2.4 Setw; < wj - exp(am - L(yi # gm(x;))) fori=1,2,...,n.
3. Output

M
f(x) :=sign <Z a,,,gm(x)>

m=1
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Weight updates

1 —erry,
am = log(—)
eIty
Wi = wi™ - exp(am - I(yi # gm(x)))

() wﬁm’” if g classifies x; correctly
wp = (m-1)  1—€rr, . . .
= if g, misclassifies x;

Weighted classifier

M
f(x) = sign (Z amgm(x)>

m=1
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AdaBoost test error (simulated data)

|
° Single Stump
= |
=
@ |
c
244 Node Tree

Test Error

0.2
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Boosting Iterations

¢ Weak learners used are decision stumps.

¢ Combining many trees of depth 1 yields much better results than a single large tree.
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BOOSTING: PROPERTIES

Properties

AdaBoost is one of most widely used classifiers in applications.
Decision boundary is non-linear.

Can handle multiple classes if weak learner can do so.

Test vs training error

Most training algorithms (e.g. Perceptron) terminate when training error reaches
minimum.

AdaBoost weights keep changing even if training error is minimal.

Interestingly, the test error typically keeps decreasing even after training error has
stabilized at minimal value.

It can be shown that this behavior can be interpreted in terms of a margin:

¢ Adding additional classifiers slowly pushes overall f towards a maximum-margin
solution.
¢ May not improve training error, but improves generalization properties.

This does not imply that boosting magically outperforms SVMs, only that minimal
training error does not imply an optimal solution.
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BOOSTING AND FEATURE SELECTION

AdaBoost with Decision Stumps

¢ Once AdaBoost has trained a classifier, the weights oy, tell us which of the weak learners
are important (i.e. classify large subsets of the data well).

¢ If we use Decision Stumps as weak learners, each f;, corresponds to one axis.

¢ From the weights o, we can read off which axis are important to separate the classes.

Terminology

The dimensions of R? (= the measurements) are often called the features of the data. The
process of selecting features which contain important information for the problem is called
feature selection. Thus, AdaBoost with Decision Stumps can be used to perform feature
selection.

Peter Orbanz - Applied Data Mining



o Tree classifier: 9.3% overall
error rate

¢ Boosting with decision stumps:
4.5%

¢ Figure shows feature selection
results of Boosting.
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Idea
¢ Try to implement the “randomly throwing out hyperplanes” idea directly.

¢ Strategy: Build a “weak lerner” by selecting two points at random and let them determine
a hyperplane.
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Weak classifier

¢ Choose two training data points x~ and xTt, one in each class.

¢ Place an affine plane “in the middle” between the two:

xt —x— 1
— — - e
W= T and  c¢:=(w,x +2(x x7))

¢ Choose the orientation with smaller training error: Define weak classifier as

f(.)=sgn((.,v) —c) whereeitherv:=worv:=—w.
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Ensemble training

¢ Split the available data into to equally sized parts (training and test).
* Select m pairs of points (x; , xi"), ., (X ,x;}) uniformly (with replacement).
o For each such pair (x;”,x;"), compute the classifer f; given by (v, ¢;) as described above.

o The overall classifier g, is defined as the majority vote

gn(x) = sgn (fff(x)) = sgn(i sen((vi,x) — 1))
j=1 j=1
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APPLICATION: FACE DETECTION



FACE DETECTION

Searching for faces in images
Two problems:
o Face detection Find locations of all faces in image. Two classes.

« Face recognition Identify a person depicted in an image by recognizing the face. One
class per person to be identified + background class (all other people).

Face detection can be regarded as a solved problem. Face recognition is not solved.

Face detection as a classification problem
¢ Divide image into patches.

¢ Classify each patch as "face" or "not face"

Reference: Viola & Jones, “Robust real-time face detection”, Int. Journal of Computer Vision, 2004.
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CLASSIFIER CASCADES

Unbalanced Classes
¢ Our assumption so far was that both classes are roughly of the same size.
¢ Some problems: One class is much larger.

o Example: Face detection.

¢ Image subdivided into small quadratic
patches.

¢ Even in pictures with several people, only
small fraction of patches usually represent
faces.

Standard classifier training
Suppose positive class is very small.
e Training algorithm can achieve good error rate by classifiying all data as negative.

e The error rate will be precisely the proportion of points in positive class.
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Addressing class imbalance

o We have to change cost function: False negatives (= classify face as background)
are expensive.

¢ Consequence: Training algorithm will focus on keeping proportion of false
negatives small.

¢ Problem: Will result in many false positives (= background classified as face).

Cascade approach

¢ Use many classifiers linked in a chain structure ("cascade").
¢ Each classifier eliminates part of the negative class.

¢ With each step down the cascade, class sizes become more even.
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Training a cascade

Use imbalanced loss, with very low false negative
rate for each f;.

1. Train classifier f| on entire training data set.

2. Remove all X; in negative class which f;
classifies correctly from training set.

3. On smaller training set, train f;.

5. On remaining data at final stage, train f.

Classifying with a cascade

o If any f; classifies x as negative, f(x) = —1.
 Only if all f; classify x as positive, f(x) = +1.
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WHY DOES A CASCADE WORK?

‘We have to consider two rates

__ #fnegative points classified as "+1"

false positive rate FPR(f;)) =
P @) #£negative training points at stage j

tly classified positi ints
recall (detection rate) Recall(f;) = sreorrectly classified positive points

#£positive training points at stage j

We want to achieve a low value of FPR(f) and a high value of Recall(f).

Class imbalance
In face detection example:

» Number of faces classified as background is (size of face class) x (1 — Recall(f))
» We would like to see a decently high detection rate, say 90%

¢ Number of background patches classified as faces is
(size of background class) x (FPR(f))

« Since background class is huge, FPR(f) has to be very small to yield roughly the same
amount of errors in both classes.
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Cascade recall
The rates of the overall cascade classifier f are

k k
FPR(f) = [ [FPR(f})  Recall(f) = ] [ Recall(f)

j=1 j=1

¢ Suppose we use a 10-stage cascade (k = 10)
« Each Recall(f;) is 99% and we permit FPR(f;) of 30%.
o We obtain Recall(f) = 0.99'" ~ 0.90 and FPR(f) = 0.3'" ~ 6 x 10=°¢
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Objectives
¢ Classification step should be computationally efficient.

