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Abstract
It is proposed that distinct anatomical regions of cerebral cortex

and of thalamic nuclei are functionally two-dimensional On this
view. the third (radial) dimension of cortical and thalamic structures
is associated with a redundancy of circuits and functions so that
reliable signal processing obtains in the presence of noisy or am-
biguous stimuli.

A mathematical model of simple cortical and thalamic nervous
tissue is consequently developed, comprising two types of neurons
(excitatory and inhibitory), homogeneously distributed in planar
sheets. and interacting by way of recurrent lateral connexions.
Following a discussion of certain anatomical and physiological
restrictions on such interactions, numerical solutions of the relevant
non-linear integro-differential equations are obtained. The results
fall conveniently into three categories, each of which is postulated
to correspond to a distinct type of tissue: sensory neo-cortex, archi-
or prefrontal cortex, and thalamus.

The different categories of solution are referred to as dynamical
modes. The mode appropriate to thalamus involves a variety of
non-linear oscillatory phenomena. That appropriate to archi- or
prefrontal cortex is defined by the existence of spatially inhomo-
geneous stable steady states which retain contour information about
prior stimuli. Finally, the mode appropriate to sensory neo-cortex
involves active transient responses. It is shown that this particular
mode reproduces some of the phenomenology of visual psycho-
physics, including spatial modulation transfer function determina-
tions. certain metacontrast effects, and the spatial hysteresis
phenomenon found in stereopsis.

0. Introduction
0.1. Complexity and Redundancy in Cerebral Cortex

and Thalamus

One of the most striking features of the evolution
of the brain is that the enormous increase in volume
of cerebral cortex relative to the rest of the brain is
predominantly the result of an increase in surface area
rather than an Increase in thickness. Table 1 shows the
comparative hensions and main cytoarchitectonic
features of ths cortexes of the Edible-Frog (Rana
esculenta), Rabbit (Lupus cunicu!us),  and Man. It will
be seen that while there is an increase by a factor of ten
of cortical thickness, there is a corresponding increase
of telencephalic surface area by a factor of some 3500.,

.

Similarly, in comparing Rabbit with Man there is an
increase of cortical thickness by a factor of only
1 S- 1.8 as compared to an increase of telencephalic
surface area by a factor of about 100.

Table 1. Dimensions and cytoarchitectonic features of cerebral
cortex

Animal
SlT.XkS-r-----

Cortex Neurons

Volume Surface Thickness Number Packing
density

(mm’) area (mm) (x 106) (per -
(mm*) 0.001 mm3)

Edible frog 6 24 0.25 6 1000
(Ram
esculenra)
Rabbit 1470 843 1.74 645 438
(Lupus
cvniculus)
Man 230000 83591 2.4-3.00 loo00 30-iO0

The main factor responsible for the increased
surface area in higher Vertebrates is, of course;tie
enormous increase in the number of neurons. Further-
more the neurons of higher vertebrates gre larger than
those in lower Vertebrates, both in nuclear volume and
in the extent of dendritic ramification (Blinkov and
Glezer, 1968). This increase in neuronal  size is ac-
companied by a decrease in packing densities. as is
shown in Table 1. However, this decreased packing
density is compensated for by the increased cortical
thickness to such an extent that the actual number of
neurons located in a cylinder of given cross-sectional
area, and extending radially throughout the thickness
of the grey matter, shows a rather small variation from
species to species. For example. consider the number
of neurons contained in a cortical cylinder with a cross-
sectional area of 1 mm’. In Frog such a cylinder is
0.25 mm long and contains about 250000 neurons.

. -- ----- _
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In Rabbit the corresponding cylinder is 1.75 mm long
and contains about 750000 neurons. Finally, in Man
the cylinder is about 2.7 mm long and contains an
average of 200000 neurons.

The fact that the number of neurons in such
radially oriented cortical cylinders varies by less than a
factor of four compared to the lo4 variation in the
number of neurons in the cortexes of these three
species suggests that the complexity of radially
directed interactions within the cortex is roughly
constant from species to species. On the other hand,
the extent and complexity of lateral interactions in the
higher Vertebrates may be expected to increase
enormously, due to the increased number and size of
neurons and consequently the greater extent of their
dendritic ramifications (Blinkov and Glezer. 1968).

This increase in the lateral extent and complexity
of interactions within cerebral cortex is paralleled by
the appearance of much more elaborate and subtle
forms of behavior in higher Vertebrates, especially
Primates and Man. Furthermore, all sensory stimuli
are received in such species as patterns falling
on receptive surfaces that are at most two-dimensional.
and these receptive surfaces project topographically
to cerebral-cortex (Polyak. 1957). It therefore seems
very likely that individual anatomical regions of
cerebral cortex are functionally organised as two-
dimensional surfaces or sheets, and that the cortex
may be viewed as a complex, interconnected heterachy
of such sheets. Further support for this postulate is
provided by the observation that specific afferents to
primary sensory cortex synapse almost entirely within
the plane comprising layer IV, and that superficial
and deep layers receive afferents from layer IV mainly
through radially oriented inter-connexions (Lorente
de N6, 1949; Shall, 1956; Colonnier. 1965; Szenta-
gothai, 1967; Scheibel and Scheibel. 1969). It follows
that the specific afferent stimulus to primary sensory
cortex is itself two-dimensional.

If differing anatomical regions of cerebral cortex
are indeed functionally two-dimensional, what is the
role of neurons distributed in depth, i.e., in the third
(radial) dimension? One role for these neurons may
be to provide reliability through local redundancy.
It is well known to neurophysiologists that the response
of any single nq<uron  is variable. even under carefully
controlled expeemental  conditions: only through the
averaging of $&-haps  twenty to thirty trials are
reliable results to be obtained. This variability has two
sources : uncontrolled or extraneous signals from
neurons in other parts of the brain, i.e., ambiguity and
noise in the signal itself. and intrinsic fluctuations of
membrane potential within the neuron. Mathematical

investigations of reliable information processing by
systems composed of unreliable components have
shown that tiny prescribed level of fidelity may be
obtained so long as there is sufficient  redundancy
within these systems (v. Neumann, 1956),  and that the
most efficient systems are those which comprise
complex components rather than simple ones (Wino-
grad and Cowan, 1963). It is therefore suggested that
one reason for the distribution of neurons in depth
might be to provide the local redundancy necessary for
reliable operation, and that the increased complexity
of radially oriented neuronal interactions in mammals
as compared to lower vertebrates might serve to
increase the efficiency with which reliable operation is
obtained (see $ 5.2.1).

Physiological evidence for such redundancy is
provided by extracellular microelectrode studies of
single neurons in somato-sensory cortex (Mountcastle,
1957) and striate and peri-striate cortex of Cats and
Monkeys (Hubel and Wiesel, 1963, 1965, 1968). As is
now well known, within a single radially organised
cortical column the majority of neurons respond
optimally to very nearly identical stimuli. Further
support for the local redundancy hypothesis is
provided by the existence of strong radial connectivity
within cortex (Lorente de N6, 1949; Colonnier, 1965;
Szentagothaij  1967; Scheibel and Scheibel. 1970) and
several anatomists have speculated on its significance
in similar terms.

This view of cortex as a laterally organised net of
radially redundant columns carries with it the implica-
tion that such columns are functional units, and that
it is the over-all activity of neurons within a column
which is functionally significant rather than the
responses of any single neuron (see Q 5.2.2). In the
terminology of a previous paper, a column maQe
thought of as a spatially localised neuronal aggregate
(Wilson and Cowan, 1972). However in the present
paper columns will not be treated explicitly. Rather,
it will be seen that localised neuronal  activity consistent
with the physiological concept of a column arises as a
natural consequence of the interplay between topo-
graphic afferent projections and self-organising inter-
actions within cortex. This view of cortical organisa-
tion is very similar to that of Scheibel and Scheibel
(1970) in which cortex is conceived of as a matrix of
overlapping radially oriented cylindrical modules,
each module being defined by the extent of specific
afferent terminal arborisations and the lateral spread
of the dendritic branches of large cortical pyramids.

Entirely similar considerations obtain for sub-
cortical structures such as thalamus. There are
concomitant increases in the surface areas of these
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structures in relation to receptive surfrlces from Frog
to &Ian. although not by such large factors (Blinkov
and Glczer, 196s).  Moreover there is clear evidence
of the existence of functional columns, e.g., in the
lateral geniculate nucleus (Bishop, Kozak, Lcvick, and
\‘akkur. 1962; Sanderson, 1971) correlated with
receptive field location, and visual direction. It appears
that equal numbers of retinal ganglion cells project
to equal volumes of the lateral geniculate nucleus
(Sanderson, 1971). and a forfiori  to equal numbers of
lateral geniculate neurons distributed in columns. It
will be assumed that radial redundancy e,xists in these
sub-cortical structures, and that like cortex, they are
iuncti~nally  two-dimensional.

