
Peter Orbanz

porbanz@stat.columbia.edu

Lu Meng

lumeng@stat.columbia.edu

Jingjing Zou

jingjing@stat.columbia.edu

Statistical Machine Learning (W4400)
Spring 2014
http://stat.columbia.edu/∼porbanz/teaching/W4400/

Homework 4

Due: 17 April 2014

Homework submission: We will collect your homework at the beginning of class on the due date. If you
cannot attend class that day, you can leave your solution in my postbox in the Department of Statistics, 10th
floor SSW, at any time before then.

Problem 0 (PCA)

An application of PCA popular in Computer Vision are “eigenfaces”, where PCA is applied to a face image data
base, typically for use in face recognition algorithms. This method is very similar to the digit example we have
seen in class (which could analogously be named “eigendigits”, and somebody somewhere probably has done so).

The figure below shows (on the left) 100 examples from a data set of face images. Each image is a 92 × 112
grayscale image and can be interpreted as a vector x ∈ R10304. The figure on the right shows the first 48 principal
components ξ1, . . . , ξ48, visualized as images.

High Dimensional Data

Figure 15.5: 100 training images. Each image consists of 92 ×
112 = 10304 greyscale pixels. The train data is scaled so that,
represented as an image, the components of each image sum to 1.
The average value of each pixel across all images is 9.70 × 10−5.
This is a subset of the 400 images in the full Olivetti Research
Face Database.

(a) (b)

Figure 15.6: (a): SVD reconstruc-
tion of the images in fig(15.5) using
a combination of the 49 eigen-images.
(b): The eigen-images are found us-
ing SVD of the images in fig(15.5)
and taking the mean and 48 eigenvec-
tors with largest corresponding eigen-
value. The images corresponding to
the largest eigenvalues are contained
in the first row, and the next 7 in the
row below, etc. The root mean square
reconstruction error is 1.121 × 10−5,
a small improvement over PLSA (see
fig(15.16)).

being very small. This gives an indication of the number of degrees of freedom in the data, or the intrinsic
dimensionality. Directions corresponding to the small eigenvalues are then interpreted as ‘noise’.

Non-linear dimension reduction

In PCA we are presupposing that the data lies close to a linear subspace. Is this really a good description?
More generally, we would expect data to lie on low dimensional non-linear subspace. Also, data is often
clustered – examples of handwritten 4’s look similar to each other and form a cluster, separate from the 8’s
cluster. Nevertheless, since linear dimension reduction is computationally relatively straightforward, this is
one of the most common dimensionality reduction techniques.

15.3 High Dimensional Data

The computational complexity of computing the eigen-decomposition of a D × D matrix is O
�
D3

�
. You

might be wondering therefore how it is possible to perform PCA on high dimensional data. For example, if
we have 500 images each of 1000×1000 = 106 pixels, the covariance matrix will be a 106×106 square matrix.
It would appear to be a significant computational challenge to find the eigen-decomposition of this matrix
directly. In this case, however, since there are only 500 such vectors, the number of non-zero eigenvalues
cannot exceed 500. One can exploit this fact to reduce the O

�
D3

�
complexity of the naive approach, as

described below.

DRAFT November 6, 2012 311

1. How many principal components are there in total?

2. Can you describe a method that approximately reconstructs a specific face image x ∈ R10304 using only the
first 48 principal components? To describe your method, denote by x̂ the approximate representation of x.
Represent x̂ as an equation x̂ = Please define precisely what each variable occurring on the right-hand
side of the equation means.

Problem 1 (Multinomial Clustering)

In this exercise, we will apply the EM algorithm and a finite mixture of multinomial distributions to the image
segmentation problem. Image segmentation refers to the task of dividing an input image into regions of pixels that
“belong together” (which is about as formal and precise a definition as you will be able to find in the literature.)
One way to approach image segmentation is to extract a suitable set of features from the image and apply a
clustering algorithm to them. The clusters output by the algorithm can then be regarded as the image segments.
The features we will use are histograms drawn from small regions in the image.

Histogram clustering: The term histogram clustering refers to grouping methods whose input features are
histograms. A histogram can be regarded as a vector; if all input histograms have the same number of bins d, a
set of input histograms can be regarded as a set of vectors in Rd. We can therefore perform a simple histogram
clustering by running a k-means algorithm on this set of vectors. The method we will implement in this problem
is slightly more sophisticated: Since histograms are represented by multinomial distributions, we describe the
clustering problem by a finite mixture of multinomial distributions, which we estimate with the EM algorithm.