¢ Expensive training affordable.

Strategy
o Extract very large set of measurements (features), i.e. d in R large.
¢ Use Boosting with decision stumps.
¢ From Boosting weights, select small number of important features.

e Class imbalance: Use Cascade.

Classification step
Compute only the selected features from input image.
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FEATURE EXTRACTION

Extraction method

1. Enumerate possible windows (different shapes
and locations) by j = 1,...,d.

2. For training image i and each window j,

compute A
x;j := average of pixel values in gray block(s)
— average of pixel values in white block(s) .%.
=
3. Collect values for all j in a vector
X; 1= (x,-17 . ,x,’d) € R4,
C

The dimension is huge

¢ One entry for (almost) every possible location of a rectangle in image.
o Start with small rectangles and increase edge length repeatedly by 1.5.
¢ In Viola-Jones paper: Images are 384 x 288 pixels, d ~ 160000.
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SELECTED FEATURES

First two selected features

200 features are selected in total.
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Training procedure

1. User selects acceptable rates (FPR and Recall) for each level of the cascade.
2. Ateach level of the cascade:

¢ Train a boosting classifier.
¢ Gradually increase the number of selected features until required rates are achieved.

Use of training data
Each training step uses:
¢ All positive examples (= faces).

¢ Negative examples (= non-faces) misclassified at previous cascade layer.
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EXAMPLE RESULTS
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Table 3. Detection rates for various numbers of false positives on the MIT + CMU test set containing 130
images and 507 faces.

False detections

Detector 10 31 50 65 78 95 167 422
Viola-Jones 76.1% 88.4% 914% 92.0%  921%  929% 93.9% 94.1%
Viola-Jones (voting) 81.1% 89.7% 92.1% 93.1%  93.1%  932% 93.7% -
Rowley-Baluja-Kanade  83.2%  86.0% - - - 89.2% 90.1%  89.9%
Schneiderman-Kanade - - - 94.4% - - - -
Roth-Yang-Ahuja - - - - (94.8%) - - -
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BAGGING AND RANDOM FORESTS



BACKGROUND: RESAMPLING TECHNIQUES

We briefly review a technique called bootstrap on which bagging and random forests are based.

Bootstrap

Bootstrap (or resampling) is a technique for improving the quality of estimators.

Resampling = sampling from the empirical distribution

Application to ensemble methods
¢ We will use resampling to generate weak learners for classification.
e We discuss two classifiers which use resampling: Bagging and random forests.

¢ Before we do so, we consider the traditional application of Bootstrap, namely improving
estimators.
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BOOTSTRAP: BASIC ALGORITHM

Given
e AsampleXp,...,X,.

 An estimator S for a statistic S.

Bootstrap algorithm

1. Generate B bootstrap samples B, . . ., Bg. Each bootstrap sample is obtained by
sampling n times with replacement from the sample data. (Note: Data points can appear
multiple times in any B;.)

2. Evaluate the estimator on each bootstrap sample:
Sy = 8(By)
(That is: We estimate S pretending that 13, is the data.)

3. Compute the bootstrap estimate of S by averaging over all bootstrap samples:

L
Sps 1= — S,
S
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Recall: Plug-in estimators for mean and variance
R oI o
y::—in G ::—Z(xi—u)
n i=1 n i=1

Bootstrap Variance Estimate

1. Forb =1,...,B, generate a boostrap sample Bj,. In detail:
Fori=1,...,m

e Sample anindex j € {1,...,n}.
o Set ii(b) := X; and add it to B,.

2. For each b, compute mean and variance estimates:
N 0 ICRID B o P B
fin =~ > = S & = i)
i=1 i=1

3. Compute the bootstrap estimate:

Peter Orbanz - Applied Data Mining Not examinable. 239



How OFTEN DO WE SEE EACH SAMPLE?

Sample {Xj, ..., X, }, bootstrap resamples By, ..., Bp.

In how many sets does a given x; occur?

Probability for x; not to occur in n draws:
- 1
Pl‘{X,‘ Q B},} = (1 — ;)"
For large n:

. " 1
lim (1—-) =-=0.3679
e

n—oo n

» Asymptotically, any X; will appear in ~ 63% of the bootstrap resamples.

¢ Multiple occurrences possible.

How often is X; expected to occur?

The expected number of occurences of each X; is B.

Bootstrap estimate averages over reshuffled samples.
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BOOTSTRAP: APPLICATIONS IN STATISTICS

Estimate variance of estimators
« Since estimator § depends on (random) data, it is a random variable.
e The more this variable scatters, the less we can trust our estimate.
o If scatter is high, we can expect the values S;, to scatter as well.

¢ In previous example, this means: Estimating the variance of the variance estimator.

Variance reduction
¢ Averaging over the individual bootstrap samples can reduce the variance in S.
o In other words: Sps typically has lower variance than S.

o This is the property we will use for classicifation in the following.

As alternative to cross validation
To estimate prediction error of classifier:

o For each b, train on B;, estimate risk on points not in Bj.

o Average risk estimates over bootstrap samples.
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Idea
¢ Recall Boosting: Weak learners are deterministic, but selected to exhibit high variance.
¢ Strategy now: Randomly distort data set by resampling.
¢ Train weak learners on resampled training sets.

¢ Resulting algorithm: Bagging (= Bootstrap aggregation)
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For Bagging with K classes, we represent class labels as vectors:

0
0
x; in class k as vi= | 1| «— kthentry
0
0
This way, we can average together multiple class labels:
P1

1 :
;t(y1+---+)’n) = |

\PK
‘We can interpret py; as the probability that one of the n points is in class k.
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Training
Forb=1,...,B:
1. Draw a bootstrap sample B}, of size n from training data.

