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Homework 1

Due: 13 February 2014

Homework submission: We will collect your homework at the beginning of class on the due date. If you
cannot attend class that day, you can leave your solution in my postbox in the Department of Statistics, 10th
floor SSW, at any time before then.

Problem 0 (Sample exam problem: Naive Bayes)

This is a problem from a W4400 exam last year. Each homework will contain a Problem 0 with one or two such
sample exam questions. Please solve them just as the other homework problems.

Consider a classification problem with training data {(x̃1, ỹ1), . . . , (x̃n, ỹn)} and three classes C1, C2 and C3. The
sample space is R5, so each data point is of the form x = (x(1), . . . , x(5)). Suppose we have reason to believe
that the distribution of each class is reasonably well-approximated by a spherical (unit-variance) Gaussian, i.e. the
class-conditional distributions are g(x|µk, I) for class k ∈ {1, 2, 3}.

1. How is the Gaussian assumption translated into a naive Bayes classifier? Write out the full formula for the
estimated class label ŷnew = f(xnew) for a newly observed data point xnew.
Hint: This equation should not contain the training data, only parameters estimated from the training
data.

2. How do you estimate the parameters of the model? Give the estimation equations for (a) the parameters
of the class-conditional distributions and (b) the class prior P (y = k) for each class Ck.

3. If our assumptions on the data source as described above are accurate, do you expect the naive Bayes
classifier to perform well? Please explain your answer.

Problem 1 (Maximum Likelihood Estimation)

In this problem, we analytically derive maximum likelihood estimators for the parameters of an example model
distribution, the gamma distribution.

The gamma distribution is univariate (one-dimensional) and continuous. It is controlled by two parameters,
the location parameter µ and the shape parameter ν. For a gamma-distributed random variable X, we write
X ∼ G (µ, ν). G is defined by the following density function:

p (x|µ, ν) :=

(
ν

µ

)ν
xν−1

Γ (ν)
exp

(
−νx
µ

)
,

where x ≥ 0 and µ, ν > 0.1 Whenever ν > 1, the gamma density has a single peak, much like a Gaussian. Unlike
the Gaussian, it is not symmetric. The first two moment statistics of the gamma distribution are given by

E [X] = µ and Var [X] =
µ2

ν
(1)

1The symbol Γ denotes the distribution’s namesake, the gamma function, defined by

Γ (ν) :=

∫ ∞
0

e−ttν−1dt .

The gamma function is a generalization of the factorial to the real line: Γ (n) = (n− 1)! for all n ∈ N. Fortunately, we will not have
to make explicit use of the integral.
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Figure 1: Left: The plot shows the density for different values of the location parameter (µ = 0.3, 0.5, 1.0, 3.0),
with the shape parameter fixed to ν = 2. Since ν > 1, the densities peak. As we increase µ, the peak moves to
the right, and the curve flattens. Middle: For µ = 0.5 fixed, we look at different values of the shape parameter
(ν = 2, 3, 4, 5, 19). Again, all the densities peak, with the peak shifting to the right as we increase ν. Right: If
ν < 1, the density turns into a monotonously decreasing function. The smaller the value of ν, the sharper the
curve dips towards the origin.

for X ∼ G (µ, ν). The plots in Figure 1 should give you a rough idea of what the gamma density may look like
and how different parameter values influence its behavior.

Homework questions:

1. Write the general analytic procedure to obtain the maximum likelihood estimator (including logarithmic
transformation) in the form of a short algorithm or recipe. A few words are enough, but be precise:
Write all important mathematical operations as formulae. Assume that data is given as an i. i. d. sample
x1, . . . , xn. Denote the conditional density in question by p (x|θ), and the likelihood by l (θ). Make sure
both symbols show up somewhere in your list, as well as a logarithm turning a product into a sum.

2. Derive the ML estimator for the location parameter µ, given data values x1, . . . , xn. Conventionally, an
estimator for a parameter is denoted by adding a hat: µ̂. Considering the expressions in (1) for the mean
and variance of the gamma distribution, and what you know about MLE for Gaussians, the result should
not come as a surprise.

3. A quick look at the gamma density will tell you that things get more complicated for the shape parameter: ν
appears inside the gamma function, and both inside and outside the exponential. Thus, instead of deriving
a formula of the form ν̂ := . . . , please show the following: Given an i. i. d. data sample x1, . . . , xn and the
value of µ, the ML estimator ν̂ for the gamma distribution shape parameter solves the equation

n∑
i=1

(
ln

(
xiν̂

µ

)
−
(
xi
µ
− 1

)
− φ (ν̂)

)
= 0 .

The symbol φ is a shorthand notation for

φ (ν) :=
∂Γ(ν)
∂ν

Γ (ν)
.

In mathematics, φ is known as the digamma function.
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Problem 2 (Bayes-Optimal Classifier)

Consider a classification problem with K classes and with observations in Rd. Now suppose we have access to the
true joint density p(x, y) of the data x and the labels y. From p(x, y) we can derive the conditional probability
P (y|x), that is, the posterior probability of class y given observation x.

In the lecture, we have introduced a classifier f0 based on p, defined as

f0(x) := arg max
y∈[K]

P (y|x) ,

the Bayes-optimal classifier.

Homework question: Show that the Bayes-optimal classifier is the classifier which minimizes the probability of
error, under all classifiers in the hypothesis class

H := {f : Rd → [K] | f integrable } .

(If you are not familiar with the notion of an integrable function, just think of this as the set of all functions from
Rd to the set [K] of class labels.)

Hints:
• The probability of error is precisely the risk under zero-one loss.
• You can greatly simplify the problem by decomposing the risk R(f) into conditional risks R(f |x):

R(f |x) :=
∑
y∈[K]

L0-1(y, f(x))P (y|x) and hence R(f) =

∫
Rd

R(f |x)p(x)dx .

If you can show that f0 minimizes R(f |x) for every x ∈ Rd, the result for R(f) follows by monotonicity of
the integral.
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