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LOCALIZED POPULATIONS

OF MODEL NEURONS
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From the Department of Theoretical Biology, The University of Chicago,
Chicago, Illinois 60637

ABSTRACT Coupled nonlinear differential equations are derived for the dynamics
of spatially localized populations containing both excitatory and inhibitory model
neurons. Phase plane methods and numerical solutions are then used to investigate
population responses to various types of stimuli. The results obtained show simple
and multiple hysteresis phenomena and limit cycle activity. The latter is particularly
interesting since the frequency of the limit cycle oscillation is found to be a monotonic
function of stimulus intensity. Finally, it is proved that the existence of limit cycle
dynamics in response to one class of stimuli implies the existence of multiple stable
states and hysteresis in response to a different class of stimuli. The relation between
these findings and a number of experiments is discussed.

I N T R O D U C T I O N

1‘
\i
:
.:.

It is probably true that studies of primitive nervous systems should be focused on
individual nerve cells and their precise, genetically determined interactions with
other cells. Although such an approach may also be appropriate for many parts of
the mammalian nervous system, it is not necessarily suited to an investigation 6”fx
those parts which are associated with higher .functions, such as sensory information
processing and the attendant complexities of learning, memory storage, and pattern
recognition. There are several reasons why a shift in emphasis is warranted in the
investigation of such problems. There is first of all the pragmatic point that since
sensory information is introduced into the nervous system in the form of large-
scale spatiotemporal activity in sheets of cells, the number of cells involved is

, simply too vast for any approach starting at the single cell level to be tractable.
’ Closely related to this is the observation that since pattern recognition is in some

sense a global process, it is unlikely that approaches which emphasize only local
properties will provide much insight. Finally, it is at least a reasonable hypothesis
that local interactions between nerve cells are largely random, but that this local

.

.
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randomness gives rise to quite precise long-range interactions. Here an example from :-.
physics suggests itself. If a fluid is observed at the molecular level, what is seen is
brownian motion, whereas the same fluid, viewed macroscopically, may be under: -’ i.
going very orderly streamlined flow. Following up this analogy, we shall develop a
deterministic model for the dynamics of neural populations. This may be inter- ---’
preted as a treatment of the mean values of the underlying statistical processes.

In view of these remarks, we introduce a model which emphasizes not the in- I
dividual cell but rather the properties of populations. The cells comprising such
populations are assumed to be in close spatial proximity, and their interconnections
are assumed to be random, yet dense enough so that it is very probable that there
will be at least one path (either direct or via interneurons) connecting any two cells
within the population. Under these conditions we may neglect spatial interactions .-
and deal simply with the temporal dynamics of the aggregate.t Consistent with this
approach, we have’ chosen as the relevant variable (following Beurle, 1956) the
proportion of cells in the population which become active per unit time. This im-
plies that the relevant aspect of single cell activity is not the single spike but rather
spike frequency. Furthermore, time will be treated as a continuous variable so as to
avoid the introduction of the spurious oscillations often found when a differential
dynamical system is treated by finite difference equations.

Physiological evidence for the existence of spatially localized neural populations
is provided by the work of Mountcastle (1957) and Hubel and Wiesel (1963, 1965).
Their findings indicate that even within relatively small volumes of cortical tissue
there exist many cells with very nearly identical responses to identical stimuli: there
is a high degree of local redundancy.2 It is just such local redundancy which must be
invoked to justify characterizing spatially localized neural populations by a single
variable. Local redundancy in the cerebral cortex has also been inferred from ana-
tomical evidence (Szentagothai,  1967; Colonnier, 1965). \

There is one final and crucial assumption upon which this study rests: all nervous
processes of any complexity are dependent upon the interaction of excitatory and
inhibitory  cells. This assertion is supported by the work of Hartline and Ratliff
(19581, Hubel and Wiesel (1963, 1965),  Freeman (1967, 1968 a, b), S$ntigothai
(19671, and many others. In fact, this assumption is virtually a truism at this point,
yet many neural modelers have dealt with nets composed entirely of excitatory cells
(Beurle, 1956; Farley  and Clark, 1961; ten Hoopen,  1965; Allanson, 1956). It was
just this failure to consider inhibition that led Ashby et al. (1962) to conclude that
the dynamical stability of the brain was paradoxical, and it was the introduction of

1 The neglect of spatial interactions is only temporary; a paper dealing with the extension of the
present model to spatially distributed neural populations is in preparation (Wilson  and Cowan).
* Local redundancy has been used before by Von Neumann (1956) and Winograd and Cowan (1963) to
account for the reliability of information processing in neural nets. In the latter work the neural nets
had properties analogous to the ones discussed in this paper: excitatory and inhibitory cells, densely
interconnected in a redundant fashion.
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inhibition by Grifith (1963) which dissolved the paradox. Consequently, we take it
to hc essential that there be both excitatory and inhibitory cells within any local
neural population. We shall therefore speak of a localized neural population as
being composed of an excitatory subpopulation and an inhibitory subpopulation.
This will require a two-variable description of the population.’

THE MODEL

In accordance with the preceding remarks, we define as the variables characterizing
the dynamics of a spatially localized neural population:

E(t) = proportion of excitatory cells firing per unit time at the instant t;

I(t) = proportion of inhibitory cells firing per unit time at the instant t.

The state E(I) = 0, I(t) = 0, the resting state, will be taken to be a state of low-level
background activity, since such activity seems ubiquitous in neural tissue. Therefore,
small negative values of E and I will have physiological significance, representing
depression of resting activity. E(t) and I(i) will be referred to as the activities in the
respective subpopulations.

We now derive the equations satisfied by E(t) and I(t). By assumption the value
of these functions at time (t + T) will be equal to the proportion of cells which are
sensitive (i.e., not refractory) and which also receive at least threshold excitation at
time t. We shall first obtain independent expressions for the proportion of sensitive
cells and for the proportion of cells receiving at least threshold excitation.

If the absolute refractory period has a duration of r msec, then the proportion of
*excitatory cells which are refractory will evidently be given by4

-s t
E( t’) dt’. \

t-r

Consequently, the proportion of excitatory cells which are sensitive is just

/

t
l- E(t’) dt’.

1-r -\ _ .
Similar expressions are obtained for the inhibitory subpopulation.