2. Train a classifier f, on Bj,.

Classification

¢ Compute
ML
f;ivg(x) == Zfb(x)
B b=1

This is a vector of the form fo., (x) = (p1(X), - . ., px(X)).
¢ The Bagging classifier is given by
Joens () = argmax{pi (9, ()}

i.e. we predict the class label which most weak learners have voted for.
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e Two classes, each with Gaussian
distribution in R3.

« Note the variance between
bootstrapped trees.
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RANDOM FORESTS

Bagging vs. Boosting
* Bagging works particularly well for trees, since trees have high variance.
¢ Boosting typically outperforms bagging with trees.

o The main culprit is usually dependence: Boosting is better at reducing correlation
between the trees than bagging is.

Random Forests
Modification of bagging with trees designed to further reduce correlation.

¢ Tree training optimizes each split over all dimensions.
¢ Random forests choose a different subset of dimensions at each split.
¢ Optimal split is chosen within the subset.

 The subset is chosen at random out of all dimensions {1, ..., d}.
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Training
Input parameter: m (positive integer with m < d)
Forb=1,...,B:
1. Draw a bootstrap sample B, of size n from training data.
2. Train a tree classifier f;, on ;, where each split is computed as follows:

e Select m axes in Ry at random.
« Find the best split (j*, #*) on this subset of dimensions.
¢ Split current node along axis j* at r*.

Classification
Exactly as for bagging: Classify by majority vote among the B trees. More precisely:

o Compute fuve(X) := (p1(X), .-,k (X)) = 5 S0 /(%)
¢ The Random Forest classification rule is

Sageing (X) = arg m;?x{p] (x), ..., pe(x)}
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Remarks
¢ Recommended value for m is m = I_\/z_ij or smaller.

¢ RF typically achieve similar results as boosting. Implemented in most packages, often as
standard classifier.

Example: Synthetic Data

¢ This is the RF classification boundary on
the synthetic data we have already seen a
few times.

¢ Note the bias towards axis-parallel
alignment.

Training Error: 0.000 00
TestError:  0.238
Bayes Error:  0.210
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APPLICATION: CANCER DIAGNOSIS



Kidney cancer diagnosis: Clinical procedure

¢ Take tissue sample from patient’s kidney
¢ Preprocess sample and photograph under microscope

¢ A pathologist looks at the image and diagnosis patient on scale from healthy to advanced
stage cancer

Task

o Empirically, the results vary significantly between pathologists

¢ The objective is to build a classifier that produces a diagnosis using the same scale as the
pathologist, hopefully with more stable results.
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Experiment
Preprocessing
Raw data (measurements)
Working data

Training data Test data
(patterns marked) (patterns marked)

. Apply on
Trained model

Error estimate
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1. Tissue sample is “stained” with

Slide scanning and markmg ﬁl.lld
tiling of TMA into spots

2. Thin slice is cut and placed on
microscope slide

3. Sample is photographed under
microscope

4. Tumor cells absorb more marker
fluid and tend to be darker
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LABELING

e
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A pathologist uses a software with a graphical user interface to (1) mark the locations of nuclei
and (2) label nuclei as healthy/cancerous.
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COMPARISON BETWEEN EXPERTS (1)

Peter Orbanz

60

Number of Nuclei
40

3 il
(1] | ]

12,3 4

I — Tomor
¢ Five experts label the same set of nuclei (180 in total)
¢ For each data point (nucleus), count the number of votes (0, . . ., 5) in favor of “tumor”
¢ The diagram above is a histogram of the vote counts for the 180 data points
o All five experts agree if the count is O (all say healthy) or 5 (all say tumor)

¢ (The small red/green bars are the vote proportions, so they encode the same information
as the numbers at the bottom.)
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COMPARISON BETWEEN EXPERTS (2)
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Results for 14 pathologists labeling four patients.

Peter Orbanz

Each box in the boxplot represents one patient.

Box plot: The line in the middle of each box is the median. The upper and lower box
boundary are the third and first quartile, respectively. The horizontal bars at either end of
the dashed vertical line represent one standard deviation around the mean.

In three of the four cases, disagreement between experts is substantial.

Plot on the right: The standard deviation increases linearly with the overall number of
stained nuclei. (Roughly, the more cancer cells there are, the more volatile the diagnosis
becomes.)
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input image locations marked by one expert

classification by one expert disagreement between two experts
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RANDOM FOREST CLASSIFIER

Data

“Relative images” of individual cell nuclei, i.e. the difference between a nucleus image and a
background patch from the same tissue sample image. That makes results less sensitive to
variations between tissue samples.

Training

1.
2.

Nuclei are hand-labeled by pathologists.

A random forest classifier is trained on the relative images (as training data points) and the
labels (as training labels).

Diagnosis of a new tissue sample image

1. Input: Entire tissue sample image.

2. Find nuclei using an image segmentation algorithm.
3.
4

. Diagnose according to ratio of healthy to cancerous cells.

Extract subimages of these nuclei and apply random forest classifier.
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extract tissue samples

mark and
Raw data images
<« find and extract cell nuclei
Working data <« cell nuclei images

Mark patterns annotate as

Training data Test data
(patterns marked) (patterns marked)

random forest classifier
classifies cells as healthy/cancerous

Training Trained model /;\epslt)lga(:

(calibration)

Error estimate
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SVM clustering
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Precision/Recall plot for the random forest method (“RDF”) compared to other classifiers. The

“true label” for each data point is a randomly selected pathologist. The performance of
pathologists (red dot) is the average of the aggregate result for all remaining pathologists.
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This application illustrates a number of challenges encountered in applications:
¢ Generating label information is work-intensive.
¢ The comparison experiments show that the training/test labels themselves have limited
reliability.
¢ These methods are now several years old. Neural networks developed in the last few years
might be able to improve the feature extraction step. (More on neural networks and
feature extraction later.)
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NEURAL NETWORKS



A neural network represents a function f : R4 — R%,
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BUILDING BLOCKS

Units

The basic building block is a node or unit:

) .
!

The unit has incoming and outgoing arrows. We think of
each arrow as “transmitting” a signal.

The signal is always a scalar.

A unit represents a function ¢.