It follows that the brain as a whole may be thought
of as a complex hierarchy of functionally two-dimen-
sional sheets of nervous tissue. In this paper a mathe-
matical model will be developed in which cortical (or
thalamic) tissue is represented as a single two-dimen-
sional sheet. It will be assumed that neurons of various
::bpes are uniformly distributed within the sheet. and
that lateral connectivity is a function of distance only,
Le.. it will be assumed that the sheet is homogeneous
and isotropic. ‘The theory as developed in this paper
ij not specially tailored to any particular area of cortex
or thalarnus other than through the choosing of
certain parameters to specify p:itterns  of intercon-
nexion. and it may therefore serve as a basis for the
nnn!ysis of very generalised cortex-like tissue. Certain
tletaiis of cortical organisation,  such as the orien?a-
tional specificity of columns (Hub4 and Wiesel. 1963,
1965.  1968)  have clearly been omitted. It should be
noted, however. that several neurophysiologists  have
questioned !?le functional significance of orientational
specificity and 11ave  pointed out that it may be just an
inuidcn!aJ manifestation of the asymmetry which must
obtain if cortical neurons receive projections from
t\L-o to three thalamic neurons (Burns, 1968; Crcuz-
feldt and Ito. 1968).

0.2. Lisr of S}‘t?lhols

h;:

‘i,,

Post-synaptic membrane potential (pslq.
M,tximum  amplitude of;>sp.
Time.
The neuronal  msmbranr:  iims const,mt.
Threshold value of membrane potential.
Ahbolt& refractory period.
Sytwptic operating delay.
Velocitl: of propagation of action potentt;ll.
Cartesi?n COordinaie.
The  prqbability that cck of class j’ are connected
wiih cells of class j a distance s away.
The mean synaptic weight of synapses of the jj-th
cia9s ;It x.
The SpXC cunsiant for connectiviiy.

I(& t)

R,l\-. tJ

suirilic  density of excitntorj neurons in a one-
dimenGona1  homogeneous and isotropic tissue.
Siirf~lce density of inhibitory ncuroaj in a on+
dim:nsiocnt  homogeneous and isotropic tissue.
Excitatory Activity, propor:ion of excitdtory cells
becoming actke per unit time ai the instant t, at the
point X.
Inhibitory Xctiviry. proportion of inhibitory c-11s
becoming active per unii t&a; ihe instant r. at rhc
point x.
A small segment of tissue.
A small interval of time.
Akent excitation or inhibition to excitalury neurons.
Afferent  excitation or inhibition to inhibiiorv neurons.’
Mean inrrgrhted excitation generated &thin ex-
cimtory r.eumns ai -3:.
hlean integrated excirakm generated \%ithin in-
hibitory neurons at s.
Expected proportion of excitatory neurons receiving
at least threshold cxcitatior! Fer unir time, as a func-
tion of .Gc
Expected proportion  of inhibitory neurons receiving
at least threshold excitation per unit time. as a function
of iv,.
Distribution function of excitatory neuronal thresh-
olds.
Distribution function of inhibitory neuronal rhresh-
olds.
A fixed value of nruronal rhres!wld.
Proportion p3- unit time of r-icitatory  p.?u:ons  at x
reaching 5, with a mtnn exci:ation IT*.
Heaviside’s “j!:p-bnc:ion”.
h’umber o f  ex.:itatory ~urons ahich :Ire sfn,itive
at the instanr i.
Numhcr  of inhibiwry neurons which are srn~irive
at the instant r.
Refractory pe:iod of excitatory neurocs.
Rciracrory  period of inhibitory neurons.
Time coarse-p:ained  elciratory activirv.
Time coarse-;raincd  inhibirory activity.
Spatial conuo:ution.
Threshold of a ncwonal  nggreyate.
Sensit ivity co~f!icicni Of rcspo3w  0: a neuronai
aggregate.
Time coarse-gained spaiially loca!ised cscit~ry
activity.
Time coarse-grain& spatially localized inhibirur;
activity.

f.,.f.:. LQ See S 2.2.1.  4 2.2.i. $ 3.1.
,- Velocity with which  retinal images are moved apart.
G Stimulus widih
(E,>. (I,} Spatially homom=eneous st:adf states o f  neuronal

activity.
k,k,;S,..Sij See~S.1.
c,. cz. c,. c,

1. The XIa thematical 3fodel
1.0. Rthwzt  Propz-iies  of h’eurons  and Tltzit-

lnterccm~2.~iorts

Cortical neurons can
general ways. They arz

bz classified in two vcr>
either excitatory or else

inhibitory in their effects on other neurons (Eccles.
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1963)  and they are either effcrent cells, or “inter- Rcl lirface- c
neurons”. Efferznt neurons possess long axons th3t
penetrate  the white matter beneath !he cortex, whereas
internzurons  possess short axons that remain within
the cortical grey matter. One can of course introduce
further distinctions such as the differing size and shape
of perikarya  or of dendritic and axonal arborisations,
but it will be assumed that such features may be
accounted for in terms of the inenn pattern of neuronnl
interconnexions at various locations within the cortex.
It will therefore be assumed that there are two types’
of neurons in the cortex, excitatory and inhibitory.
interspersed in depth and uniformly distributed relative
to the pin1 surface. That is. it is assumed that equal
numbers of excitatory and inhibitory neurons co-exist
nithin the grey matter under equal areas of cortical
surface, at least within a particular anatomical region.
It is also assumed that the great majority of excitatory
celIs are efferents and that inhibitory neurons are
interneurons, i.e., it is the activity ofexcitatory neurons
\\,hich is projected from one anatomical region to
another.

individual neurons will be assumed to summate
incoming excitation both spatially and temporally.
in a linear time-invariant fashion. Thus the response
to a unit excitation is represented by the function
Y(I) for an excitatory post-synaptic potential and
-r/(r) for an inhibitory post-synaptic potential. The
usual form for SC(~)  is aexp(-f,‘/i).  a decaying ex-
ponential wi:h a tivie ccJrF.tant  /’ of several milli-
seconds. Neurons will also be assumed to have
cscitation thresholds 9 for the generation of action
potentials, measured in units of membrane potential.
and absolute refractory periods of duration I’ following
activation during vghich they cannot refire (see $ 52.3).
Finally neurons ivill be assumed to possess a latent
period or synaptic delay r, that is independent of
exci!ation, and  which measures the time lapse between
excitation reaching threshold. and the consequent
appearance of action potentials. These potentials are
assumed to propagate without decrement along axons.
with the velocity v.

All possible types of interconnexion will be
permitted: excitatory-excitatory. excitatory-inhibitory.
inhibitory-excitatory. and inhibitory-inhibitory. Each
type will be taken to be a function only of the distance
between points on the pin1 surface. Thus the tissue
is assumed tc%: be isotropic as well as homogeneous.
A represent&on of this arrangement is show11  in
Fig. 1. It wilt’ be seen that all interconnexions arc
recurrent (Rntliff,  1965) and either spatially !ocal, or
lateral. There is ample anatomical evidence for such
circuitry in many cortical areas (Colonnier,  1965;

Fig. 1. Diagram of spatial interactions in neural tissue  modsl.
Lettered circles represent spatially localised excitatory and inhibitory
ncu:d ngarsgates;  while the symhoij -* and -4 represent excitaiory
and inhibitory interactions. resp+Svrly. Note that inieractions
occur both locally and laterally rrlative to the pial surface. In the
actual modzl. exci:atory and inhibitory neurotLs  are assumed to
be interspersed and uniformly distributed relative to the pial surface

Szentagothni, 1967; Scheibel and Scheibel, 1970) (see
4 5.24). The various types of interconnexion are
represented by the functions pjj.(?c) that measure the
probability that post-synaptic neurons of type j’ are
connected with presynaptic neurons of type j located
at a distance x. Following Uttley (1955) and Sholl
(1956). fijjP(x) will be taken to be of the form
bjj. exp(-  jxl!~~~.)  where both j and j’ run over ex-
citatory and inhibitory classes.

f.1. Neuronal  Acriuity Variabks

To describe the successive states of neuronal tissue
composed of both excitatory and inhibitory neurons,
two variables must be introduced, one for excitatory
neuronal  states and the other for inhibitory neuronal
states. These variables will naturally be functions of
position and time. Ey assumption, neuronal tissue is . .
highly redundant especially in the radial dire&ion, a
fortiori, it is not single unit activity nhich is func-
tionally important, but rather the net activity of all
neurons of a given type located under a small element
of the pial surface. Tlnis suggests the following re-
presentation of neuronal activity. Let excitatory and
inhibitory neurons be homogeneously and isotropicalb
distributed throughout the tissue with surface densities
Q, and ei respectively. Let E(x, t) be the proportion of
excitatory neurons becoming active per unit time at
the instant r, at the point x in the tissue, and 1(x,  t) the
corresponding proportion of inhibitory neurons. Then
Q,E(x, t) 6xJt  and Qil(X, t) 6.~6~ will gibe the numbers
of excitatory and inhibitory neurons, respectively,
becoming active under the surface element 6s at X,
during the interva! between t and t +St. Following
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Beurle (1956)  the functions E and I will be referred
to as neuronal activities, or simply as activities.