The functions giving the expected proportions of the subpopulations receiving at

s Cowan (I 970) has previously developed a two-variable treatment of neural activity in which, howeven
the fundamental variables are the mean rates of firing of individual excitatory and inhibitory cells
rather than of su~populations.
‘ No account is taken of relative refractoriness. An extended model which includes a refractory
period after any desired time course is given in the Appendix; however, the complexity of the ex-
tended model is such that any detailed examination of the elTect.s  of relative refractoriness must await
a thorough investigation of the present simpler model.

H. R. WIUON AND J. D. COWAN Interactions in Populations of Model Neurons 3



. .
least threshold excitation per unit time as a function of the average levels of excita-
tion within the subpopulations will be called subpopulation response functions and
designated by S,(x) and S;(X). We call S,(X) and k&(x)  response functions because
they give the expected proportion of cells in a subpopulation which would respond
to a given level of excitation if none of them were initially in the absolute refractory
state. The general form of these functions can be derived in several ways.

Assume first that there is a distribution of individual neural thresholds within a
subpopulation characterized by the distribution function D(e). If it is further as-
sumed that all cells receive the same numbers of excitatory and inhibitory afferents,
then on the average all cells will be subjected to the same average excitation x(r),
and the subpopulation response function S(X) will take the form:

s(x) = 6”” D(e) de. (1)

Alternatively, assume that all cells within a subpopulation have the same thresh-
old 8, but let there be a distribution of the number of afferent synapses per cell. If
C(W) is the synaptic distribution function and x(t) the average excitation per
synapse, then all cells with at least 8/x(t) synapses will be expected to receive sufficient
excitation. Thus, the subpopulation response function takes the form:

s(x) = j-,,,, C(w) dw.

The validity of both of these formulas of course rests on the assumption that the
total number of afferents reaching a cell is sufficiently large, for it is only in this case
that all cells will be subjected to approximately the same x(t).

.

S(x) as defined in either equations 1 or 1 a is readily seen to be a monotonically
increasing function of x(t) with a lower asymptote of 0 and an upper asymptote of
1. If in addition D(8) or C(W) is a unimodal distribution, the response function will
assume a sigmoid form such as that shown in Fig. 1. It is this sigmoid form which
will be taken to be characteristic of any acceptable subpopulation response func-
tion. Any functionf(x)  will be said to belong to the class of sigmoid ftictions  if:

(a) f(x) is a monotonically increasing function of x on the_ interval (- ~0, a ),
(b)f(x) approaches or attains the asymptotic values 0 and 1 as x approaches - 43

and ~0 respectively, or
(c)f(x) has one and only one inflection point. This inflection point will be termed

the subpopulation threshold, although it is related to the single cell thresholds only
through equations 1 or 1 a.

There are several points to be made concerning the sigmoid shape of the sub-
population response function. First, the phenomenological significance of the
sigmoid shape is intuitively clear: in a population of threshold elements too low a
level of excitation will fail to excite any elements, while very strong excitation can do.

4 BIOPHYSICAL  JOURNAL VOLUME 12 1972
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more than excite all of the elements in the population. Second, a number of experi-9

P mental studies have shown that single cell response curves are sigmoid functions of
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excitation (Kernel& 1965 a, b) as well as population response curves (Rall, 1955 o,

. . . . -
‘. %

b, c). Finally, it may be noted that the response function is essentially the event
‘.I : f..

=_ : -:’ .t 1

density of renewal theory (Cox, 1962). The event density is known to be related to a

_ :
1
a
‘I
1

sum of convolutions of first-passage time densities for the single units of the popula-
tion. The relationship of the subpopulation response function to the first-passage
density has been explored more fully by Cowan (1971).

Before proceeding it should be mentione,d that if D(8) or C(W) is multimodal,
S(x) will still be monotonic but will not be sigmoid as defined above. Rather than a
unique inflection point, there will be one inflection point for each mode of the dis-
tribution, as is shown in Fig. 2 for the bimodal case. For an n-modal distribution,
however, S(x) can always be written as a weighted sum of It sigmoid functions having
different inflection points. Physiologically, a multimodal distribution would be
expected to correspond to the presence of a number of distinct cell types within the
subpopulation. For the present we shall take S(X) to be a single sigmoid function,

‘ ._.
,

but we will return briefly to the more complex case later.
An expression for the average level of excitation generated in a cell of each sub-

population must now be obtained. If it is assumed that individual cells sum their
inputs and that the effect of stimulation decays with a time course a(r), then the
average level of excitation generated in an excitatory cell at time f will be:

s
t

ff(t - t’)[c1E(t’) - cz~(t’) + P(t)1 dt’.m (2)

The connectivity coefficients cl and c2 (both positive) represent the average number

FIGURE 1 F~GTJRE  2
FIGURE 1 Plot of typical sigmoid subpopulation response function. X is average level
of excitation in threshold units. The particular function shown here is the logistic cuTye:
S(x)  = I/[ 1 .+ e+*-‘)]  with B = 5, u = 1.

; FIGURE 2 Subpopulation response function resulting from bimodal distribution of tbresh-

k
olds or afkrent  synapses. X is excitation in threshold units, while  4 and Br are the two

< local maxima of the underlying distribution. Note that this curve may be decomposed  into
r: a weighted sum of two sigmoid functions.

c
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of excitatory and inhibitory synapses per cell, while P(t) is the external input to the
I. ,,

excitatory subpopulation. A similar expression but with different coefficients and a-’
different external input will apply to the inhibitory subpopulation. The differing
coe5cient.s reflect differences in axonal and dendritic geometry between the excita-
tory and inhibitory celI types, while the difference in external inputs assumes the
existence of cell-type specSc  afferents to the population.

Given these expressions for the subpopulation response functions, the average ,
excitation, and the proportion of sensitive cells in each subpopulation, we may now
obtain equations for the activities E(t) and 1(t). As we have noted, the activity in a
subpopulation at time (t + T) will be equal to the proportion of cells which are both
sensitive and above threshold at time t. If the probability that a cell is sensitive is .
independent of the probability that it is currently excited above its threshold, then
the desired expression for the excitatory subpopulation is just:

[I - l-E(/) dt’]s.(x)st.