‘We read the diagram as: A scalar value (say x) is transmitted to the unit, the function ¢ is
applied, and the result ¢(x) is transmitted from the unit along the outgoing arrow.

Weights
@ .
.

)

If we want to “input” a scalar x, we represent it as a unit, too.

We can think of this as the unit representing the constant
function g(x) = x.

Additionally, each arrow is usually inscribed with a (scalar)
weight w.

As the signal x passes along the edge, it is multiplied by the
edge weight w.

The diagram above represents the function f(x) := ¢(wx).
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X1
fiR* >R withinput x= (xz
X2

A =¢1(wi, %) H(x)=d2(W2, X)) f3(%) = b3((W3, X))
fi(x) 3

fx) = LX) | with fi(x)=¢ (Z Wijx,-)
f3(x) =
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A feed-forward network is a neural network whose units can be arranged into groups
Ly, ..., Lk so that connections (arrows) only pass from units in group £y to units in group
Ly 1. The groups are called layers. In a feed-forward network:

¢ There are no connections within a layer.
¢ There are no backwards connections.

e There are no connections that skip layers, e.g. from £y to units in group Lyy,.

!
.
:

feed-forward not feed-forward not feed-forward

Peter Orbanz - Applied Data Mining
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¢ This network computes the function
2( 2 1/ 1 1 2 101 1
flx,x) = ¢ (W11¢1 (wiix+wy xe) +wird) (w21x1+w22x2))

o Clearly, writing out f gets complicated fairly quickly as the
network grows.

First shorthand: Scalar products
¢ Collect all weights coming into a unit into a vector, e.g.
wi = (Wi, wip)
o Same for inputs: x = (x1,x2)

e The function then becomes

oo ([ ()
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« Each layer represents a function, which takes the
output values of the previous layers as its
arguments.

« Suppose the output values of the two nodes at the
top are yi, y2.

¢ Then the second layer defines the
(two-dimensional) function

@ vy — ¢>}(<W},y))>
S <¢;<<w;,y>>
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Basic composition
Suppose f and g are two function R — R. Their composition g o f is the function

gof(x) :=g(f(x)) -
For example:
f@=x+1 g0 =y  gof()=(+1)
We could combine the same functions the other way around:

foglx) =x>+1

In multiple dimensions
Suppose f : RY — R% and g : R%2 — R%. Then

gof(x) =g(f(x)) is a function R4 — R% .
For example:

f) = (xv)—c  g(y) =sa(y)  gof(x) =sgn((x,v) —¢)
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e As above, we write

L(wl, e
- (4117

¢ The function for the third layer is similarly
FO () =t ((wh o))
¢ The entire network represents the function

F0 =P ) = of )

F(x)

A feed-forward network represents a function as a composition of several functions, each
given by one layer.
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} — )
} e
LN >/<$
O O O }=sm

(x) = f(K)(...f(z)(f(l)(x))) _ f(K)O“_Of(l)(x)



General feed-forward networks
A feed-forward network with K layers represents a function

[ = fPo.ofW(x)

Each layer represents a function f' (¥). These functions are of the form:

o(x) (sigmoid)
¢§k)(<wik)a . >) I{£+x > 7} (threshold)
IRIOE typically:  ¢®(x) = ¢ (constant)
¢§k) ((w‘gk), . >) X (linear)

max{0,x} (rectified linear)

Dimensions
e Each function f®) is of the form

FO Ry R+

¢ dy is the number of nodes in the kth layer. It is also called the width of the layer.

¢ We mostly assume for simplicity: dj = ... =dx =: d.
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If you look up the term “neuron” online, you will find illustrations like this:

This one comes from a web site called easyscienceforkids.com, which means it is likely to be scientifically more accurate than
typical references to “neuron” and “neural” in machine learning.

Roughly, a neuron is a brain cell that:
¢ Collects electrical signals (typically from other neurons)
¢ Processes them
¢ Generates an output signal
‘What happens inside a neuron is an intensely studied problem in neuroscience.
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HISTORICAL PERSPECTIVE: MCCULLOCH-PITTS NEURON

A neuron is modeled as a “thresholding device” that combines input signals:

McCulloch-Pitts neuron model (1943)

o Collect the input signals x1, x2, x3 into a vector X = (x1,x2,x3) € R3
e Choose fixed vector v € R3 and constant ¢ € R.

e Compute:
y =I{{v,x) > 0} forsomec € R.

« In hindsight, this is a neural network with two layers, and function ¢( ¢ ) = I{(v,x) > 0}
at the bottom unit.
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f(x) = sen((v,x) =)
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fx)

fx) = Hvxi+wn+ (e >0} = I{v.x)>c}

Equivalent to linear classifier

The linear classifier on the previous slide and f differ only in whether they encode the “blue”
class as -1 or as 0:

sgn({v,x) —c) = 2f(x) —1
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y =I{v'x > ¢}

« This neural network represents a linear two-class classifier (on R?).
o We can more generally define a classifier on R? by adding input units, one per dimension.
¢ It does not specify the training method.

¢ To train the classifier, we need a cost function and an optimization method.
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Linear units

o(x) =x = = s m

-5

-10

This function simply “passes on” its incoming signal. These are used for example to represent
inputs (data values).

Constant functions

plx) =c

-10 -5 5 10
These can be used e.g. in combination with an indicator function to define a threshold, as in the
linear classifier above.
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Indicator function

¢(x) ={x > 0} os

Example: Final unit is indicator

I{e >0} .

()
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Sigmoids
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Rectified linear units

¢(x) = max{0,x}

10 5 ! 5 10

These are currently perhaps the most commonly used unit in the “inner” layers of a neural
network (those layers that are not the input or output layer).
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HIDDEN LAYERS AND NONLINEAR FUNCTIONS

Hidden units

¢ Any nodes (or “units”) in the network that are neither input nor output nodes are called
hidden.

¢ Every network has an input layer and an output layer.

o If there any additional layers (which hence consist of hidden units), they are called hidden
layers.