In general the activities E and I will be random
variables. However several factors suggest that the
probability distribution associated with these variables
will be sharply peaked about their mean values.
Firstly, if the inter-connexions between neurons,
although locally random, are sufficiently dense to
justify the postulate of redundancy, then one can
expect the variance in connectivity from neuron to
neuron to be small. Therefore, within proximate cells
of the same type, post-synaptic potentials should be
highly correlated. Secondly, neuronal thresholds, plus
the relatively rapid decay of post-synaptic potentials,
combine in their effects to provide an effective temporal
noise filter, so that only the co-operative activity of a
large number of afferents will be sufficient to fire or
inhibit neuronal activities. It is therefore legitimate
to treat E and I as deterministic variables representing
the mean values of sharply peaked probability
distributions.

Before turning to the derivation of equations for E
and I, two conventions are to be noted. Firstly. the
state E = 0, I =O, the resting state, is assumed to
reflect low level background activity, so that small
negative values of the activities are allowed, and serve
to represent a depression or inhibition of the resting
discharge. Secondly, only afferent activities (stimuli
or forcing functions) that vary in one spatial dimension
are considered. Because of the homogeneity and
isotropy of the model, the neuronal response to such
patterns will also vary only in the same dimension.
Consequently the mathematical treatment will be
limited to that of a one-dimensional tissue. The
generalisation to two-dimensions is obvious.

1.2. Derivation of Equations for Neuronal  Activity

It follows from the assumption of Q 1.0. that
neurons will become activated only if their post-
synaptic potentials exceed threshold, and if they are
at the same time sensitive, i.e.? non-refractory. Neglect-
ing correlations that may obtain between levels of
neuronal  excitation and neuronal sensitivities, it
follows that at the instant t +r, the ac‘tivity located
at x is equal to the proportions per unit time of
excitatory and inhibitory neurons located at x whose
integrated excitations exceeded threshold multiplied
by (respectively) -the proportions of excitatory and
inhibitory neurons which were sensitive at the instant t.

In order to determine the proportions of neurons
receiving supra-threshold excitation it is first necessary
to derive an expression for the mean integrated

.

excitation generated in neurons at x by afferent
activity. Consider first only excitatory neurons at x.
At the instant t,

will be the mean rate of arrival of impulses at excitatory
neurons located at x, caused by excitatory activity

Ix-4at the instant r - -
“,

within a segment of length

dX at X. Similarly at the instant r

&Z
i
XJ-- ~i,(x-X)dX

“i 1

will be the mean rate of arrival of impulses at ex-
citatory neurons located at x, caused by inhibitory

IX-XIactivity at the instant t - Ywithin a segment of
I

length dX at X.
The convolutions

7 ~.e(X,r-&+(x-X)dX
and -*

e

-_ F) &(X - x) dX
L

therefore give the mean rates of arrival of impulses at
excitatory neurons located at x, from all excitatory
and inhibitory neurons (respectively) in the tissue.

In similar fashion because of the assumed linear
time-invariant nature of temporal summation in
neurons, the difference

& P(x,T) cc(t--  T)dT
I

gives the mean value of integrated excitation for
excitatory neurons at x (see 52.5). Here P(x, t) has been
introduced to represent afferent activities. As such it
may be either excitatory or inhibitory in nature.

Let Ye(fiJ be the expected proportion of kxcitatory
neurons that receive at least threshold excitation per
unit time, as a function of the mean integrated excita-
tion Re. yI,@=) is evidently a monotone-increasing
function of iV,, whose shape depends upon the actual
distribution of neuronal thresholds at x. Let G(9,)
be the distribution function of excitatory neuronal



thresholds in the tissue. Then by definition

9<,(Ne) = ‘i G(3,)  ~19,.
0

Consequently Y‘, will be a monotone function of R< as
required. In addition it is bounded by the asymptotes 0
and 1, and if G(9,)  is unimodal. Sq. will have only one
point of inflexion. and will therefore be sigmoidal in
shape (see 5.26). The value of fle at which the inflexion
occurs will be referred to as the aggregate threshold for
the excitatory neurons in the tissue. Some experimentai
support for the sigmoidal form of .Yc has been found in
recordings from motoneuron pool discharges (Rall.
1955) (see 5.2.7).

To compute the number R, of excitatory neurons
which are sensitive at the instant t, note that it
comprises all those neurons which have not been
activated in the interval from r-r, to r. Evidently

R,(s. r)= L- j E(x. T )  d7- 0,6x.
I f - re I

If the expected number of excitatory neurons
receiving at least threshold excitation during an
interval 6r at t is statistically independent of the
proportion which is sensitive. then the expected
number activated during the interval 6r at r +r is

In general there will be some correlation between the
level of excitation in a neuron. and the probability
that it is sensitive. However the correlation will be
small in the densely inter-connected and redundant
net considered (Wilson and Cowan. 1972) (see 4 52.8).

Similar considerations obtain for the inhibitory
interneurons in the sheet. Thus the expected number
of such neurons activated during the interval Sr at
r+ris

1(x.  r + r) ~~S.udt  = Ri. 9J(:vi)  St

where R,(x.  r) and .x(,g,.)  are appropriately defined.
Introduction of the explicit forms of the expressions

contained in these two equations results in the follow-
ing equations for the neuronal activities generated in
the sheet:

Ekt+~)~,~x6t= l- i E(x.T)dT .Q,~x
‘i. *-re ‘i

Z(s.t+r)~,SxSt= 1 -  j I(x,T)dT .ei6X
t-r, 1

- 7 ,il(*y T- ~)Bii(x-X)dXi.Q(x, T)]
--co I

.z(t-TjdT  6c.
I

(1.2.2)

The expressions P(x, t) and Q(x, r) represent afferent
impulses or stimuli from other regions of the brain, or
from sensory end organs. It will be seen that the
surface densities e, and ei cancel out in Eqs. (1.2.1) and
(1.22). to leave equations for the activites E and I that
are valid in the limit 6x+0. 6t-+O.

1.3. Simplification of the Neuronal  7kue Equations

Equations (1.2.1)  and (1.2.2) provide a precise a
representation of the phenomena involved in neuronal
activation. These equations however are of a com-
plicated non-linear character. and require considerable
simplification to make them useful. Fortunately there
are two ways in which the complexity may be sig-
nificantly reduced without detracting from the physical
plausibility of the equations. First. it is evident ,hat
if the average range of interaction between neurons
is small compared to the velocities of impulse propaga-
tion up then the time lags Ix -Xl/v, in Eqs. (1.2.1) and
(1.2.2) will be negligible. Typical ranges of lateral
interaction in Cat are of the order of 50 p (Sholl. 1956).
whereas axonal  conduction velocities are typically of
the order of several mm per msec (Tasaki. 1959). Thus
the time lags involved will be less than 0.1 msec (see
$5.2.9).  This is very short compared to the membrane
time constant p of several msec, so that it is legitizate
to treat the conduction velocity pj as effectively
infinite. and therefore to drop the time lag terms.
Further support for this approximation will be
provided later when it will be shown that the velocity
of propagation of activity waves in the tissue is much
slower than any reasonable estimate of axonal
conduction velocity.

The second simplification follows from the observa-
tion that E and I appear on the right hand side of
Eqs. (1.2. I) and ( 1.2.2) only as the time averages

j E(x. T)dT.  j 1(x.  T)  dT, j E(x. T)  a(t- T)dT
I-le I--li -m
and

.r(t-T)dT 6~.
I

5 Z(x. T)a(t-  T)dT.
-P

- --._.
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Consider first the integrals involving the membrane
impulse response a(t). By assumption a(t) is of the form
a.exp( - t/,u) where K the membrane time constant, is
of the order of several milliseconds. Thus both E and Z
are time averaged with a weighting function a(t) that
damps out high frequencies. This suggests the introduc-
tion of the expressions

<E(x. t)) =$- i E(xl T)exp(-(t- T)/~)d7’
co

and

(Z(x. t)) = t j Z(x,  T) exp( - (t - T)/p) dT
co

in place of E and I. It follows from the equation for (E)

that E(x. t) =pg (E(x,  t)) + (E(x.  t)} and therefore

that

i Eb. T) dT = i
I-*. r-r

p & (E(x,  T)) + (E(x,  T)+T.

In most cases the refractory period re of cortical
excitatory neurons is much less than the membrane
time constant p. Oshima (1969). It follows that
(E(x.  f)) - (E(x. t - r,)) and therefore that

&-<E(x.T))+<E(x.T))  dT-r,(E(x,t)).
I

Furthermore the synaptic delay r is usually an order
of magnitude smaller than p! so that

E(x. f + 5) 6t - a
p at (E(x.  t)) + (E(x,  t)) 6t.