In general, however, there will be some correlation between the level of excitation of
a cell and the probability that it is sensitive. Furthermore, this correlation will tend
to reduce the value of the expression just obtained. This is so because cells which
are currently highly excited are more likely to have been highly excited in the
recent past and thus are more likely to have already fired and be refractory. Designat-
ing this correlation between excitation and sensitivity by

Y EO’) dt’, se(x) ,1
the previous expression becomes:

E(i) d+.(x){1 - ~[~~E(L’)dt’,S.(x)]}SI.

Although the particular functional form of y will depend on the details ,~f the con-
nectivity or threshold distribution within the population, it will always have the
following properties: - -

The first two conditions follow from the observation that the uncorrelated and cor-
related expressions will coincide when UN of the cells are below threshold, above
threshold, sensitive, or refractory.

6 BI~P~~AL  JOURNAL VOLUME 12 1972
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‘$ In the case we are considering, that of a richly interconnected population of cells,

t
4

max (y) will generally be very small. There are two reasons for this. The first is the
i_ -.. j presence of spatial and temporal fluctuations in the average level of excitation within

.,,. .. ._~, :. j the population caused both by the presence of fluctuations in the inputs and by the
-.

i activity due to firing of cells within the population. The second is the existence of
‘8 fluctuations in the thresholds of the individual cells themselves (Frishkopf and .
t Rosenblith, 1958; Verveen and Derksen, 1969; Rall and Hunt, 1956). In the present
; study, therefore, we shall take y to be zero, thus dealing with the case in which

sensitivity is not correlated with level of excitation. It follows that the equations
governing the dynamics of a localized population of neurons are:

at + 7) = [l - l*E(t’) dt’]

t
0 s* a(1 - oklm’) - cJ( t’) f P(i)] dt’ , ( 3 )a0 >

and

I(l + 4 = [I - [+,1(i) df’]

a(t - f’)[caE(tl) - CA’) + , (4)

for the excitatory and inhibitory subpopulations.

-,

TIME COARSE GRAINING \

Equations 3 and 4 are intuitively simple in that each term has been shown to have
a clear physiological interpretation. Mathematically, however, they are extremely
complex both because of their strongly nonlinear character and because they involve
temporal integrals. The nonlinearity is a fundamental characteristic of this as wefl
as most other biological control systems. The presence of temporal integrals, how-
ever, is an aspect of lesser significance biologically, as will now be shown. The
mathematical advantage to be gained from the removal of the time integrals will be
the applicability of phase plane analysis to extract significant qualitative features
of the solutions of equations 3 and 4 for various parameter ranges and initial condi-
tions.

,

~ The technique we will use to simplify equations 3 and 4 is a form of temporal
coarse graining, which was first applied by Kirkwood  (1946) to some problems
in statistical physics. Although we shall not follow the original arguments precisely,
the basis of the method is the replacement of the dependent variable, e.g. f(t), by
the moving time average of this quantity over some appropriately chosen interval

H. R. WILSON AND J. D. COWAN Zntemctions in Populations of Model Neurons 7
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S. The coarse-graiaed variable,‘T(t),  is thus given by:

Obviously, the effect of this change of variable is to average out rapid temporal
variations taking place on a time s&e shorter than S. To justify the use of the ’
temporal coarse-grainiag approximation, therefore, it is necessary to show that the
behavior which is lost through averaging is not of significance for the problem at
hand.

To obtain the appropriate coarse-graiaed forms for equations 3 and 4, notice first
that E(t) and I(t) appear on the right. side of these equations only in the form of
time-averaged quantities. If a(t) is close to unity for 0 5 t 5 r and drops fairly
rapidly to zero for t > r, then it is a reasonable approximation to replace both ’
these integrals by the same coarse-graiaed variables. That is,

st
E( t’) dt’ --) r&t),

t-r

I
t dt - t’)E( t’) dt’ -+ L!?(t),
* (6)

with k and r constant. Similar replacements apply to 1(t).
As time coarse graining has a marked smoothing effect on temporal variation,

it is appropriate to replace E(t + 7) and 1($ + 7’) in equations 3 and 4 by Taylor
expansions in the coarse-graiaed variable about the value r = 0. Thus, we arrive
at the time coarse-grained form of equations 3 and 4:

di?
7dt = -E+(l - d?)s,[kcl E - czkl + kP(t)], \ (7)

AU
7z = -I + (1 - rf)si[k’caE - c4k’I + k’Q( 1 j].

In order to assess the appropriateness of the coarse-grainiag approxl%atioa,  we
have compared computer solutions to equation 3 with those obtained from equation
7. For this purpose equation 3 was expanded to lowest order in 7, and cr(t - i)
was taken to be an exponential decay. Interaction with the inhibitory subpopulation
was excluded from both equations 3 and 7 to simplify the comparison. Thus we are
concerned with the equations:

dE
2- E( t’) dt’] s, { 1: e-“‘t-“‘[c~ E(j) + P( t’)] dr’) , ( 9 )

di!? =LE+(1
TiTm -: rI?)s,[kcr I?(t) + kP(t)l. (10)

8 BIOPHYSICAL  JOURNAL VOLUME 12 1972
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The major difference that is observed between the two casts is that the solution to
equation 9 generally involves a damped oscillation with period equal to twice the
refractory period, whereas the solution to equation 10 approaches the same asymp-
totic value monotonically. A typical exam’ple is shown in Fig. 3.

WC suggest that this damped oscillation is not of great significance, for the follow-
ing reasons. First, as the period of the oscillation is dependent almost entirely on the
Icngth of the absolute refractory period, it cannot transmit information concerning
the nature of a stimulus. Thus, the damped oscillation is not likely to have any
functional significance. Second, although damped oscillations are often observed in
evoked potential studies (Freeman, 1967, 1968 a, b; Aadersen and Eccles, 1962;
MacKay, 1970), such oscillations typically have periods of 40 msec or longer,
whereas an oscillation produced by absolute refractoriness alone would be unlikely
to have a period of more than about 6 msec. In addition, Freeman’s work makes it
reasonably certain that the oscillations observed in evoked potential studies result
from interactions among excitatory and inhibitory neurons. Finally, if it is the loag-
time behavior of a neural population (on the order of 100 msec) that is functionally
significant, then the coarse-grained equation 10 provides correct results.