Linear and nonlinear networks
o If a network has no hidden units, then
fi(x) = di({wi,x))
That means: f is a linear functions, except perhaps for the final application of ¢.

o For example: In a classification problem, a two layer network can only represent linear
decision boundaries.

¢ Networks with at least one hidden layer can represent nonlinear decision surfaces.
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R
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Three-layer

1 T2
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Solution regions we would like to represent Neural network representation

Peter Orbanz -

¢ Two ridges at different locations are substracted from each other.
o That generates a region bounded on both sides.
¢ A linear classifier cannot represent this decision region.

¢ Note this requires at least one hidden layer.

Applied Data Mining lustration: R.O. Duda, PE. Hart, D.G. Stork, Pattern Classification, Wiley 2001
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‘We have observed

¢ We have seen that two-layer classification networks always represent linear class
boundaries.

o With three layers, the boundaries can be non-linear.

Obvious question

¢ What happens if we use more than three layers? Do four layers again increase expressive
power?
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WIDTH VS DEPTH

A neural network represents a (typically) complicated function f by simple functions (bfk).

What functions can be represented?

A well-known result in approximation theory says: Every continuous function f : [0, 1] — R
can be represented in the form

2d+1

Z & (Z 7ij(xi) )

i=1

where &; and 7;; are functions R — R. A similar result shows one can approximate f to
arbitrary precision using specifically sigmoids, as

Z w(Q) <Z w(l)x, + c;)

i=1
for some finite M and constants c;.

Note the representations above can both be written as neural networks with three layers (i.e.
with one hidden layer).
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WIDTH VS DEPTH

Depth rather than width

o The representations above can achieve arbitrary precision with a single hidden layer
(roughly: a three-layer neural network can represent any continuous function).

e In the first representation, & and 7; are “simpler” than f because they map R — R.

¢ In the second representation, the functions are more specific (sigmoids), and we typically
need more of them (M is large).

¢ That means: The price of precision are many hidden units, i.e. the network grows wide.

¢ The last years have shown: We can obtain very good results by limiting layer width, and
instead increasing depth (= number of layers).

o There is no coherent theory yet to properly explain this behavior.

Limiting width
o Limiting layer width means we limit the degrees of freedom of each function f(¥).
e That is a notion of parsimony.

e Again: There seem to be a lot of interesting questions to study here, but so far, we have no
real answers.
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TRAINING NEURAL NETWORKS

Task

¢ We decide on a neural network “architecture”: We fix the network diagram, including all
functions ¢ at the units. Only the weights w on the edges can be changed during by
training algorithm. Suppose the architecture we choose has d; input units and d> output
units.

o We collect all weights into a vector w. The entire network then represents a function fw (X)
that maps R4 — R%.

¢ To “train” the network now means that, given training data, we have to determine a
suitable parameter vector w, i.e. we fit the network to data by fitting the weights.

More specifically: Classification

Suppose the network is meant to represent a two-class classifier.
¢ That means the output dimension is dp = 1, so fw is a function R — R.
e We are given data X1, Xy, . . . with labels y;, y2, . . ..

e We split this data into training, validation and test data, according to the requirements of
the problem we are trying to solve.

o We then fit the network to the training data.
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o We run each training data point X; through the network fw
and compare fw(X;) to y; to measure the error.

¢ Recall how gradient descent works: We make “small”
changes to w, and choose the one which decreases the error
most. That is one step of the gradient scheme.

e For each such changed value w’, we again run each training
data point X; through the network fy,/, and measure the error
by comparing f,,/ (X;) to ¥;.

Fw(X)
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TRAINING NEURAL NETWORKS

Error measure
» We have to specify how we compare the network’s output fi (x) to the correct answer y.
¢ To do so, we specify a function D with two arguments that serves as an error measure.

¢ The choice of D depends on the problem.

Typical error measures
¢ Classification problem:
D(3,y) :==ylogy (with convention 0log 0 = 0)

¢ Regression problem:
2

D(,y) = |ly -3

Training as an optimization problem
o Given: Training data (x1,y1),. .., (X, yx) with labels y;.

o We specify an error measure D, and define the total error on the training set as

J(w) :=> " D(fw(%),5)
i=1
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BACKPROPAGATION

Training problem
In summary, neural network training attempts to solve the optimization problem

w* = argmin J(w)
w

using gradient descent. For feed-forward networks, the gradient descent algorithm takes a
specific form that is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

In practice: Stochastic gradient descent

e The vector w can be very high-dimensional. In high dimensions, computing a gradient is
computationally expensive, because we have to make “small changes” to w in many
different directions and compare them to each other.

 Each time the gradient algorithm computes J(w’) for a changed value w’, we have to
apply the network to every data point, since J(W') = 1| D(fy (Xi), ¥i)-

 To save computation, the gradient algorithm typically computes D( fy (X;), i) only for
some small subset of a the training data. This subset is called a mini batch, and the
resulting algorithm is called stochastic gradient descent.
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Neural network training optimization problem

min J(w)

The application of gradient descent to this problem is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

Deriving backpropagation
o We have to evaluate the derivative VJ(w).

* Since J is additive over training points, J(w) = > J.(W), it suffices to derive Vy.J,(W).
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The next few slides were written for a different class, and you are not expected to know their content. I show them only to
illustrate the interesting way in which gradient descent interleaves with the feed-forward architecture.



Deriving backpropagation
o We have to evaluate the derivative VyJ(w).

* Since J is additive over training points, J(w) = > J,(W), it suffices to derive V.J,(W).
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Recall from calculus: Chain rule
Consider a composition of functions f o g(x) = f(g(x)).

d(fog) _ df dg
dx dg dx

If the derivatives of f and g are f” and g/, that means: d—(%l (x) =f(g(x))g' (x)

Application to feed-forward network

Let w(® denote the weights in layer k. The function represented by the network is
K 1 K 1
A® = w00 ) = £4) oo f) ()
To solve the optimization problem, we have to compute derivatives of the form

d ap(e ) dhs
ED(fw(Xn)J’n) = df aw
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¢ The chain rule means we compute the derivates layer by layer.