1
Similar considerations obtain for I so that Eqs.

(1.2.1) and (1.2.2) can be rewritten in terms of the time
averaged activities (E) and (I), and take the forms

cc G <W. 0) = - <Ek 0) + Cl - r,<W. #I

. y: a/J[ [ 9 Q,<-w? t)> Be,(X~ Xl dX-CC

- -yx !?i <‘tx7  r)> PieCx - ;Fr) dX f CpCxq  t)>]l

/I. 4 <Z(X*  t)) = - (z(x* r)) + [I - ri (z(x, r))]
.’

- 7 gi(Z(Xv t)> Pii(x-X> dX+ (Q(T t)> .-3:

These equations are valid in the limiting case when
6 t -0. It will be noted that they are partial differential-
integral equations in which the integrals are spatial
convolutions. As such they may be written in a more
compact form. Let the convolution operation be
denoted by the symbol 0. Then the simplified equa-
tions can be rewritten as

P$ <E(x, t)> = - <Ek t)> + Cl - r,<E(x, d>l
.sP, [ap [e, <E(x,  r)) o Be,(x)

- @i <Itx! t)> @ PietX) + <p(x* t)>l]

(1.3.1)

and

p-& <1(X.  r)) = - <1(X, t)> + [ 1 - li (1(X. t)>]

. % Iv CeAW~ t)> @ PeiCx) ( 1 . 3 . 2 )

- or <zk 0) @ Pii k <Q(x, t)>l] .

In effect Eqs. (1.3.1) and (1.3.2) are time coarse-
grained versions of Eqs. (1.2.1) and (1.2.2) respectively.
Time coarse-graining is a technique which was first
applied to problems of statistical physics (Kirkwood.
1946). Its validity in the present case depends of course
on whether functionally relevant aspects of the
activities E(x, t) and Z(x.  t) occur on a time scale that
is sufficiently long compared to the membrane time
constant p. A more detailed analysis (Wilson and
Cowan. 1972) has already shown that the technique
can in principle be applied to the activity of many
cortical regions. Thus the oscillations observed in
evoked potential studies typically have periods of‘
40 msec or more, which is much longer than any
reasonable value for the neuronal  membrane time
constant (Andersen and Eccles, 1962; Freeman. 1967,
1968a.  1968b; MacKay. 1970). Furthermore. therp
maximum rate at which a flickering visual stimulus
is just perceptible. lies between 0.25 and 0.1 times the
rate of discharge of retinal ganglion cells during the
transient ON response (Brindley, 1971). This indicates
that the limit of temporal resolution of the visual
system is several times the length of the refractory
period, i.e., in the range of the membrane time constant.
Equations (1.3.1) and (1.3.2) thus provide a valid
approximation for the types of dynamical phenomena
to be analysed.

1.4. The Functional Form of Yj and Constraints OH
Parameter Values

An earlier study has shown that the qualitative
properties of solutions of Eqs. (1.3.1) and (1.3.2) are
independent of the particular analytical form of the
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sigmoidal functions Yj (Wilson and Cowan, 1972).
This is a valuable property of the equations, because
of the difficulty in obtaining experimental determina-
tions of the threshold distribution functions G(aj). and
also because of the likelihood that these functions will
differ in different cortical regions. It is therefore
convenient to introduce the logistic curve. translated
downward so that Yj(0)  = 0, to serve as the representa-
tive for Yj:

~(~j)=[l+exp(-v(~j-tYj))]-1-[1+exp(v6j)]-’.

The parameter ej, the aggregate threshold, determines
the position of maximum slope of the function Yj, and
the parameter v determines the value of the maximum
slope through the relation

Y, will be specilied by the parameter values (v,. 0,)
and Yi by the parameter values (vi, Qi).  Figure 2 shows
the graph of Yj(mj) for vj= 1, ej = 5.

X

Fig. 2. A typical sigmoid function. The particular function shown
here is the logistic curve: .V;(jq,) = [I +exp(- Y,(N, - O,))]-’ with

0,=5andvj=I

As noted in 5 1.0, exponentials have been chosen
for the connectivity functions jjj,(x):

It is possible that daussians  would have been a more
propitious choice, but here again the qualitative
results are in$ependent of the form of pjj(x),  so long
as it is monotone-decreasing with 1x1.  (see 5 5.2.10).
With the exception of Sholl’s data (Sholl, 1956)
suggesting that typical length constants for neuronal
fields in Cat striate cortex are of the order of 50 pm.
there is at present very little data from which to infer

values for the parameters bj, and uji.. Physiological
considerations have therefore been used to obtain
constraints on these parameters. The first considera-
tion is that the resting state, (E) = (I) = 0, be stable
for small perturbations. This is an important form of
noise-insensitivity, essential to the normal functioning
of cortex. A sufficient condition for such stability is
that 8, be sufficiently large compared to the product
~ev,L~,,~ and that Bi be sufficiently large compared
to eevibiiaii (see g 5.1).

The second consideration is that no uniformly
excited state should be stable in the absence of a
maintained stimulus. Such an activity state is not
found in normal physiological preparations, and
could only correspond to conditions of seizure. Since
the functions Yj have unity as their maximum value,
the maximum attainable values of (E) and (I) are
[ 1 + rJ- ’ and [ 1 + ri]- ’ respectively. Therefore the
following inequalities are suflicient to ensure that
such an activity state will not occure (assuming that
&=Qi= 1):

[l+r,]-1.2b,,~,,-[l+ri]-‘.2bi,Ui,<6,  (1.4.1)

and

[l + r,]- ’ . Zb,io,i - [l + rile’ . 2bii  bii > ei. (1.4.2)

These inequalities are obtained by integrating the
functions fljY(x) over the interval (-co, 00). The
second inequality ensures that uniform high level
excitatory will generate uniform high level inhibitory
activity. while the first ensures that the inhibitory
activity will in turn be strong enough to extinguish the
excitatory activity. The subsequent decline of
excitatory activity is necessarily followed by a decline
of the resultant inhibitory activity (see 5 5.2.11).

The third and final constraint is that excitatgry to
inhibitory interactions must be of longer range than 1
excitatory to excitatory interactions. -That is:

uei ’ uee . (1.4.3)

This assumption is supported by strong anatomical
and physiological evidence (Colonnier, 1965; Szenta-
gothai, 1967; Scheibel and Scheibel, 1970; Bishop et al.,
1971). As will be seen, the net effect of this inequality
is to spatially localise excitatory activity, and to prevent
the propagation of activity waves as obtained by
Beurle (1956).

To these various constraints must be added
several conventions that have been followed through-
out this study. The first is that the aggregate threshold
for excitatory neurons 8, is always about 10 (in units
of excitation) in keeping with observations by Eccles
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(1965) on the thresholds of motoneurons and py-
ramidal cells. Secondly, the neuronal membrane time
constant ~1 has been assigned a value of 10 msec. Such
a value gives reasonable values for the frequency of
oscillatory evoked potentials in spatially localised
aggregates (Wilson and Cowan, 1972). Thirdly, the
refractory periods re and ri are both equal to 1 msec, a
value that is reasonable for the duration of the
absolute refractory period (Eccles, 1965). The effect
of this is simply to fix the maximum attainable values
of (E) and (I) at 0.5. Lastly, the values of the length
constants ojY, are all within a range around 50 urn, as
suggested by Sholl’s data (Sholl, 1956).

Although all these parameter values are definitely
of the correct order of magnitude, no great significance
need be attached to the particular values chosen, since
the qualitative properties of the model are invariant
to changes in such values over any reasonable range
(see 5 5.2.12).

2. Elementary Properties of the Model

2.0. Spatially Localised Aggregates

Prior to the analysis of Eqs. (1.3.1) and (1.3.2) it will
be useful to review briefly the qualitative aspects of the
activity generated within localised neuronal  aggregates
(Wilson and Cowan, 1972). These aggregates comprise
interconnected excitatory and inhibitory neurons
which are so closely packed together that all activity
is spatially constant throughout the aggregate. In
4 0.1 aggregates of this type were identified with
cortical columns. The activity generated within such
aggregates is represented mathematically by a simpli-
fied form of Eqs. (1.3.1) and (1.3.2) in which the con-
nectivity functions pjj(x) are assumed to be constant
over the aggregate. Thus the convolutions (E(x.  t)}
@p,,(x)  and (1(x, t)) 0 ~ji(X) are replaced by &(E(t)>
and b;, (Z(t))  respectively. where & are appropriately
defined. The equations therefore become

and 3.

P$ Cztt)> = - <ift)> + II1 - ri<z(t)>l .
. q [up [Bhi (E(t)> - 8ii C’(t)> It <Q(t)>l] . (2.04

The major features of the solutions of these equations
are listed below.

2.1. Local Properties of the Activity

2.1.1.  Hysteresis. Localised aggregates, as repre-
sented by Eqs. (2.0.1) and (2.0.2),  may be excited to a
high level of activity, which subsequently is sustained
by a much lower excitation than was necessary to
trigger the change. In other words, multiple stable
steady states may occur with the transitions between
them forming hysteresis loops. There is a threshold
for the excitation or stimulus intensity required to
trigger this change of state within a given aggregate.
There is a strength-duration law for threshold excita-  J
tions, so that localised aggregates exhibit temporal
summation.

