a nice picture

Recent publications

  • preprint
  • Aversive Pavlovian control of instrumental behaviour in humans
  • Geurts DEM, Huys QJM, Den Oouden HEM and Cools, R
  • J. Cogn. Neurosci. (2013): In press
  • Adaptive behaviour involves interactions between systems regulating Pavlovian and instrumental control of actions. Here, we present the first investigation of the neural mechanisms underlying aversive Pavlovian-instrumental transfer using fMRI in humans. Recent evidence indicates that these Pavlovian influences on instrumental actions are action-specific: Instrumental approach is invigorated by appetitive Pavlovian cues, but inhibited by aversive Pavlovian cues. Conversely, instrumental withdrawal is inhibited by appetitive Pavlovian cues, but invigorated by aversive Pavlovian cues. We show that BOLD responses in the amygdala and the nucleus accumbens were associated with behavioural inhibition by aversive Pavlovian cues, irrespective of action context. Furthermore, BOLD responses in the ventromedial prefrontal cortex differed between approach and withdrawal actions. Aversive Pavlovian conditioned stimuli modulated connectivity between the ventromedial prefrontal cortex and the caudate nucleus. These results show that action-specific aversive control of instrumental behaviour involves the modulation of fronto-striatal interactions by Pavlovian conditioned stimuli.
  • doi pdf Mapping anhedonia onto reinforcement learning. A behavioural meta-analysis.
  • Huys QJM, Pizzagalli DA, Bogdan R and Dayan P
  • Biology of Mood & Anxiety Disorders (2013) 3:12
  • Background: Depression is characterised partly by blunted reactions to reward. However, tasks probing this deficiency have not distinguished insensitivity to reward from insensitivity to the prediction errors for reward that determine learning and are putatively reported by the phasic activity of dopamine neurons. We attempted to disentangle these factors with respect to anhedonia in the context of stress, Major Depressive Disorder (MDD), Bipolar Disorder (BPD) and a dopaminergic challenge.

    Methods: Six behavioural datasets involving 392 experimental sessions were subjected to a model-based, Bayesian meta-analysis. Participants across all six studies performed a probabilistic reward task that used an asymmetric reinforcement schedule to assess reward learning. Healthy controls were tested under baseline conditions, stress or after receiving the dopamine D2 agonist pramipexole. In addition, participants with current or past MDD or BPD were evaluated. Reinforcement learning models isolated the contributions of variation in reward sensitivity and learning rate.

    Results: MDD and anhedonia reduced reward sensitivity more than they affected the learning rate, while a low dose of the dopamine D2 agonist pramipexole showed the opposite pattern. Stress led to a pattern consistent with a mixed effect on reward sensitivity and learning rate.

    Conclusion: Reward-related learning reflected at least two partially separable contributions. The first related to phasic prediction error signalling, and was preferentially modulated by a low dose of the dopamine agonist pramipexole. The second related directly to reward sensitivity, and was preferentially reduced in MDD and anhedonia. Stress altered both components. Collectively, these findings highlight the contribution of model-based reinforcement learning meta-analysis for dissecting anhedonic behavior.