There is, however, an apparent exception to the last point: for certain parameter
ranges the solution to equation 9 can be shown to give sustained oscillations. A
necessary condition for this is that the summation constant a! be much smaller than
the refractory period. This is usually not the case, for physiological studies show (Y
to bc around 4 msec and T around l-2 msec (Eccles, 1964). Furthermore, we would
roughly expect that for equation 6 to be valid, Q would have to be somewhat greater
than r, for otherwise the exponentially weighted integral would approach zero too
fast for significant temporal averaging to take place. Thus, we conclude that when
OL and r are given physiologically reasonable values, the temporally coarse-graiae,d
equations are valid.

PHASE PLANE ANALYSIS

Before proceeding to analyze equations 7 and 8, one minor adjustment will be ma&
for conceptual and mathematical convenience. As previously mentioned, the state
E = 0, I = 0 will be chosen to be the state of low-level background activity so
ubiquitous in the nervous system. The source of this activity (be it spontaneous,
reverberatory, or driven) is of no consequence to the present investigation. The
mathematical consequence of this choice of resting state is that E = 0, I = 0 must
be a steady-state solution to equations 7 and 8 for P(t) = Q(r) = 0, i.e., in the

. absence of external inputs. Furthermore, the resting state must be stable to be of
’ physiological significance.

The first of these requirements is readily fulfilled by transforming S, and Si so
that S,(O) = S;(O) = 0. Given any sigmoid function, this may be done by sub-
tracting S(0) froth the original function. Now, however, the maximum values of the

H. R. WILSON AND J. D. COWAN Interactions in Populations of Model Neurons 9
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response functions will in general be less than unity. Designating these values by
k, and ki , the refractory terms must be modified, giving the final result:

dE
*e dt = -E + (k, - r,E)S,(clE - cd + P), (11)

dl
ri z = -I + (ki - riI)S<(CaE - c~I + Q). (12)

(The bars denoting coarse graiaiag have been dropped for convenience.)
The equations may be analyzed qualitatively using the E, I phase plane. From the

mathematical properties of sigmoid functions, it is evident that S, and Si have unique
inverses. Denoting these inverses by se-’ and si’it is possible to write the equations
for the isoclines corresponding to dE/dt = 0 and dl/dt = 0 as:

CZI = clE - s,’(keTreE)+P for $=Q

c3E = cqr+si -l(k, LriI) - Q for $ =a

(13)

(14)

Notice that c, and c3 must always be nonvanishing for the isocliaes to be non-
trivial, thus making negative feedback between the subpopulations an essential
feature of the model. A typical plot of these two equations for P = 0, Q = 0 is
shown in Fig. 4. In this case there are three steady-state solutions correspcadiag  to
the three intersections of the two curves. Depending on the parameter values chosen
there may be either one or five steady states instead of three, a point
shall return.

to which we

I in msec I
FIGURE 3 FIGLIRE 4

FIGURE 3 Comparison of solution to equation 9 (‘lighter line) with solution with the
temporal coarse-grained equation 10 (heavier line). Duration of refractory period: r = 3

KFk, 4 Phase plane and isoclines (equations 13 and 14). (+) denotes stability and (- )
instability of steady state:‘Parameters:  cl = 12, cz = 4, q = 13, c, = 11, a, = 1.2, 8. = 2.8:
ai = 1, 0; = 4, r. = I, rc = 1, P = 0, Q = 0.

10 BIOPHYSICAL  JOURNAL VOLUME 12 1972
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3 Before going further, Ict us choose a particular form of sigmoid function to make

matters more definite. The form we shall choose is the logistic curve [shifted down-
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ward by a constant amount so that S(O) = 01:

s(x) = 1 1
1 + exp t-(x - e)] - 1 + exp (&I)’

( 15 >

Here u and 13 are parameters, the latter giving the position of maximum slope and
the former determining the value of the maximum slope through the relationship:

max [S’(X)] = s’(e) = f . W) ’

No particular significance is to be attached to the choice of the logistic curve; any
other function with the defining sigmoid properties would be equally suitable. A
different function would, of course, lead to different detailed dynamics, but qualita-

’tive properties of the solutions such as number and stability of steady states, hys-
teresis effects, presence of limit cycles, etc., may be obtained from equations 11 and
12 for any particular function chosen.6

Returning now to our discussion of the isoclines defined by equations 13 and 14,
WC first observe that the inverse of a sigmoid function is a monotonically increasing
function of its argument ranging from - 03 to + 0~. Therefore, E as defined by
equation 14 will always be a monotonically increasing function of I. On the other
hand, because of the negative sign before 8,’in equation 13, I will be a generally
decreasing function of E except over a short range where it may temporarily in-
crease. This is observed in the curve dE/dt  = 0 in Fig. 4. This qualitative difference
between the two isoclines is a direct manifestation of the antisymmetry between
excitation and inhibition.

As it is the “kink” in the isocline for dE/dr = 0 which gives rise to the possibility
of multiple steady states, hysteresis phenomena, and maintained oscillations, it is
important to know for what values of the parameters this temporary reversal,ig
the slope of equation 13 can occur. A necessary and sufficient condition for this is
that the maximum slope of this curve of 1 as a function of E be greater than zero.
The maximum slope is not easy to calculate, but a sufficient condition may be simply
obtained by requiring that the slope of equation 13 at the inflection point of See’ be
greater than zero. The slope of the isocline at this point is

,

6 This assertion may be proved through considerations of the general shape of inverse sigmoid func-
tions and the resulti?g shapes of the isoclines, equations 13 and 14.

H. R. WIUON AND J. D. COWAN Znferactions  in Popdutions  of Model Neurons 11



thus leading to the condition:

cl > 9/a,, (17)
. . . ._i .i

i where n, is the slope parameter for the excitatory response function. In obtaining
r condition 17 rs and ri have been set equal to unity in order to simplify the result.

As a matter of convenience we shall adopt this value for r, and ri from now on, as
nothing essential is lost thereby.

A physiological interpretation of condition 17 is possible once it is realized that
l/a, is directly related to the variance of the distribution of thresholds or synaptic
connections from which the excitatory subpopulation response function was derived
(see equations 1 and 1 a). That is, for the maximum slope of the response function
(see equation 16) to increase, it is necessary that the variance of the underlying
distribution decrease. Thus, condition 17 implies that a sufficient condition for the
existence of multiple steady states is that the average number of synapses between-
excitatory neurons must exceed a function of the variance in the distribution of these
connections (or alternatively, the variance in the distribution of thresholds).