2.1.2.  Limit Cycles. Limit cycle oscillations of the
activity may be obtained in response to constant
stimulation. There is a threshold value of stimulus
intensity for the generation of such oscillations. For
super-threshold stimuli, the frequency of limit cycle
oscillations is a monotone-increasing function of
stimulus intensity. For extremely intense stimuli, limit
cycle activity extinguished as the aggregate becomes
saturated.

2.1.3. HysteresiseLimit  Cycles. If stimuli to
excitatory and inhibitory neurons within an aggregate
are independently variable, then the aggregate ma;
exhibit either limit cycle activity or hysteresis switching
between different steady activity states, depending
upon the relationship between the two sets of stimuli.

These properties will be seen to extend and
generalise with the introduction of spatial interactions.

2.2. The One-Dimensional 7issue

Numerical solutions of Eqs. (1.3.1) and (1.3.2) hav&
been obtained for various sets of parameters satisfying
the constraints given in 4 1.4. These solutions-illustrate
three qualitatively different dynamical modes: active
(self-generated) transient responses followed by a
relaxation to the resting state, spatially localised limit
cycles, and spatially inhomogeneous stable steady
states that reflect attributes of prior stimuli (see
3 5.2.13). Typical values of the parameters that give
rise to each of the three forms are’shown in Table 2.
These values have been used in all the calculations
reported in this article. The three dynamical forms,
associated as they are with different sets of values of
the various parameters, may be though of as charac-
teristic of anatomically distinct specialisations  of
sheets of nervous tissue, each serving different func-
tions, in differing regions of cerebral cortex or
thalamus.

.
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Table 2. Parameters

Parameters Active transient Oscillatory Steady-state
(ujj in pm) mode mode mode

0.5 0.5 0.5
9.0 9.0 9.0
0.3 1 0.3

17.0 15.0 17.0
1.5 2.0 2.0

40.0 40.0 40.0
1.35 1.5 1.35

60.0 60.0 60.0
1.35 1.5 1.35

60.0 60.0 60.0
1.8 0.1 1.8

30.0 20.0 30.0

2.2.1. Active Transients. The self-generated transient
response will be referred to simply as the “active
transient”. In this mode, the response to a brief
localised stimulus of adequate intensity continues to
increase even after cessation of the stimulus. The
activity therefore reaches a peak value after the
stimulus has ceased. and then decays back to the
resting state. Figures 3 and 4 show two examples of
the active transient. In each case the stimulus is a
spatial square-wave of the form

i

0  f o r  x<L,
( P ( x , t ) ) =  P  f o r  L,SxSL,

0 f o r  x>L,

applied for a duration At. By assumption (P(x.  t))
excites only excitatory neurons within the tissue. If the
width of the stimulus, L, - L,. is sufficiently small, the
excitatory response (E(s. r)) developes a single spatial
maximum located at the centre of the segment
originally stimulated. Moreover the excitatory re-
sponse does not spread to any appreciable extent. but
as a consequence of the longer ranged inhibitory
effects which it evokes [see Eq. (1.4.3)]  remains
localised within the stimulated segment.

Figures 3 and 4 indicate that there is a threshold
for the generation of active transients. Figure 3 shows
that temporal summation is involved in reaching the
threshold: a stimulus of supra-threshold intensity P
will generate an active transient if and only if it is of
sufficiently lo& duration dr. It may be concluded
that for stimu$ of constant width. there is a strength-
duration law of Block type (Le Grand, 1957).

At supra-threshold levels of excitation, the latency
of the peak response decreases with increasing
stimulus intensity (see Fig. 3). This phenomenon is
characteristic of many sensory systems. notably the

o 5 10 15 20 25 30
t lmsecl

Fig. 3. Temporal summation and latency effects in the active
transient mode. (E(x,. t)) is the excitatory activity at the center of
the narrow region stimulated. Stimulation begins at t=O and
continues until the time indicated by the arrow on each curve.
Srimulus width is 80 pm. Stimulus intensity is indicated by P values.
The two curves for P= 3.7 demonstrates the role of temporal
integration in reaching threshold, while the superthreshold curves
for P = 3.7 and P = 4.7 show the decreased latency to peak response

as a function of increasing stimulus intensity

I I IV
0 5 IO I5 20 25 30’

t (msec)
Fig. 4. Spatial summation in the active transient mode. (E(x,, I))
IS the excitatory activity at the center of the excitatory activity at
the center of the region stimulated. The widths of the stimuli are
80 pm and 200 pm. Both stimuli are of intensity P = 3.7, anQoth

are presented for 5 msec

visual system (Donchin, 1967; Hartline. 1938). It will
be shown later that variable latency is important for
the understanding of metacontrast effects.

Figure 4 indicates that spatial as well as temporal
summation is involved in reaching the threshold for
the generation of active transients. Thus a narrow
stimulus applied for 5 msec fails to trigger the active
transient, whereas a wider stimulus of the same
intensity and duration evokes the transient. Spatial
summation is also a characteristic property of the
visual system.

It is in fact evident from the form of Eqs. (1.3.1) and
(1.3.2) that absolute thresholds exist for stimulus width,
intensity and duration. Thus stimuli that are too
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narrow can never evoke active transient regardless
of their intensity and duration. Similarly, stimuli that
are too weak can never evoke active transients
regardless of their width and duration, and so forth
such threshold properties may be regarded as im-
portant forms of noise insensitivity in both cortical
and thalamic tissue.

2.2.2. Edge Enhancement. If stimuli even wider than
those discussed above are applied to the tissue, an
important new phenomenon occurs during the course
of the active transient. This is the phenomenon of edge
enhancement. Figure 5 shows a series of profiles of
(E(s,  t)) at various instants following the cessation of
the stimulus. It will be seen that a definite edge
enhancement occurs, at about the time the active
transient reaches its maximum value. The enhancement
is then sustained throughout the decaying phase of the
response. It is important to note that a definite latency
exists before edge enhancement developes. Such a
latency has been observed in psychophysical experi-
ments (Kahneman, 1965),  and is of the order of 40 msec
(see 5 5.2.14). Equations (1.3.1) and (1.3.2) predict
Iatencies that are somewhat smaller than those
observed in Kahneman’s experiments (some 15 msec
in the example shown in Fig. 5). The discrepancy may
be accounted for by the observation that the visual
pathway from retina to cortical area 18 comprises four
distinct sheets of tissue (retina, lateral geniculate

<Ecx,t,l>
<I (X&l>

Fig. 5. Sequence of sljatial protiles of neural activity showing the
latency associated with the edge enhancement effect. The region
stimulated is indicated at the bottom of the first panel. Excitatory and
Inhibitory activities are indicated by solid and dashed lines re-
spectively. The first panel shows the activities at the end of the period
of stimulation. while the second and third show activity at progres-

sively later times

Table 3. Effect of increasing stimulus intensity on maximal neural
response

Intensity E (75. La,) -Lx (edge) Effective width

3.4 0.072 0.084 280
3.7 0.151 0.195 320
6.0 0.230 0.284 500

Fig. 6. The size-intensity effect in the active transient mode. (E(X))
is plotted at the instant at which the edge response was maximal.
The stimuli are of constant width. with differing intensities as

indicared

nucleus, cortical area 17, and cortical 18): that the
psychophysical experiments almost certainly invohz
all these sheets, and that their separate latencies add.

Another important property of the edge en-
hancement effects generated by Eqs. (1.3.1) and (1.3.2)
is shown in Table 3 and in Fig. 6. It will be observed
that the dispariry between the two points in the tissue
where maximum edge enhancement occurs, increases
with increasing stimulus intensity. If such a disparity
is utilised in the nervous system to measure stimulus
size. then it is predicted that a more intense stimulus
will be seen to be somewhat wider than a weak%
stimulus of the same actual width. This pxedjction  has
been confirmed psychophysically (Zusne. 1971). This
size-intensity phenomenon may also provide an
explanation of the fact that form perception thresholds
are significantly higher than thresholds for detecting
the mere presence of a stimulus (Zusne, 1971). This
possibility is being investigated in greated detail using
a two-dimensional extension of the present model.