  • doi pdf Frontal theta overrides Pavlovian learning biases
  • Cavanagh J, Eisenberg M, Guitart-Masip M, Huys QJM and Frank MJ
  • J. Neurosci. (2013) 33(19):8541-8548
  • Pavlovian biases influence learning and decision making by intricately coupling reward seeking with action invigoration and punishment avoidance with action suppression. This bias is not always adaptive; it can oftentimes interfere with instrumental requirements. The prefrontal cortex is thought to help resolve such conflict between motivational systems, but the nature of this control process remains unknown. EEG recordings of mid-frontal theta band power are sensitive to conflict and predictive of adaptive control over behavior, but it is not clear whether this signal would reflect control over conflict between motivational systems. Here we utilized a task that orthogonalized action requirements and outcome valence while recording concurrent EEG in human participants. By applying a computational model of task performance, we derived parameters reflective of the latent influence of Pavlovian bias and how it was modulated by mid- frontal theta power during motivational conflict. Between subjects, individuals who performed better under Pavlovian conflict exhibited higher mid-frontal theta power. Within subjects, trial- to-trial variance in theta power was predictive of ability to overcome the influence of the Pavlovian bias, and this effect was most pronounced in individuals with higher mid-frontal theta to conflict. These findings demonstrate that mid-frontal theta is not only a sensitive index of prefrontal control, but it can also reflect the application of top-down control over instrumental processes.
  • pdf Learned helplessness and generalization
  • Lieder F, Goodman ND and Huys QJM
  • Proceedings of the 35th Annual Conference of the Cognitive Science Society (2013)
  • In learned helplessness experiments, subjects first experience a lack of control in one situation, and then show learning deficits when performing or learning another task in another situation. Generalization, thus, is at the core of the learned helplessness phenomenon. Substantial experimental and theoretical effort has been invested into establishing that a state- and task-independent belief about controllability is necessary. However, to what extent generalization is also sufficient to explain the transfer has not been examined. Here, we show qualitatively and quantitatively that Bayesian learning of action-outcome contingencies at three levels of abstraction is sufficient to account for the key features of learned helplessness, including escape deficits and impairment of appetitive learning after inescapable shocks.
  • doi pdf Dopamine restores reward prediction errors in older age
  • Chowdhury R, Guitart-Masip M, Lambert C, Dayan P, Huys QJ, Düzel E and Dolan RJ
  • Nature Neuroscience 16, 648-653 (2013)
  • Senescence affects the ability to utilize information about the likelihood of rewards for optimal decision-making. Using functional magnetic resonance imaging in humans, we found that healthy older adults had an abnormal signature of expected value, resulting in an incomplete reward prediction error (RPE) signal in the nucleus accumbens, a brain region that receives rich input projections from substantia nigra/ventral tegmental area (SN/VTA) dopaminergic neurons. Structural connectivity between SN/VTA and striatum, measured by diffusion tensor imaging, was tightly coupled to inter-individual differences in the expression of this expected reward value signal. The dopamine precursor levodopa (L-DOPA) increased the task-based learning rate and task performance in some older adults to the level of young adults. This drug effect was linked to restoration of a canonical neural RPE. Our results identify a neurochemical signature underlying abnormal reward processing in older adults and indicate that this can be modulated by L-DOPA.
  • doi pdf Go and nogo learning in reward and punishment: Interactions between affect and effect
  • Guitart-Masip M, Huys QJM, Fuentemilla L, Dayan P, Düzel E and Dolan RJ
  • Neuroimage (2012) 62(1):154-66
  • Decision-making invokes two fundamental axes of control: affect or valence, spanning reward and punishment, and effect or action, spanning invigoration and inhibition. We studied the acquisition of instrumental responding in healthy human volunteers in a task in which we orthogonalized action requirements and outcome valence. Subjects were much more successful in learning active choices in rewarded conditions, and passive choices in punished conditions. Using computational reinforcement-learning models, we teased apart contributions from putatively instrumental and Pavlovian components in the generation of the observed asymmetry during learning. Moreover, using model-based fMRI, we showed that BOLD signals in striatum and substantia nigra/ventral tegmental area (SN/VTA) correlated with instrumentally learnt action values, but with opposite signs for go and no-go choices. Finally, we showed that successful instrumental learning depends on engagement of bilateral inferior frontal gyrus. Our behavioral and computational data showed that instrumental learning is contingent on overcoming inherent and plastic Pavlovian biases, while our neuronal data showed this learning is linked to unique patterns of brain activity in regions implicated in action and inhibition respectively.
  • doi pdf Bonsai trees in your head: How the Pavlovian system sculpts goal-directed choices by pruning decision trees
  • Huys QJM, Eshel N, O'Lions E, Sheridan L, Dayan P and Roiser JP
  • PLoS Comp Biol (2012) 8(3): e1002410
  • When planning a series of actions, it is usually infeasible to consider all potential future sequences; instead, one must prune the decision tree. Provably optimal pruning is, however, still computationally ruinous and the specific approximations humans employ remain unknown. We designed a new sequential reinforcement-based task and showed that human subjects adopted a simple pruning strategy: during mental evaluation of a sequence of choices, they curtailed any further evaluation of a sequence as soon as they encountered a large loss. This pruning strategy was Pavlovian: it was reflexively evoked by large losses and persisted even when overwhelmingly counterproductive. It was also evident above and beyond loss aversion. We found that the tendency towards Pavlovian pruning was selectively predicted by the degree to which subjects exhibited sub-clinical mood disturbance, in accordance with theories that ascribe Pavlovian behavioural inhibition, via serotonin, a role in mood disorders. We conclude that Pavlovian behavioural inhibition shapes highly flexible, goal- directed choices in a manner that may be important for theories of decision-making in mood disorders.