* Suppose we are only interested in the weights of layer k, and keep all other weights fixed.
The function f represented by the network is then

foto (x) = FE) oo plHD) °fv(v]3> ofk=D ... o (x)
e The first k — 1 layers enter only as the function value of x, so we define
28 = pk=D o oD (x)
and get

Fyw () = f® oo ftHD o f) (200)

« If we differentiate with respect to w(¥), the chain rule gives

g g

d
aw (%) = &= g ® T gw®
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e Each f(®) is a vector-valued function f(*) : R% — Ré%-+1,
o It is parametrized by the weights w(*) of the kth layer and takes an input vector z € Ré%.
o We write f(5) (z, w®)).

Layer-wise derivative
Since f (®) and f (=1) are vector-valued, we get a Jacobian matrix

PRCED ap kD)
(k+1) o’ on)
dj . .
o= | = AYEwe)
(k+1) (k+1)
6fdk+1 afdk 1
afl(k) afd(:)

o A® s a matrix of size dig1 X d.

¢ The derivatives in the matrix quantify how f' (*+1) reacts to changes in the argument of
£ if the weights w1 and w®) of both functions are fixed.
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BACKPROPAGATION ALGORITHM

Let w(D | ..., w(&) be the current settings of the layer weights. These have either been
computed in the previous iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass

‘We start with an input vector x and compute
2® =" ... of(l)(x)
for all layers k.
Step 2: Backward pass
« Start with the last layer. Update the weights w(X) by performing a gradient step on
D(f(K) (Z(K) , W(K))7 y)

regarded as a function of w(&) (so z(5) and y are fixed). Denote the updated weights w(X)

¢ Move backwards one layer at a time. At layer k, we have already computed updates
wE o WD, Update wk) by a gradient step, where the derivative is computed as

AK=D K=D &Ky AR (g0 V~V(k+l))ﬂ(z wk))
k] e ’ dW(k) ’

On reaching level 1, go back to step 1 and recompute the z®) using the updated weights.
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¢ Backpropagation is a gradient descent method for the optimization problem

mmJ (w) = ZD(fw(Xz »Yi)

i=1
D must be chosen such that it is additive over data points.

¢ It alternates between forward passes that update the layer-wise function values z®) given
the current weights, and backward passes that update the weights using the current PAON

¢ The layered architecture means we can (1) compute each z® from z*—1 and (2) we can
use the weight updates computed in layers K, . . . , k + 1 to update weights in layer k.
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FEATURE EXTRACTION

Features

+ Raw measurement data is typically not used directly as input for a learning algorithm.
Some form of preprocessing is applied first.

e We can think of this preprocessing as a function, e.g.
F: raw data space — R?
(R¢ is only an example, but a very common one.)

o If the raw measurements are my, . .., my, the data points which are fed into the learning
algorithm are the images x, := F(m,,).
Terminology

¢ Fis called a feature map.
o Its dimensions (the dimensions of its range space) are called features.

¢ The preprocessing step (= application of F to the raw data) is called feature extraction.
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Raw data (measurements)

Feature extraction
(preprocessing)

l

Working data

Mark patterns

This is what a typical processing
pipeline for a supervided learning Split
propblem might look like.

Training data Test data
(patterns marked) (patterns marked)
Training . Apply on

ibration) ——————> e
(calibration) Trained model test data
Error estimate

Peter Orbanz - Applied Data Mining 300



FEATURE EXTRACTION VS LEARNING

Where does learning start?
¢ Itis often a matter of definition where feature extraction stops and learning starts.
¢ If we have a perfect feature extractor, learning is trivial.
¢ For example:

¢ Consider a classfication problem with two classes.

Suppose the feature extractor maps the raw data measurements of class 1 to a single
point, and all data points in class to to a single distinct point.

Then classification is trivial.

That is of course what the classifier is supposed to do in the end (e.g. map to the
points 0 and 1).

Multi-layer networks and feature extraction

¢ An interesting aspect of multi-layer neural networks is that their early layers can be
intepreted as feature extraction.

o For certain types of problems (e.g. computer vision), features were long “hand-tuned” by
humans.

o Features extracted by neural networks give much better results.

¢ Several important problems, such as object recognition and face recognition, have
basically been solved in this way.

Peter Orbanz - Applied Data Mining
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The network on the right is a classifier
f:RY = {0,1}.

Suppose we subdivide the network into
the first K — 1 layer and the final layer, by
defining

F(x):=f& Do . ofD(x)
The entire network is then

F(x) =% 0 F(x)

The function &) is a two-class logistic
regression classifier.

We can hence think of f as a feature
extraction F followed by linear
classification f(X).

Applied Data Mining
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A SIMPLE EXAMPLE

Problem: Classify characters into three
classes (E, Fand L).

Each digit given as a 8 X 8 = 64 pixel
image

g '-ﬁ g |

¢ Neural network: 64 input units (=pixels)

2 hidden units

e 3 binary output units, where fj(x) = 1
means image is in class i.
¢ Each hidden unit has 64 input weights,

one per pixel. The weight values can be
plottes as 8 x 8 images.

Peter Orbanz - Applied Data Mining



Peter Orbanz -

] ms
| | |
| SREs | .
Bl

1T j
] T T
| i
[ | Tl
[ | [ | T
| T

W |
1T m i
T = 5| O N
[ | 11
= i i
[ | T I
| | I
imi m i i

training data (with random noise) weight values of /) and h; plotted as images

e Dark regions = large weight values.

¢ Note the weights emphasize regions that distinguish characters.
¢ We can think of weight (= each pixel) as a feature.

e The features with large weights for /; distinguish {E,F} from L.
e The features for hy distinguish {E,L} from F.

Applied Data Mining lustration: R.O. Duda, PE. Hart, D.G. Stork, Pattern Classification, Wiley 2001
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An example for the effect of layer are autoencoders.

¢ An autoencoder is a neural network that is trained on its own input: If the network has
weights W and represents a function fy, training solves the optimization problem

min x — fiv (%)

or something similar for a different norm.

¢ That seems pointless at first glance: The network tries to approximate the identity
function using its (possibly nonlinear) component functions.