2.2.3. Active Transients in Relation to Sensory
Informtion  Processing. Edge enhancement in the
nervous system is perhaps best known in studies of the
Limulus eye (Hartline and Ratliff, 1958 and Ratliff,
1965) has stressed its importance in form perception.
The two effects discussed in Q 2.2.2, the latency and size-
intensity effect for edge enhancement, are both
critically dependent on active properties of the
neuronal  tissue model represented by Eqs. (1.3.1) and
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(1.3.2). Such effects cannot be obtained by lateral
inhibition alone, but in addition require recurrenr
lareral excitation. This suggests that active transient
responses may be characteristic of primary sensory
cortex. In the visual system, for example, it is known
from studies with stabilised retinal images (Ditchburn
and Ginsberg. 1952) and from microelectrode
recordings in cortical area 17 (Burns. Heron, and
Pritchard. 1962; Burns, 1968) that the burst discharge
of ON-centre retinal ganglion cells is of prime im-
portance in stimulating visual cortex. The use of
stimuli of very short duration At in Eqs. (1.3.1) and
(1.3.2) provides a crude representation of this ganglion
cell discharge. It follows that active transients are of
some importance in providing a means by which
sensory processing can continue long after the ON-
centre discharge triggered by a stimulus has subsided.
These areas are elaborated in $3 in which it is shown
that several more complex psychophysical effects may
be simulated by the active transient mode of the
present model.

2.2.4. Sputiully  Localised  Limit Cycies.  Consider
now the second dynamical form of the solutions of
Eqs. (1.3.1) and (1.3.2). In this form the response to a
constant stimulus consists of limit cycle oscillations
of (E) and (I). Furthermore the response occurs only
within the region of stimulation, and does not propa-
gate. except under very special circumstances (see
3 2.2.7). Figure 7 shows a sequence of spatial profiles
of <E) at successive instants during one period of the
oscillation. Limit cycle oscillations differ from active
transients in that? although they may be similar for
stimuli that are of short duration compared to the
period of the oscillation. the transients relax for
constant maintained stimuli to constant (although
spatially inhomogeneous) activity, whereas the oscilla-
tions are stable and continue as long as the stimulus
is applied.

As one might expect. to generate sustained oscil-
latory activity, stimuli must exceed an absolute
threshold intensity and a minimum width. In addition.
Fig. 7 indicates that edge enhancement occurs for
sufficiently wide stimuli, whereas narrow stimuli do
not show any edge enhancement.

2.2.5. Limi’t‘ Cycle Encoding of Srimulus  Intensity.
The salient c$aracteristics  of such oscillations are
shown in Table 4. It will be seen that the frequency of
oscillation increases monotonically with stimulus
intensity. and that it is effectively independent of
stimulus width. At very high stimulus intensities.
however, the net inhibitory activity is insuflicient for the
generation of oscillations. and consequently the

<Eb,t,l>
<I lx&)>

Fig. 7. Three phases in a spatially localized limit cycle oscillation
in response to a maintained stimulus with the rectangular profile
shown at the bottom of the first diagram. Solid line is (E(x)); dashed
line is (IfxJ). Inset at the top shows temporal details ofthe oscillation
at the point marked x0 in the other diagrams. The times t,, t,, and t,
show the points on the cycle at which the spatial profiles are plotted

excitatory activity stabilises at a high (saturated) value.
It is doubtful that such a saturated state ever occurs
under physiological conditions in cerebral cortex, for
its realisation would require an extremely high
density of afferent fibre synapses directly with
excitatory neurons. It follows that below the saturated
state, stimulus intensity may be uniquely encoded in
terms of limit cycle frequencies. In addition since the
limit cycles remain localised and exhibit edge
enhancement, stimulus width may be encoded in terms
of the disparity between activity peaks, as discussed in
4 5.2.2.

Table 4. Dependence of spatially localised limit cycle frequency upon
stimulus intensity and stimulus width

Stimulus
intensity

Stimulus Frequency of limit cycle
width response (xc- ‘)

2.5 80 14
2.5 600 14
5 80 18
5 400 18
5 600 18

10 400 22
10 600 23
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Physiological evidence exists that certain sheets
of tissue, thalamic rather than cortical, may indeed
encode stimulus intensities in this fashion. In micro-
electrode studies of thalamic somatic sensory neurons
in Monkey. Poggio and Viernstein (1964) found that
renewal density functions of the tiring patterns of many
units driven by joint angle receptors exhibited un-
damped oscillations. The frequencies of these oscilla-
tions were found to be monotone-increasing functions
of joint angle. Although this evidence does not imply
that aggregates of such units are firing in a cooperative
oscillatory mode, it is what one would expect of the
single unit properties deducible from Eqs. (1.3.1) and
(1.3.2) given the constraints that generate limit cycles.
Freeman (1968 b) has observed similar relationships in
evoked potentials obtained by macroelectrode record-
ings from the olfactory bulb and pre-pyriform cortex
of Cat. The frequencies of oscillation of such potentials
are again monotone-increasing functions of stimulus
intensity, and are consistent with the predictions of the
model.

2.2.6. Thlamic  Oscillators. It is now well established
that various thalamic nuclei are incapable of sustained
oscilIatory activity, and that these oscillations do not
require feedback from cerebral cortex (Eccles, 1965;
Andersen and Andersson. 1968; Purpura, 1970).
Various mechanisms have been postulated to account
for such oscillations, including rebound excitation from
long lasting hyperpolarisation (Eccles, 1965; Andersen
and Andersson. 1968). However Eccles (1965) has
admitted that feedback excitation could also account
for the observations and has postulated recurrent
interactions within the ventrobasal complex of the
thalamus that are essentially equivalent to those of
Fig. 1. It is therefore suggested that Eqs. (1.3.1) and
(1.3.2),  suitably constrained to produce limit cycles,
may serve to represent the specialisation of neuronal
tissue to carry out appropriate thalamic functions.

To test the hypothesis that limit cycle activity in
the tissue model is related to thalamic activity, an
attempt was made to reproduce recent observations by
Purpura (1970) of frequency demultipkation  in the
responses of certain regions of the ventro-laminar
nucleus of the thalamus. The observations are that
under certain conditions VL neurons. respond only
to every second pulse in a stimulus pulse train. A
stimulus consisting of a train of pulses each of duration
5 msec at a frequency of 25 per set was therefore
applied to the tissue model. The pulse width was small
enough so that no edge enhancement occurred. The
excitatory activity generated by such a stimulus is
shown in Fig. 8, where it is seen that the neuronal
response does indeed occur at one-half the frequency

Fig. 8. Frequency demultiplication in the neural response to a
stimulus pulse train. Each stimulus pulse had a narrow, rectangular
spatial profile. (E(x,. c)) is the response at the center of the region
stimulated. Duration ofeach stimulus pulse is 10 msec an an intensity

of P = 5. Pulses are presented at a frequency of 25/set

of the stimulus train. By varying the frequency and
intensity of the stimulus train, the neuronal response
may be made to exhibit frequency demultiplication by
l/3, l/4. and so on.

These results indicate that Eqs. (1.3.1) and (1.3.2)
in the limit cycle mode may prove to be of value in
theoretical studies of thalamic function, and of the
consequent generation of some of the spatio-
temporally organised rhythms seen in the EEG. The
suggestion that the synchronised  activities seen in the
EEG (e.g.. alpha, beta, delta, and theta rhythms) are
generated by limit cycle oscillators. was first made by
Dewan (1964).

2.2.7. Travelling  Wave Responses. It is well known
that most regions of cortical and thalamic tissue
receive both specific and non-specific afferents (Lorente
de No. 1949). In view of the fact that non-specific
afferents affect very extensive regions in a diffuse
fashion. it seems evident that their function is to
provide a tonic biasing or threshold-setting effect.
Furthermore it is known that cortici-fugal  feedback,
e.g., from cortical area 18 to the lateral geniculate
nucleus (Kalil and Chase, 1970) serves to inhibit
inhibitory interneurons there, i.e., tonic biasing oper-
ates by way of dis-inhibition.

Consider therefore Eqs. (1.3.1) and (1.3.2) with
specific afferent excitation

0
(P(x,t))=  P  f o r  L,sxSL,

1

f o r  X-CL,

0 f o r  x>L,
and with non-specific afferent inhibition of the form

(Qk t)> = -Q.
(P(x,  t)) represents a spatial square wave whose
width IL, - L,J is small enough to prevent edge
enhancement from occurring,

For sufficiently small Q, the solutions of Eqs. (1.3.1)
and (1.3.2) are characteristic spatially localised limit
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<El x,t,D
< !Ix.t,l>

<Elx ,t,l><lix4t3> ‘r omi, 1
1000

x(pn)
Fig. 9. Generation of traveling wave pair under disinhibitory binsing
in the oscillatory mode. (E(x. t)} is indicated by a solid line. and
<J(x, t)) by a dashed line. The region initially stimulated is indicated
beneath the top graph. t, =20msec; r2 =30msec; ts = 50 msec

cycles, although with a modified frequency-intensity
relationship. For sufficiently large values of Q however,
a qualitatively new form of solution appears: instead
of remaining localised, the peak excitatory phase of
each limit cycle gives rise to a pair of waves travelling
in opposite directions from the point of excitation.
A sequence of spatial profiles detailing the generation
of such a wave pair is shown in Fig. 9. Wave pairs are
generated once per cycle for as long as the stimulus
persists, and each wave travels away from the locus
of stimulation without attenuation. Thus. a very brief
stimulus (P) will generate a single wave pair, whereas
a stimulus of longer duration will generate a succession
of such pairs. The propagation velocity corresponding
to Q = - 30 is 4 cm/set. In general this velocity is a
function of Q, and of the connectivity parameters pjj..
and crjj., but not of (P). whereas the frequency and
therefore the wave-length vary with (P) in a non-
l i n e a r  f a s h i o n .