Assuming that condition 17 is satisfied, under what conditions will there exist
multiple steady states? If P and Q are restricted to the value zero, this is a difficult
question to answer, for the conditions will depend in complex ways on all of the
parameters of the population. If P and Q are not so restricted, however, then we may
state the following theorem.

Theorem 1. If cl > 9/a, , then there is a class of stimulus configurations
such that the isoclines defined by equations 13 and 14 will have at least three inter-
sections. That is, equations 11 and 12 will have at least three steady-state solutions.

A stimulus configuration is defined to be any particular choice of constakt values
for P and Q.

. .

Proof: The condition cl > 9/a, is sufficient to insure that there will be a
region in which the isocline for dE/dt = 0 can be intersected at three poi’nts by a
line parallel to the E-axis in the phase plane. As the isocline for dI/dr = 0 approaches
asymptotes parallel to the E-axis, and as the effect of changing P and Q is to trans-
late their respective isoclines parallel to the I- and E-axes respectively, one can
always choose values of P and Q for which there are at least three intersections.

Once the number and locations of steady-state solutions to equations 11 and 12
have been determined, the stability of each steady state can readily be determined

; by linearization around each state and solution of the resulting characteristic equa-

3‘
tion. The procedure is simple but tedious, and no real insight is to be gained from

k displaying the equations. Accordingly, we shall simply indicate stability charac-
,“ teristics where appropriate.I.
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in the cxamplc illustrated  in Fig. 4 two of the three steady states can be shown to be1
1_. . 1 stable  and arc separated by an unstable state. This fact, plus the observation that

-._ .,... :.; j the effect of a change in the value of P or Q is to translate the appropriate isocline-.. ,;,::, ! parallel to one of the phase plane axes, suggests the existence of hysteresis phenom-‘1 : i
ena. (It will be recalled that P and Q represent external inputs to the excitatory
and inhibitory subpopulations.) This is indeed the case, and a graph of the hysteresis

i loop obtained from Fig. 4 as P is varied and Q held constant is shown in Fig. 5.
Only excitatory activity has been plotted, although a corresponding plot could be
made for the accompanying inhibitory activity. Had P been held constant and Q
varied the resulting hysteresis loop would have been reversed: excitement of in-
hibitory cells leads to a decrease in excitatory cell activity.

The hysteresis phenomenon illustrated in Pig. 5 is a simple one, as only two stable
states are involved. Since stability of two of the three states is easy to prove, a
sufficient condition for the existence of such a loop is given by condition 17. Simple
hysteresis loops have been demonstrated and discussed by Harth and coworkers in
model neural populations containing mainly excitatory cells (Harth, et al., 1970;
Anninos, et al., 1970). Consequently, it is not surprising that condition 17 contains
only parameters of the excitatory subpopulation of the present model.

The presence of inhibitory cells can lead to more complex hysteresis phenomena.
Two examples of this are shown in Figs. 6 and 7. In the former case two separated
loops occur, while in the latter three simultaneous stable steady states are observed.
Parameters may be chosen so that the points at which the intermediate stable state
in Fig. 7 appears and vanishes bear any desired relation to the bifurcation points

.A

E
0.25.

/ I “L\ 1

ui

I t

1; -1

I I.-.--i  --_I_-  -1 -------I
0.6 -0.3 0 0.3 0.6 -0.3 0 0.3 0.6 0.9

P P
FIGURE 5 FIGURE 6

FIGURE 5 Steady-state values of E as a function of P (Q = 0). Solid lines indicate stable
states, while the dashed line indicates an unstable state. Hysteresis loop i&icated by arrows
is generated if P is varied slowly back and forth through the range shown on the graph.

; Parameters are those given in Fig. 4.
FIGURE 6 Steady-state values of E as a function of P (Q = 0). Solid lines  indicate stability,

‘i dashed line, instability. Here two simple hysteresis loops (arrows) are separated by a region

;
with a single stable state. Parameters: cl = 13, c2 = 4, cr = 20, c, = 2, (I. = 1.2, e, = 2.7,
Ui = 5, Oi = 3.7, r# = 1, ri = 1.

+
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for the upper and lower stable states. Thus, as P increases the intermediate stable
state may vanish before the lowest state, etc.

A sufficient condition for the existence of five steady states may be derived by
examining the phase plane and isoclines in Fig. 8. Parameters here are those used to
obtain the double hysteresis loop in Fig. 7. It will be seen that such a configuration

.,: .’ .I % of isoclines can only be obtained if the minimum slope of the isocline for dE/dt =’ 0
t:

i is less than the reciprocal of the maximum slope of the kink in the isocline for
dE/dt = 0. (The reciprocal slope must be taken in the latter case because equation

2 13 defines I as a function of E.) A sufficient condition for this is that:

asc2 ,aic4+9
a, cl - 9 . (13)ai cI

It is obvious that condition 18 can only be satisfied if a,q is greater than 9, so condi-
tion 17 must also be satisfied. We state this as a second theorem.

..,. :

Theorem 2. Let the parameters of a neural population satisfy equation
18. Then five steady states will exist, though not necessarily concurrently (see
Fig. 6), for some class of stimulus configurations.

This is not a sufficient condition for multiple hysteresis phenomena, since the
intermediate state may be unstable in some cases.

A physiological interpretation of condition 18 is more apparent if it is rewritten
as

a.aic2c3  > (adI - 9)(aic4 + 9). (19)

Neglecting a, and ai , which appear on both sides of the expression, it will be noted
that c2c3 is a measure of the strength of the negative feedback loop in the popula-

F I G U R E  7 FIGURE 8
FIGURE 7 Steady-state values of E as a function of P (Q = 0). Solid lines indicate stability
and dotted lines, instability. Here two overlapping hysteresis loops (arrows) are present:
no@ the existence of three stable states in an interval around P = 0. Parameters: cl = 13,
CZ =  4,cr = 22,cb =  2 , a .  =  l.S,&
FIGURE: 8

= 2.5, & = 6, f?, = 4.3, r, = 1, ri = 1.
Phase  plane and isoclines with parameters chosen to give three stable (+) and

two unstable (-1 steady states. Parameters are the same as those in Fig. 7 with P = 0.
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tion. Similarly, the right side of condition 19 is a product of factors measuring the
strengths of interactions wit&n the excitatory and inhibitory subpopulations respec-
tively. Thus, it may be said that condition 19 requires that there be a relatively
strong negative feedback loop within the neural population.