¢ However: If the layers in the middle have much fewer nodes that those at the top and
bottom, the network learns to compress the input.
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}
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}

@ |

}

3 |

}

f(x) =x | |

Layers have same width: No effect Narrow middle layers: Compression effect

¢ Train network on many images.

¢ Once trained: Input an image x.

o Storex’ :=f(® (x). Note x has fewer dimensions than x — compression.

 To decompress x’: Input it into f () and apply the remaining layers of the network

Peter Orbanz - Applied Data Mining
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CROSS-CORRELATION OPERATIONS

Definition
Suppose we define a small (here: 3 X 3) matrix

k_1,—1 k—10 k-1

K= ko_ koo ko,1
ki, -1 k1,0 ki1

For a large matrix A, we define the cross-correlation of A and K as the matrix A © K with
entries

1
(A O K)jj == ajikoo +ai—1j—1k—1, 1+ ... = Z Qitm j+nkm,n

mn=-—1

Remarks

e K is sometimes called a kernel. Caution: The term kernel is used for several, different
concepts in both mathematics and machine learning.

e We can similarly define the cross-correlation if K is of size 5 X 5 etc. The numbers of
rows and columns should be odd, so that kg is at the center of K.
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CROSS-CORRELATION FOR IMAGES

Peter Orbanz

[}
[}
16125592 0 06 0 0
161255 26 6 0 @

0 0 0

0 6 10 74 109 109 109 109 154 123
6 06 0 26 115 215 255 255 255 255 255 236 60
[}

O 71 227 255 255 226 202 146 134 73 4T 0

0 92 252 255 213 102 8

31 246 250 163 0 0
172 255 169 @
63185 6 @

0
[}
[}
[}
75

[}
0
[}
[}
[}

164 183 183 145 183 136

[}
0
[}
[}
[}

[}
0
[}
[}

0

6 0 0
60 0
60 @
6 0 @
6 0 0

1

165255 120 0 O 66 197 255 255 255 255 255 255 255 262
251 261 4 27 243 255 207 110 72 T2 53 79 190 255 170
209 255 44 147 231 102 8

3

80 253 227209 30 0

¢ Recall that we can represent a grayscale image as a matrix A.

0

[}
0

[}
0

[}
0

1

0 0 36 255 151
5 108 225 213
0 125255 252 177 48 1 18 74 105 198 248 134 16
0 0 93 209 249 255 255 255 255 255 255 126 0O
6 8 08 0 34110181 181 167 168 42 5 0

¢ We can then define a kernel matrix K and compute the cross-correlation A © K.
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¢ Consider again a 3 x 3 kernel

k_1,—1 k—1o0 k-1 1
K = kO,—l ko,o k(),l with (A ® K),'j = Z ai+m,j+nkm,n
ki, —1 kio ki mn=—1

e Consider the pixel value a;; at location i, j in A. In the new image A ® K, a;; is the sum of
element-wise producs of K and the direct neighborhood of a;;:

k—y—1ai—1j—1  k—10ai—1; k—11ai—1j+1
(A ©® K)ij = sum of entries of k()y_laiﬂ/‘_l koy()aij ko’lai\]'+1
ki,—1ait1,j—1 k1,0ai+1, k1,18i41,j+1

« In other words, (A © K);; is a weighted average of a;; and its neighbors.

o The next few slides illustrate the effect of different choices of K.
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EXAMPLES

For the identity kernel, nothing happens:

AOK =
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EXAMPLES

If all entries of K are identical, each pixel in the image is “averaged together” with its
neighbors. That results in blurring:

o= | =0 |—
OO | =0 |—
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EXAMPLES

Since diagonal neighbors are further away than horizontal/vertical ones, we can give them
smaller weights. This is also called a “Gaussian blur”:

=
— N
(NS SN ]
N —
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EXAMPLES

We can increase the size of K, which means we are mixing a;; with more neighbors. Here is a
5 X 5 Gaussian blur:

1 4 6 4 1
L[4 16 24 16 4
K=-—1|6 24 36 24 6
256 14 16 24 16 4

1 4 6 4 1
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EXAMPLES

The opposite effect is sharpening: We give the neighbors negative weights. If two adjacent
points look different, A ® K substracts them from each other, so they look even more different:

Note the entries of K add up to 1.
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EXAMPLES

A more drastic form of sharpening is edge detection:

00| =00 | =00 | —

AOK =

Here, the entries of K add up to 0, so (A ® K)ij is visible only if a;; is very different from its neighbors.
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EXAMPLES

This kernel find points that are similar to their lower left and upper right neighbor, and different
from their upper left and lower right one. That means it detects diagonal edges:

AOK =
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fA) = (A0 K)x

a4z ap
Suppose we build a neural network one input unit for each entry of | a1  ax a3
a4y a4z
We use the entries of K as weights and connect everything to a single linear unit (“linear
unit” means ¢(x) = x).
The network then computes the sum of the weighted inputs, which by definition of A® K
is just (A®K)22.
We can obtain another entry (A®K);j by replacing the input values with another
submatrix of A.
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(AOK);
(AGK)2n

F(4) = (40 K)n
@ (i) (iii)

Neural network layers whose units are arranged in a two-dimensional grid are often
visualized as “sheets” as in (ii) and (iii).

The network (i) collects information from a small portion of the input layer, as visualized
in (ii).

We can use a similar network (with different input values but identical weights) to
similarly compute (A®K )23, (A®K )24, etc as in (iii).

In that manner, we can compute every entry of (A®K) and arrange these entries on
another grid of units as the next layer.

In other words: We attach a network of the form (i) to every 3 X 3 patch of input values.
All these networks use the same weights, given by the matrix K. The two-layer network so
obtained computes (A®K). If we changed the weights to some other matrix K’, it would
compute (AOK").
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o Here, the input layer representing A and the consecutive layer representing A® K are
visualized as sheets.

o The layer that computes A®K is often called a convolutional layer, although
cross-correlation layer would be more accurate. (There is another operation called a
convolution that is similar to cross-correlation, but not identical.)

o Neural networks that contain convolutional layers are called convolutional neural
networks, even if not every layer is a convolution. Typically, the first hidden layer
performs a convolution.