The EM algorithm for multinomial mixtures. The input of the algorithm is:

• A matrix of histograms, denoted H, which contains one histogram vector in each row. Each column corre-
sponds to a histogram bin.

• An integer K which specifies the number of clusters.

• A threshold parameter τ .

The variables we need are:

• The input histograms. We denote the histogram vectors by H1, ...,Hn.

• The centroids t1, ..., tK . These are Rd vectors (just like the input features). Each centroid is the parameter
vector of a multinomial distribution and can be regarded as the center of a cluster; they are computed as
the weighted averages of all features assigned to the cluster.

• The assignment probabilities a1, ...,an. Each of the vectors ai is of length K, i. e. contains one entry for
each cluster k. The entry aik specifies the probability of feature i to be assigned to cluster k. The matrix
which contains the vectors ai in its rows will be denoted P .

The algorithm iterates between the computation of the assignment probabilities ai and adjusting the cluster
centroids tk.

The algorithm:

1. Choose K of the histograms at random and normalize each. These are our initial centroids t1, ..., tK .

2. Iterate:

(a) E-step: Compute the components of each ai, the assignment probabilities aik, as follows:

φik := exp

∑

j

Hij log(tkj)

aik :=
ckφik∑K
l=1 clφil

Note that φik is the multinomial probability of Hi with parameters tk, up to the multinomial coefficient
n!

Hi1!···Hid!
, which cancels out in the computations of aik.

(b) M-step: Compute new mixture weights ck and class centroids tk as

ck =

∑n
i=1 aik
n

bk =

n∑

i=1

aikHi

tk =
bk∑K

j=1 bkj

2

(c) Compute a measure of the change of assignments during the current iteration:

δ := ‖A−Aold‖ ,

where A is the assignment matrix (with entries aik), Aold denotes assignment matrix in the previous
step, and ‖ . ‖ is the matrix 1-norm (the largest sum of column absolute values). This is implemented
in R as norm(. ,"O").

3. Terminate the iteration when δ < τ .

4. Turn the soft assignments into a vector m of hard assignments by computing, for i = 1, ..., n,

mi := arg max
k=1,...,K

aik ,

i. e. the index k of the cluster for which the assignment probability aik is maximal.

The histogram data: The histograms we use have been extracted from an image by the following procedure:

1. Select a subset of pixels, called the sites, at which we will draw a histogram. Usually, this is done by
selecting the pixels at the nodes of an equidistant grid. (For example, a 2-by-2 grid means that we select
every second pixel in every second row as a site.)

2. Place a rectangle of fixed radius around the site pixel.

3. Select all pixels within the rectangle and sort their intensity values into a histogram.

The data we provide you with was drawn from the 800x800 grayscale image shown below (left):

The image is a radar image; more specifically, it was taken using a technique called synthetic aperture radar (or
SAR). This type of image is well-suited for segmentation by histogram clustering, because the local intensity dis-
tributions provide distinctive information about the segments. The image on the right is an example segmentation
using K = 3 clusters, computed with the algorithm described above.

The histograms were drawn at the nodes of a 4-by-4 pixel grid. Since the image has 800× 800 pixels, there are
200 × 200 = 40000 histograms. Each was drawn within a rectangle of edge length 11 pixels, so each histogram
contains 11× 11 = 121 values.

Homework problems. Download the data file histograms.bin from the course homepage. You can load it in
R with the command

H<-matrix(readBin("histograms.bin", "double", 640000), 40000, 16)

which results in a 40000× 16 matrix. Each row is a histogram with 16 bins. You can check that the matrix has
been loaded correctly by saying dim(H) (which should be 40000 rows by 16 columns) and rowSums(H) (the sum
of each row should be 121).

3

1. Implement the EM algorithm in R. The function call should be of the form m<-MultinomialEM(H,K,tau),
with H the matrix of input histograms, K the number of clusters, and tau the threshold parameter τ .

2. Run the algorithm on the input data for K=3, K=4 and K=5. You may have to try different values of τ to
obtain a reasonable result.

3. Visualize the results as an image. You can turn a hard assignment vector m returned by the EM algorithm
into an image using the image function in R.

Hints:

• You may encounter numerical problems due to empty histogram bins. If so, add a small constant (such as
0.01) to the input histograms.

• Both the E-step and the M-step involve sums, which are straightforward to implement as loops, but loops
are slow in interpreted programming languages (such as R or Matlab). If you want to obtain a fast algorithm,
try to avoid loops by implementing the sums by matrix/vector operations.

4

