
Peter Orbanz

porbanz@stat.columbia.edu

Lu Meng

lumeng@stat.columbia.edu

Jingjing Zou

jingjing@stat.columbia.edu

Statistical Machine Learning (W4400)
Spring 2014
http://stat.columbia.edu/∼porbanz/teaching/W4400/

Homework 3

Due: 3 April 2014

Homework submission: We will collect your homework at the beginning of class on the due date. If you
cannot attend class that day, you can leave your solution in my postbox in the Department of Statistics, 10th
floor SSW, at any time before then.

Problem 1 (`q regression)

β1

β2

β̂ββ
x1

x2

x3 x4 x5

β1

β2

β̂ββ
x1

x2

x3 x4 x5

The figures show the cost function components of the `q-regression problems with q = 0.5 (left) and q = 4 (right).

1. Does one/none/both of the cost functions encourage sparse estimates? If so, which one? Explain your
answer.

2. Which of the points x1, . . . , x5 would achieve the smallest cost under the `q-constrained least squares cost
function? For each of the two cases, name the respective point and give a brief explanation for your answer.

Problem 2 (Combining kernels)

It was already mentioned in class that kernel functions can be combined and modified in various ways to obtain
new kernel functions. In this problem, we will convince ourselves that this is indeed true in two simple cases.
Recall that a function k : Rd × Rd → R is a kernel if there is some function φ : Rd → F , into some space F
with scalar product 〈 . , . 〉F , such that

k(x,x′) = 〈φ(x), φ(x′)〉F
for all x,x′ ∈ Rd.

Homework problems:
Let k1(x,x

′) and k2(x,x
′) be kernels on Rd. For all problems below, you can assume F = RD for some D > d.

1. Show that, for any positive real number a, k(x,x′) := ak1(x,x
′) is a kernel.



2. Show that k(x,x′) := k1(x,x
′)k2(x,x

′) is a kernel.

3. Show that, for any positive integer p, k(x,x′) := k1(x,x
′)p is a kernel.

Problem 3 (Boosting)

The objective of this problem is to implement the AdaBoost algorithm. We will test the algorithm on handwritten
digits from the USPS data set.

AdaBoost: Assume we are given a training sample (x(i), yi), i = 1, ..., n, where x(i) are data values in Rd and
yi ∈ {−1,+1} are class labels. Along with the training data, we provide the algorithm with a training routine for
some classifier c (the “weak learner”). Here is the AdaBoost algorithm for the two-class problem:

1. Initialize weights: wi =
1
n

2. for b = 1, ..., B

(a) Train a weak learner cb on the weighted training data.

(b) Compute error: εb :=
∑n

i=1 wiI{yi 6=cb(x(i))}∑n
i=1 wi

(c) Compute voting weights: αb = log
(

1−εb
εb

)
(d) Recompute weights: wi = wi exp

(
αbI{yi 6= cb(x

(i))}
)

3. Return classifier ĉB(x
(i)) = sgn

(∑B
b=1 αbcb(x

(i))
)

Decision stumps: Recall that a stump classifier c is defined by

c(x|j, θ,m) :=

{
+m xj > θ

−m otherwise.
(1)

Since the stump ignores all entries of x except xj , it is equivalent to a linear classifier defined by an affine
hyperplane. The plane is orthogonal to the jth axis, with which it intersects at xj = θ. The orientation of the
hyperplane is determined by m ∈ {−1,+1}. We will employ stumps as weak learners in our boosting algorithm.
To train stumps on weighted data, use the learning rule

(j∗, θ∗) := argmin
j,θ

∑n
i=1 wiI{yi 6= c(x(i)|j, θ,m)}∑n

i=1 wi
. (2)

In the implementation of your training routine, first determine an optimal parameter θ∗j for each dimension
j = 1, ..., d, and then select the j∗ for which the cost term in (2) is minimal.

Homework problems:

1. Implement the AdaBoost algorithm in R. The algorithm requires two auxiliary functions, to train and evaluate
the weak learner. We also need a third function which implements the resulting boosting classifier. We will
use decision stumps as weak learners, but a good implementation of the boosting algorithm should permit
you to easily plug in arbitrary weak learners. To make sure that is possible, please use function calls of the
following form:

• pars <- train(X, w, y) for the weak learner training routine, where X is a matrix the columns of
which are the training vectors x(1), . . . ,x(n), and w and y are vectors containing the weights and class
labels. The output pars is a list which contains the parameters specifying the resulting classifier. (In
our case, pars will be the triplet (j, θ,m) which specifies the decision stump).

• label <- classify(X, pars) for the classification routine, which evaluates the weak learner on X

using the parametrization pars.

2



• A function c hat <- agg class(X, alpha, allPars) which evaluates the boosting classifier (“ag-
gregated classifier”) on X. The argument alpha denotes the vector of voting weights and allPars

contains the parameters of all weak learners.

2. Implement the functions train and classify for decision stumps.

3. Run your algorithm on the USPS data (the digit data we used in Homework 2) and evaluate your results
using cross validation.

More precisely: Your AdaBoost algorithm returns a classifier that is a combination of B weak learners.
Since it is an incremental algorithm, we can evaluate the AdaBoost at every iteration b by considering the
sum up to the b-th weak learner. At each iteration, perform 5-fold cross validation to estimate the training
and test error of the current classifier (that is, the errors measured on the cross validation training and test
sets, respectively).

4. Plot the training error and the test error as a function of b.

Submission. Please make sure your solution contains the following:

• Your implementation for train, classify and agg class.

• Your implementation of AdaBoost.

• Plots of your results (training error and cross-validated test error).

3