In contrast to the requirements for simple hysteresis, it is evident from the fore-
going that multiple hysteresis phenomena are dependent upon the inclusion of
inhibition as an essential part of the present model. Although Smith and Davidson
(1962) and Griffith (1963) did exhibit special cases in which an intermediate state
of activity was stabilized by inhibition, we are not aware of any previous discussion
of multiple hysteresis phenomena in model neural populations.

Functionally, hysteresis was first suggested as a physiological basis for short-term
memory by Cragg and Temperley (1955). Such a possibility is evident, for any input
of sufficient intensity and duration will cause the activity in the neural population
to jump from the lowest (resting) state into one of the stable excited states, and the
activity will remain in this state even after the input ceases. It may also be noted in
this context that stable high-level activity of this type may’be interpreted as resulting
from reverberation: activity may circulate in the population in such a manner that
the total activity is constant. Hysteresis as a form of short-term memory is therefore
consistent with the work of Hebb (1949).

In addition to these conjectures linking hysteresis to short-term memory, there
is at least one experimental verification of the existence of hysteresis within the
central nervous system. This is the work of Fender and Julesz (1967), in which it is
demonstrated that hysteresis is operative in the fusion of binocularly presented
patterns to produce single vision. Since the earliest interactions between patterzrs
presented to the two eyes occur in area 17, it is clear that Fender and Julesz have
demonstrated the existence of hysteresis phenomena in cortical tissue. Our model
provides a neural interpretation of these results.

It is important to note that hysteresis has two important forms of noise insensitiv-U
ity. Observe first that in a loop such as that in Fig. 5 a large change in P is necessary
to excite the population to the higher stable state: there is a population threshold.
Secondly, because of the response time of the population even suprathreshold in-
puts will fail to alter the state of the population if they are of insufficient duration.
To measure this time-intensity relationship a stimulus of intensity P was applied?0
an excitatory subpopulation which was initially in the resting state or passed to a
state of maintained self-excitation. The plot in Fig. 9 represents the time-intensity
threshold for the initiation of maintained activity. This curve is of the Block type
which is commonly observed in the visual system (Le Grand, 1957). For a noisy
system such as the brain subjected to a noisy environment these features are of
obvious significance.

;
Finally, let us consider briefly the case in which the excitatory subpopulation has

a bimodal distribution of thresholds or connections and consequently a response
function such as that shown in Fig. 2. Clearly, this response function may give rise

.
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to an isocline for dE/dt  = 0 in which there are two kinks, i.e., two regions of
. . . positive slope of the isocline separated by a region of negative slope (see equation ”

d

13). This additional kink will increase the number of possible intersections of the
” > two isoclincs by two, one of which will bc stable. Therefore, one additional loop

. . . . j will be ad&d to the hystcrcsis phcnomcnon. In gcncral, an n-modal excitatory sub
:
4 population rcsponsc function will give rise to complex hysteresis phenomena corn-

posed of n simple hysteresis loops. The existence of a multimodal distribution of
i thresholds or synapses within the excitatory subpopulation will, of course, yield
7 similar results.

TEMPORAL PHENOMENA: LIMIT CYCLES

So far discussion has been limited to steady states, and nothing has been said of
the transient behavior of the neural population. This is because the approach to a
stable steady state has been found to be monotonic and uneventful in most cases.
There are, however, two types of temporal behavior exhibited by our model which
are of considerable physiological interest.

There are a number of physiological systems which, in response to impulse stimu-
lation, produce an average evoked potential in the form of a damped oscillation.
Among such systems are the thalamus (Andersen and Eccles, 1962) and the olfactory
bulb and cortex (Freeman, 1967,1968 a, b). Further examples are given in MacKay
(1970). Such oscillations typically show periods of 25-40 msec or more.

The- usual interpretation is that the potential seen by the recording electrode
represents the net difference between excitatory and inhibitory postsynaptic poten-

,:.

t in msec t in hiseE
FIGURE 9 FKXIRE 10

FIGURE 9 Strength-duration curve for excitation of population from lower to upper
stable steady state in Fig. 5. Curve indicates intensity (P)  and duration (r) of rectangular
impulse which is just sufficient for population to become self-exciting and pass to upper
excited state. Parameters are those for Fig. 5, with r = 8 msec.  Dashed line indicates asymp-
totic value of P below which population cannot become self-exciting regardless of the
duration of stimulation.
FIGURE 10 Damped oscillatory behavior of [E(t) - Z(r)] in response to brief stimulating
impulse. It is suggested that this function is related to the average evoked potential (see
text). Parameters: cl = 15, c2 = 15, c3 = 15, c4 = 3, a, = 1, 8. = 2, ui = 2, ei = 2.5,
T = 10 msec.
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i
tials in the neighborhood of the electrode. This suggests that the function in our
model most closely related to the average evoked potential would be proportional

I .~
- to [E(r) - I(r)]. For an appropriate choice of parameters, this function will respond

_. .f
4 to impulse stimulation in a damped oscillatory manner as shown in Fig. 10. TO

: 7. I obtain a period similar to that obtained experimentally, it was necessary to choose
:.. -y..-. _ .- .;, “, ‘I 1 the time constants T,, and ri to be about 10 msec. This value is in the range for the

‘. ‘? delays associated with the propagation of postsynaptic potentials from the dendrites
of a neuron to the axon hillock (Oshima, 1969).

The ability of our model to reproduce the general form of the average evoked
potential should not be taken too seriously, as systems may be readily designed to

: give damped oscillations in response to brief stimulation, and as no attempt has
been made to reproduce details of the experimental curves. Rather, we regard the
reproduction of a damped oscillatory average evoked potential as a constraint to be
satisfied by any neural model claiming physiological plausibility.

There is a second form of temporal behavior exhibited by our model which is
potentially of greater functional significance: the limit cycle. Limit cycles will
arise whenever there is only one steady state determined by the intersection of the
isoclines, and when this steady state is unstable. As all trajectories must remain
within the unit square in the phase plane, these conditions are necessary and suffi-
cient for the existence of a limit cycle. Linear stability analysis can be used to show
that a sufficient (but not necessary) condition for the instability of such a steady
state is that:

cla, > c4ai + 18. cw

.- .,

This expression follows from the linear analysis plus the observation that the re-
quirement of a single unstable steady state can only be realized when the isoclines
intersect at a point in the vicinity of the inflection points of the sigmoid response
functions. Expression 20 may be interpreted to mean that the existence of limit
cycles in a neural population requires that the interactions wirhin the excitatory
subpopulation be significantly stronger than those within the inhibitory subpopu-
Iation. This is reasonable, since strong interactions within the inhibitory subpopu-
lation will tend to damp out the negative feedback which is responsible for the
oscillation.