2.2.8. Waves and Rhythms in Cortex. Such a genera-
tion of propagiting  wave-pairs as a consequence of
non-specific did-inhibition may be related to several
physiological and psychophysical phenomena. For
example, it is now known that in addition to the
synchronised activities seen in the EEG. various
desynchronized activities are also generated within
sub-cortical structures (Andersen and Andersson,

1968),  and that there are tonic excitatory and inhibitory
influences on cortex from such structures (Deme-
trescu, Demetrescu, and Iosif, 1965). These inter-
actions are extremely subtle and complex, and
obviously cannot be accounted for by* any simple
model such as that discussed in this paper. However,
some of the observations suggest that wave propaga-
tion and its quenching, of the type discussed here, may
be involved in such interactions. For example recent
observations by Freeman (personal communication)
of spatio-temporal evoked potentials recorded from
the surface of the olfactory bulb and pre-pyriform
cortex indicate that both spatially localised oscilla-
tions and propagating waves obtain under differing
experimental conditions. It therefore seems likely that
with suitable elaboration, the model described above
will prove to be of some utility in the analysis of such
complex phenomena.

There is in fact a related but somewhat simpler
set of observations on isolated (undercut) cortex
(Burns. 195 1). In such a preparation. electrical stimula-
tion of one locus on the cortical surface generates
waves that propagate without attenuation to the
boundaries of the isolated region. On the assumption
that under-cut cortex is dis-inhibited, wave generation
and propagation, as in the tissue model, is to be
expected following localised stimulation of the cortical
surface. However. the propagation velocity of 20 cm/see
observed by Burns (1951) is significantly higher than
that obtained from the tissue model, suggesting that
spatial interactions in cortex are longer ranged than
those incorporated in the model.

Burns (1958, 1968) has suggested that such waves
may be related to the activity waves discussed by
Beurle (1956). However, the neuronal medium con-
sidered by Beur!e contained only excitatory neur&s
whose refractory periods were of sufficient duration
so that each could be activated only once during the
passage of a wave. In the tissue model presented here,
the mechanism of wave propagation is quite different.
Each neuron may tire many times during the passage
of a wave front, but such activity generates enough
inhibition in its wake to quench the excitation as the
wave passes. The inordinately long refractory periods
required in Buerle’s model make it seem much less
plausible than the excitatory-inhibitory model sug-
gested here.

2.2.9. -Spatially Inhomogeneous Steady States. The
third form of the solution of Eqs. (1.3.1) and (1.3.2)
consists of spatially inhomogeneous stable steady
states of activity. [The existence of spatially homo-
geneous steady states is precluded by the inequalities
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Fig. 10. Spatially inhomogeneous stable steady states of neural
activity generated in response to two different stimuli. (E(x)) is
represented by a solid line and (f(x)) by a dashed line. The rectan-
gular inset below each graph shows the spatial contiguration of the
stimulus used to excite the tissue to each of the steady states. Once
established by brief stimulation, the neural activity is self-maintained

(1.4.1) and (1.4.2).]  Once reached such states are
maintained by neuronal  activity within the tissue
without need of any further afferent stimulation.
Two examples of these activity states are shown in
Fig. 10 together with their generative stimuli. It is
apparent that broad spatial square waves generate
two peaks of activity approximately located at their

2.2.fO.  A Possible Mechanism for Short Term

edges, whereas sufficiently narrow stimuli generate

Memory. The functional significance of these stable
steady states becomes manifest with the observation
that the two-dimensional generalisation of Eqs. (1.3.1)

only one peak. As one might expect, there is a threshold

and (1.3.2) also generates stable steady states that
reproduce the contours of prior two-dimensional

for the triggering of such stable peaks, related to the

stimulus patterns. (Preliminary studies of the two-
dimensional case have confirmed this.) Such states may

width, intensity. and duration of the applied stimuli

provide a mechanism that could account for short-
rum memory. and may be thought of as a complex

in the conventional fashion.

spatial generai$ation  of dynamical hysteresis, a
phenomenon first  suggested as the physiological basis
for short term ‘+‘memory by Cragg and Temperley
(1955). Thus the’ contours of any brief -but  supra-
threshold stimulus will be actively stored as a pattern
of neuronal  activity until erased by suff%ciently strong
afferent inhibition of excitatory neurons in the sheet,
or by an equivalent afferent excitationof inhibitory

interneurons. Spatially localised activity of this type
may also be thought of as resulting from localised
reverberation: activity may circulate among neurons
in the excited region in such a manner that the total
activity at each point remains constant. The inter-
pretation of spatially inhomogeneous stable steady
states as a basis for short term memory is therefore
compatible with Hebb’s theory (Hebb, 1949).

Although this discussion of short term memory
has been largely hypothetical, recent experiments by
Fuster and Alexander (1971) provide some physio-
logical support for the postulate. In these experiments
Monkeys were trained to perform delayed response
discriminations. During the interval between cue
presentation and execution, marked increases were
observed in the firing rates of neurons in prefrontal
cortex and in the medial dorsal nucleus of the thalamus.
Increases of up to ten times the resting discharge rate
were observed which persisted for as long as one
minute. These microelectrode recordings are what one
would predict from the solutions of Eqs. (1.3.1) and
(1.3.2) in the steady state mode.

2.2.11. Specifying the Different Solution Modes. The
fundamental role played by the various parameters of
Eqs. (1.3.1) and (1.3.2) in determining the dynamical
mode of the solutions is obvious. Unfortunately the
equations are so complex as to preclude the analytic
determination of either necessary or sullicient  condi-
tions for the specification of each of the three forms of
solution. Nevertheless, qualitative relationships be-
tween the sets of parameters that generate the different
forms are evident in Table 2 (see 5 2.2). Certain pre-
dictions based on these relationships have been tested
and verified by numerical integration of the equations.

It will be seen from Table 2 that the parameter sets
which lead to the active transient and steady St&e
modes differ only in the value of the parameter b,,.
Since b,, measures the strength of lateral excitatory-
excitatory interactions, it follows that mode switching
from steady states to active transients may be effected
by decreasing the strength of excitatory (positive)
feedback within the model tissue. Conversely, by
increasing the strength of excitatory feedback, stable
spatially inhomogeneous steady states can be created.
This suggests the possibility that one of the effects of
learning may be the creation of new large-scale stable
states of activity in cortical tissue by way of the
modification of excitatory-excitatory synapses. Such
possibilities require further investigation.

The relationship between the parameter set deter-
mining the limit cycle mode and those determining the
other two modes is much more complicated. The



70 H. R. Wilson and J. D. Cowan: Functional Dynamics orNervous  Tissue Kybrrnerik

major differences are in the values of the parameters
bi,. bei and bii. In the limit cycle mode bi, and b,i are
larger, and bii is smaller than in the other modes. In
effect. there is stronger negative feedback within the
model tissue as a consequence of the increased
strength of excitatory-inhibitory-excitatory circuits
and a descreased strength of inhibitory-inhibitory (or
dis-inhibitory) circuits. In addition, the parameter Vi
is also greater in the limit cycle mode. This implies an
increase in the maximum slope or sensitivity of the
aggregate response function q(fli) (see 5 1.41.  and
therefore a decrease of the range between resting and
saturated activity of the inhibitory interneurons in the
tissue. It seems that by sharpening the inhibitory
response function, the instability necessary for limit
cycle oscillations is created. The slightly lower value
of the aggregate threshold Bi, is not critical (see 5 1.4).

There are clearly other possibilities in the relation-
ships among the various parameter sets. For example,
increasing gie or (T,~ should produce similar effects to
those obtained by increasing bi, or bei. Further insight
into such possibilities may perhaps be obtained from
the analysis of spatially localised aggregates deveioped
in a previous paper (Wilson and Cowan. 1972).

3. Three Sensory Experiments
3.0. lntroducrion

In 9 2 it was suggested that neuronal tissue in the
active transient mode might be involved in sensory
information processing. In this section it will be shown
that the active transient response can serve to provide
plausible explanations for a variety of psychophysical
observations associated with the visual system. In
discussing the various experiments. it is to be em-
phasised that the same parameters are used throughout
(those listed in Table 2 that generate active transients):
only stimulus parameters are varied for the different
experiments.