¢ Almost all networks used for image processing and computer vision problems are
convolutional neural networks.
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(A©K) MoK )y

o We start with the same network as before that computes (A®K)2z.

¢ For each input vertex, we add a second connection and collect all of these in a second
(linear) unit. That is, the second layer now has two units.

¢ The connections to the first node on the second layer still use the weights given by K.
(The weights are omitted above since the figure would get too crowded.)

» Now specify a second 3 x 3 matrix K’. Use its entries as weights for the additional
connections, collected by the second linear unit.

o The network now computes (A®K )2, (as output of one unit in the second layer) and
(A®K’)2, (as output of the other one).
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¢ An important benchmark problem is object recognition.

o The task is, roughly: An image is fed into a multiclass classifier, and the classifier should
output the label of a/the “dominant” object in the image.

¢ For a picture of a car with background, the label would be “car”, possibly plus a specific
type or model.

¢ The current state of the art for this problem are (convolutional) neural networks whose
input is the entire image (i.e. there is no prior feature extraction step).

¢ The next two slides illustrate models that performed best in comparisons organized as a
contest in 2012 and 2014.
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STATE-OF-THE-ART IN 2012

Peter Orbanz

Applied Data Mining Krizhevsky, Sutskever, Hinton: “ImageNet Class
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Max T Max pooling
pooling pooling

This is an illustration (taken from the research article) of the convolutional network that
first demonstrated enourmous improvements in computer vision benchmark tasks.

“Stride of 4” refers to a convolutional layer that applies 96 kernels in parallel.
Each of the big blocks in the figure represents a convolutional layer.

In between the convolutional layers, additional operations are performed (“pooling” and a
form of normalization).

“Pooling” refers to operations that collect outputs from a rectangular patch adjacent units
and summarize them in a single unit. That reduces layer size.

“Dense” refers to a layer that is fully connected (all possible edges from one layer to the
next are present). These are located at towards the output end of the network, where layer
size has already been reduced.

cation with Deep Convolutional Neural Networks™ 323



¢ Layers: Convolution (blue), pooling (red), various others.

¢ This network was designed by Google (the one of the previous page in academia).
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MACHINE LEARNING BENCHMARKS

How do we evaluate which methods work?

¢ The basic evaluation of data mining/machine learning methods is conducted by individual
research groups and reported in scientific articles.

¢ These results use different data sets, different cross-validation setups, etc. That makes
them hard to compare.

e Itis easy to cheat, too. That is not in anyone’s long-term interest as a researcher, but it
happens.

o Itis easy to make mistakes, e.g. by getting your cross-validation wrong.

Benchmark data sets

¢ Benchmark data sets are sets of labelled data used by many researchers to make results
more comparable.

¢ Early examples in computer vision are the Berkeley Segmentation Dataset and Benchmark
(2001, for image segmentation) and the Caltech 101 dataset (2004, for object
categorization).

Peter Orbanz - Applied Data Mining



BENCHMARK COMPETITIONS

Challenges
¢ To make evaluation (not just data) comparable, some research groups organize
competitions (often called “challenges” in computer vision and machine learning).

¢ The organizers specify a task (e.g. a classification problem) and a performance goal (e.g.
“achieve minimal classification error on the test data”).

¢ Research groups can sign up to participate.
¢ A set of labelled data is made available to participants, for use as training data.

¢ The organizers hold out a test data set (which is kept secret). At the end of the
competition, all participating groups submit their final trained model, the organizers run it
on the test data, and report the results.

ILSVRC

o The best-known example is the ImageNet Large-Scale Visual Recognition Challenge (or
ILSVRC). which evaluates how well an algorithm can perform certain vision tasks, like
classifiying and locating objects in images.

e In 2012, a “deep” neural network drastically improved on previous ILSVRC results. That
was one of the triggers for the current interest of the tech industry in machine learning.
The network is the one picture on slide 323.
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ILSVRC TASKS

(1) Image classification (2010-2014): Algorithms produce a
list of object categories present in the image.

(2) Single-object localization (2011-2014): Algorithms pro-
duce alist of object categories present in the image, along
with an axis-aligned bounding box indicating the position
and scale of one instance of each object category.

(3) Object detection (2013-2014): Algorithms produce a list
of object categories present in the image along with an
axis-aligned bounding box indicating the position and
scale of every instance of each object category.

Peter Orbanz - Applied Data Mining from Russakovsky et al: “ImageNet Large Scale Visual Recognition Challenge”
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CROSS VALIDATION SETUP

Year Train images
(per class)

Val images
(per class)

Test images
(per class)

Tmage classification annotations (1000 object classes)

ILSVRC2010 1,261,406 (668-3047)
ILSVRC2011 1,229,413 (384-1300)
ILSVRC2012-14 1,281,167 (732-1300)

50,000 (50)
50,000 (50)
50,000 (50)

150,000 (150)
100,000 (100)
100,000 (100)

size of smallest size of largest

class

e The data is split into a large training set, plus a validation and a test set.

Research groups download the training set.

class

¢ The validation data sits on a server on which research groups can upload their trained
models. The server runs the model on the validation data and reports the accuracy

estimate to the researchers, who can use this feedback to improve their model.

o The test data is withheld. After a submission deadline, all submitted models are run on the

test data to produce an “official” result.
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EXAMPLE ILSVRC RULES

Example Rules

e Each research group is limited to two validation steps per week. (One team famously
cheated its way around this rule in 2015.)

o There are separate contests that do or do not permit additional training data to be used.

Crowdsourcing

o The data is collected from image search engines.
o It does not come with reliable labels for training, validation and testing.
o The class labels are added by crowdsourcing.

o The labels are structured hierarchically, i.e. there is a meta-category “cars” which contains
specific types of cars as subcategories. The challenge task is to predict the most specific
labels (the leaves in the hierarchy tree).

¢ The next two slides illustrate how the categories are structured.
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Image classification Single-object localization Object detection
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Discuss overfitting