.The requirement that there exist a single stready state for some choice of P and Q
and that it occur for values of E and I near the inflection points of the sigmoid
response functions leads to the conditions:

.
a, cz Qi C4 + 9

accl - 9 >
tliC3 ’

aec1 - 9 < 1.
a, cz

(21)

(22)

H. R. WIIS~N AND J. D. COWAN Interactions in PopuZations of Model Neurons 17

.



B Requirement 21 is identical with condition 18 and is derived in exactly the same way.
. . i 1s, Requirement 22 insures that there is one steady state rather than five. We may there-

:.+ fore state a theorem encompassing both limit cycle phenomena and multiple hystere-

-- .I%.. .‘;... 5_I L. Theorem 3. Let parameters be chosen so that requirement 21 is satisfied.
2
? Then if expression 20 is not satisfied, multiple hysteresis phenomena will occur for
; some class of stimulus configurations. If, on the other hand, requirements 20 and 22

are satisfied, then for some class of stimulus configurations limit cycle dynamics will
be obtained.

The proof of this theorem follows directly from a consideration of the shapes of
the isoclines defined in equations 13 and 14 plus an enumeration of the possible
ways in which they can intersect. It is straightforward but tedious and will not be
reproduced.

Typical of the limit cycle activity found is that shown in Figs. 11 a and 11 b.
As we have required the resting state E = 0, I = 0 to be stable in the absence of
a driving force, the neural population will only exhibit limit cycle activity in re-
sponse to constant stimulation. We therefore felt it appropriate to investigate the
manner in which the limit cycle depends on the value of P (Q being set equal to
zero). Typical results are shown in Figs. 12 a and 12 b. The important observations
are :

(a) There is a threshold value of P below which limit cycle activity cannot occur.
(b) There is a higher value of P above which the system saturates and limit cycle

activity is extinguished.
(c) Between these two values both the frequency of the limit cycle and the average

value of E(t) increase monotonically with increasing P.
Although limit cycle activity as a result of the constant stimulation of neural

populations has not been looked for experimentally to our knowledge, our results

I t in msec

. FIGURE 11 a FIGURE 11 b
; FIGURE 11 a Phase plane showing limit cycle trajectory in response to constant stimulation

‘i P = 1.25. Dashed lines are isoclins.  Parameters: q = 16, ~2 = 12, c1 = 15, cc = 3, a, = 1.3,
0. = 4, ai = 2,& = 3.7, r. =I 1, ri = 1..

I FIGURE  11 b E(t) for limit cycle shown in Fig. 11 a. r = 8 msec.
.
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P
FIGURE 12 CI FIGURE  12 b

FlGuRr. 12 u E(r) averaged over one period of limit cycle as a function of stimulation
at constant intensity P.
FIGURE 12 h Frequency of limit cycle (in Hz) for different levels of constant stimulation
P. For very low values of P no cycle is obtained, i.e., frequency drops to zero. For very
high values of P the oscillation is extinguished and only high-level, constant activity is
observd.  Parameters are those given in Fig. 11 a.

do seem to be directly related to microelectrode studies. In particular, we cite the
work of Poggio and Viernstein (1964) on thalamic somatosensory neurons. The
constant stimulation in their study was provided by a constant angle of election of
the wrist joint of a monkey. When the expectation density function of neurons
driven by joint angle receptors was plotted, it was found to be an undamped periodic
function of time. Both the average firing rate and the frequency of the oscillation in
the expectation density function were found to increase monotonically with in-
increasing (constant) angle of flection (see Pig. 9, Poggio and Viernstein, 1964).

Thus, it is seen that E(t) in our model reproduces qualitatively the characteristics
of averaged single unit firing patterns of certain thalamic neurons. Whether localized
groups of neurons in the thalamus are set into a collective limit cycle oscillation in
response to a constant stimulus is unknown but certainly worthy of experimental
investigation.

‘<.
.
1
.

The implication of both our model study and the work of Poggio and Viemstein
is clear: stimulus intensity may be coded into both average spike frequency and the
frequency of periodic variations in average spike frequency. How such redundancy
in coding may he used in the nervous system is at present unknown, but it is hope8
that extensions of the present model to include spatial interactions between neural
populations may lead to some insight into the matter. Certainly both the existence
of a stimulus threshold for initiation of limit cycle activity and the stability of the
limit cycle itself are important forms of noise insensitivity.

Limit cycles have also been used as a model for some of the characteristics of
electroencephalogram (EEG) rhythms (Dewan, 1964). In this work the existence of
limit cycle oscillations within the central nervous system was assumed without

’ independent evidence. Our present results, therefore, provide a more concrete
physiological basis for this approach to the study of EEG rhythms.

Before leaving the subject of limit cycles it may be asked whether a neural popu-
I
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lation which is capable of limit cycle activity for a certain class of stimulus configura~‘Y:?~‘.
tions will exhibit hysteresis under different stimulus conditions. The answer to this. -:
may be obtained by comparing requirements 20 and 21 with condition 17. As the -. -;
minimum value of the right-hand side of equation 20 is 18, and as the left-hand side
of equation 21 must be greater than zero, it follows that whenever requirements 20 _-,.:
and 21 are satisfied condition 17 will also be satisfied. This proves the following
theorem.

Theorem 4. Any neural population which exhibits limit cycle activity for
some class of stimulus configurations will also display simple hysteresis phenomena
for some other class of stimulus configurations.6

The converse of this theorem is, of course, false. Also, the coexistence of limit
cycle phenomena and multiple hysteresis is precluded by Theorem 3.

Theorem 4 is very strong in light of the suggested functional significance of both
limit cycles and hysteresis. For example, the theorem shows that nonspecific biasing
inputs to a neural population from other parts of the central nervous system may
completely change the character of the response of that population to specific
sensory (or experimental) stimulation. Furthermore, the theorem is in principle
testable, although this might be difficult in practice. One probem is that the experi-
menter would need independent control over the inputs to both the excitatory and
the inhibitory subpopulations.

CONCLUSIONS

There have been a number of previous studies and simulations of spatially localized
neural populations (Allanson, 1956; Smith and Davidson, 1962; Griffith, 1963;
ten Hoopen, 1965; Anninos et al., 1970). These treatments have, of course, differed
from each other in various ways: some use discrete time, others continuous time,
etc. In common to all these studies, however, has been the .description of the state
of the population at time t by a single variable: e.g., the fraction of cells becoming
active per unit time. This has been true even of those studies in which a number
of connections have been designated as inhibitory. The most fundamental difference
between this study and previous work, therefore, is in the treatment of in&ibition  as
arising from exclusively inhibitory neurons. It thus becomes necessary to deal with
interactions between two distinct subpopulations explicitly, and this requires the
use of the two variables E(t) and I(t) to characterize the state of the population.’

The assumption that the influence of one neuron upon all others is either ex-
clusively excitatory or exclusively inhibitory is known as Dale’s law (Ogles, 1964).
Although this law is probably not universally true, it is certainly true in most in-

.
o It must be remembered that a stimulus coo5gwation involves inputs to both subpopulations. To
pass from limit cycle activity to hysteresis it will generally be necessary to change both P and Q.
’ AMinOS et al. (1970) actually specify that some neurons are inhibitory, but they still describe the
state of their population’ using only one variable.
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stances. If one accepts the fact that there are no exclusively excitatory subsystems
within the central nervous system, then a two-variable approach such as ours is
required even in the study of spatially localized populations.

Results of our study which follow directly from the explicit treatment of excita-
tory-inhibitory interactions are the existence of multiple hysteresis loops and limit
cycles. (It will be remembered that simple hysteresis is dependent only upon char-
actcristics of the excitatory subpopulation.) To these may be added the extremely
important result in Theorem 4 stating that any neural population exhibiting limit
cycle behavior for one class of stimuli will show simple hysteresis for some other
class of stimuli. All of these results have been shown to be of potential functional
significance. A paper extending the current model to deal with spatial interactions
within sheets of neural tissue is in preparation and will deal with some of the in-
formation processing capabilities resulting from the phenomena cited above (Wilson
and Cowan, in preparation).

Finally, it is to be emphasized that the qualitative results obtained, i.e. simple
and multiple hysteresis, limit cycles, and Theorem 4, are independent of the particu-
lar choice of the logistic curve for the subpopulation response functions. The argu-
ments leading to these results depend essentially only on the general shapes of the
isoclines as defined in equations 13 and 14. The particular constraints on the param-
eters given in relationships 17-22 will, of course, differ for differing sigmoid functions,
but completely general relations may be obtained by relating the connectivity con-
stants to the maximum slopes of the response functions. This independence of our
model from the particular choice of sigmoid response function is extremely impor-
tant, both because of the difficulty in obtaining experimental determinations of the
distributions in equations 1 and 1 a and because of the likelihood that these distribu-
tions will differ in different parts of the nervous system.

APPENDIX

In this appendix we extend our basic model to include relative refractoriness. We will deal
only with excitatory cells, since an identical equation is obtained for inhibitory cells. Further-
more, we will assume that the relative refractory period is much longer than either the absolute
refrdctory period or the effective summation time. This will permit us to assume the results,
of the temporal coarse-graining  argument for absolute refractoriness and temporal summa*’
tion. This latter assumption is for convenience only and does not play any essential part in
the derivation. Finally, we assume that the resting threshold 00 is the same for all Cells in the
population. The sigmoid response function is therefore assumed to relate to a distribution of
synapses as shown by equation 1 a.

We assume that after firing a cell is initially absolutely refractory and then relatively
refractory for a time r, at the end of which it has returned to its totally sensitive state, During
the relative refractory period the cell may of course be fired by supernormal stimulation,
after which it ~$11 again become absolutely refractory, etc. We assume, therefore, that the
relative refractory period can be completely characterized by specifying the time course of
the return of its threshold from an initially very high value ultimately to its resting value
(Adrian, 1928; Fuortes and Mantegazzini, 1962). Let the function which describes this
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return of the threshold to its resting value be called t?(t - f’), where 1’ is the time at which
the cell last fired. The only restrictions on B(f - t’) are that it he continuous and that it
reach the resting value in a finite time r. In particular, 6(r - 1’) need not be monotonic, thus
allowing for rebound depolarization, etc.

Let R(t, t’)6t  be the proportion of those cells which fired during the interval (t’, t’ + at)
which are still in the relative refractory state. Clearly, these cells will have a threshold of
0(t  - t’). If the net excitation is designated by x(t) and the sigmoid response function for
cells with this threshold by S[x(r),  e(t - f’) ] then the equation which governs the evolution
of R(f, 2’) will be:

dR- = .-$x(t), e(t - t’)]R.dt
(Al)

This equation accounts for the loss of cells from the relative refractory state through refiring.
Equation A 1 may be solved formally for R(t, t’). As the initial condition is that R(t’, t’) =
E(P), the result is

R(t, t’> s[x(t”),  e(t” - t’)] - (AU

Using this result, it is evident that the contribution of the firing of refractory cells to the total
activity in the population at time t is just:

J
t

s[x( t), e( t - t’)]R( t, t’) dt’.t-r
The fraction of cells which have completely recovered from firing is:

t
1 - r,E(t) - s R(t, t’) dt’,t-r

where the term rJT(t)  gives the fraction of cells which have just fired and are therefore ab-
solutely refractory.

Putting all these results together we arrive at the equation:

CL??
Tt = -E + I’ s[x(r), e( t - t’)]R(t, t’) dt _ .

t-r

I
t

R( t, f) dt’ s[x( t), t&l, ( A 3 1t-r 1
where R(t, I’) is given by equation A 2. This is the equation for a population of excitatory
cells having both absolute and relative refractory periods. The second term on the right
gives the contribution to E(r) of relatively refractory cells, while the third term gives the
contribution of cells which are totally sensitive. Note that for r = 0, i.e. for a relative refrac-
tory period of zero duration, equation A 3 reduces to the same form as equation 7 in the text
This shows that equation A 3 is indeed the proper extension of our model to account for
relative refractoriness.
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