3.1. Sputiul Modulation Transfer Functions

The spatial modulation transfer function is a
measure of the response of the visual system to
different spatial frequencies. In the first sensory
experiment this.function  was determined for the model
tissue in the ac{ive transient mode. To accomplish this
the excitatory neurons were stimulated for a duration
At = 5 msec with spatially varying afferent excitation
of the form

(P(x.t))= y1 +cos(-y

where n is an integer. Subsequent to this stimulation
excitatory activity in the tissue continued to increase
until a maximum amplitude was reached at a latency
of approximately At = 10 msec, after which the activity
decayed to the resting state. In all cases the response
was spatially periodic, with a frequency equal to that
of the stimulus. but because of the non-linearities in
Eqs. (1.3.1) and (1.3.2) the actual waveform was not
sinusoidal. The maximum peak to trough amplitude
of the excitatory response (E(x.  r)), was chosen as a
measure of the sensitivity of the model tissue to
stimulation at each spatial frequency. Figure 11 shows
this amplitude plotted as a function of spatial
frequency. for stimuli of constant amplitude.

0 I
3 5 7

Stimulus frequency Icycleslmm)

Fig. I I. Spatial modulation transfer function of the tissue model.
Stimulation is brief and of the form:

2nn.K’(PLU)) = I + cos 7i 1
(Em. - Emi,,)  gives the maximum peak to trough amplitude of the

excitatory response

The attenuation of both low and high spatial
frequencies exhibited by the model is consistent with
the properties of the modulation transfer function for
the Human visual system, as measured psychophysical-
ly (Campbell and Green, 1965). Such measurements
involve the determination of contrast thresholds for
distinguishing spatially varying gratings from a Ganz-
feld. Since the model exhibits both threshold phe-
nomena and spatial summation, it is clear that results
similar to those shown in Fig. 12 can be obtained from
the determination of threshold sensitivities to spatially
varying gratings. However such threshold determina-
tions require large amounts of computer time and
have not been carried out.

It has been suggested that the spatial modulation
transfer function for the visual system is formed by the
optical attenuation of high frequencies by the lens,
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and the neuronal attenuation of low frequencies by
lateral inhibitory nets (Ratliff, 1965). Campbell and
Green (1965) used laser generated interference f fringes
to show that the optical properties of the Human eye
con contribute little to the high frequency attenuation,
and therefore that it must be mainly neuronal in origin.
The computations reported here show that the neuro-
nal tissue model incorporating recurrent lateral excita-
rior~ in addition to recurrent lateral inhibition [subject
to the inequality of (1.4.3)]  can account for the spatial
filtering properties of the Human visual system. The
available evidence does not permit one to speculate
however, on the precise anatomical location where
this filter occurs.

3.2. Metacontrast Phenomena

3.2.0. Introduction. In a second series of model
experiments, various spatio-temporal interactions of
the metacontrast type have been investigated. Meta-
contrast is defined as the perceptual masking of a
brief target stimulus by a second stimulus presented
subsequently at a location in the visual field that does
not overlap that of the target (Kahneman. 1968). All
psychophysical experiments on metacontrast involve
two-dimensional targets, such as discs or alphanumeric
characters, and a two-dimensional mask that is either
an annulus encircling the area of target presentation.
or else a pair of bars flanking it (Kahneman, 1968;
Kohlers, 1962; Kohlers and Rosner. 1960). Since only
one dimensional spatial patterns are considered in
this paper, it is obviously impossible therefore to
replicate the actual psychophysical experiments. In-
stead, one dimensional bars have been used as target
stimuli, and pairs of such bars as masks. The problem
thus reduces to a consideration of one-dimensional
interactions. The results obtained in this fashion may
be expected to hold for rectangular bars that are much
longer than they are wide. Whether of not qualitative
differences are likely to arise in more complex two-
dimensional cases will be discussed later.

3.2.1. Type A Masking. The procedure adopted was
to stimulate the tissue model with a target bar of
specified width and supra-threshold intensity for an
interval of duration JIM = 5 msec. The response was
allowed to form unimpeded for a variable interval. at
the termination of which masking bars of the same
width but gre$er intensity than the target were
presented, at locations flanking but not. overlapping
the locus of target presentation. The spatial relation-
ships are shown in the inset of Fig. 12. To measure the
degree of masking, responses to the target alone were
compared with responses to the target followed by the

t Imsec)

Fig. 12. Type A metacontrast effects in the active transient mode. 8
(E(x,, t)} is the excitatory response at the point of target presenta-
tion. as indicated in the inset. Figures on the curves are times-at
which masking bars are presented at the locations shown by cross-
hatching in the inset. The dashed line indicates the unmasked result.
Target presentation is for Smsec. and the relative intensities of

target and mask are given by heights of bars in the inset

mask. The results are shown in Fig. 12 for various
intervals between target and mask presentation. In
each case the width of the target was chosen to be
sufficiently narrow so as to preclude edge enhancement,
so that the target response might be accurately
represented by a temporal graph of the activity
generated at the centre of the target location (see inset,
Fig. 12).

It will be noticed that unless the interval between
target and mask is short, the mask has little effect on the
maximum target response, but affects mainly the
decaying phase of the target response. However it
will be recalled that the tissue model exhibits temporal
summation (Fig. 3, Q 2.2.1) so that an appropriate
measure of the target response is not the maximum
value attained, but the integral of the response over
its entire duration, i.e., the area under each curve shown

I
in Fig. 12. or J (E(x,  T)) d T. Using this integrat’to

0
measure masking. it will be seen that masking is a
monotone-decreasing function of the interval between
target and mask presentations. Other computations
have shown that the degree of masking is also a
monotone-decreasing function of the distance between
target edges and the inside edges of the masking bars.

The monotonic masking shown in Fig. 12 has been
designated type A by Kohlers (1962). Typically, type A
masking functions measured psychophysically show
strong effects even if masks are presented as long as
50 msec after targets. One might anticipate that such
long intervals would not lead to masking in the model.
In type A masking however, the mask is typically of
much higher contrast than the target. It was shown
in 0 2.2.1 that high intensity stimulation generates
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active transients of very short peak latency; therefore
the neuronal  response to a high contrast mask may be
expected to propagate through retina, lateral geni-
culate, and several cortical areas at a much higher
velocity than the target response. The mask response
can therefore reach cortex concurrently with the
target response, even if it is initiated some 50 msec
after the target response. This implies that the location
of the neuronal interactions leading to type A masking
must be cortical. The fact that type A masking may be
obtained in dichoptic stimulus presentations (i.e., with
the target presented to one eye and the mask to the
other at the appropriate retinal location) (Kohlers
1962; Kahneman, 1968) supports the presumption
that it is a cortical phenomenon.

3.2.2. Type B Masking. A second non-monotone
masking phenomenon exists, first observed by Kohlers
and Rosner (1960) and designated type B by Kohlers
(1962). In this type of masking the optimum effect is
obtained if the mask is presented approximately
50 msec after the stimulus has terminated. If the mask
follows the stimulus with a very short delay, both
stimulus and mask are perceived as simultaneous. If
the interval between target and mask is very long
however, the target and mask are perceived as con-
secutive. The appropriate stimulus arrangements for
realising type B masking are that target and mask be
virtually contiguous and of equal intensities (Kahne-
man, 1968).

These stimulus conditions have been used in an
effort to obtain type B masking within the tissue model,
so far without success. Since the mask used in type B
experiments is usually always an annulus. it is possible
that the two-dimensional model will reproduce the
phenomenon. but this has yet to be attempted. What-
ever the outcome, there is one detail which suggests
that there may be a fundamental difference between
type A and type B masking. In type B masking. both
target and mask are of equal intensity and therefore
will generate responses of equal latency. There can
therefore be no question of mask responses arriving
at cortex concurrently with target responses, as
postulated for type A phenomena. so that propagation
through successive sheets of neuronal tissue cannot
account for the,?ccurrence of optimal type B masking
effects at a delay of around 50 msec. There is another
interesting possibility. It is now known that corticifugal
tibres to the lateral geniculate nucleus originate almost
entirely from cortical area 18 in Cat (Hollander, 1971).
The proper latency for optimal type B masking would
obtain if such effects were the result of interactions
within the lateral geniculate nucleus of retinally

.

generated mask responses and cortical feedback of
target responses. If this were the case, all aspects of
type B masking could be readily explained: simultane-
ous presentation of target and mask would lead to the
simultaneous perception of both stimuli; since both
stimuli are of equal intensity, neither could mask the
other. [Actually, masking is mutual but weak for both
stimuli in this case, in both model and psychophysical
experiments (Kahneman, 1968).]  The optimal delay
of 50 msec would then be accounted for as the delay
necessary to produce maximum interactions of retinal
and cortical responses in the lateral geniculate nucleus.
This possibility is currently being examined in greater
detail.

3.3. Spatiul Hysteresis in Binocular Vision

3.3.0. The Fender-Julesz  Experiment. In the final
series of model experiments reported in this paper an
important phenomenon based on binocular fusion has
been investigated. This phenomenon was discovered
by Fender and Julesz (1967) in the course of ex-
periments with stabilised retinal images. Binocular
stabilisation techniques were used so that the locations
on the retinae of identical patterns simultaneously
presented to the two eyes could be independently
controlled. These patterns are initially presented w’th
zero binocular disparity, so that subjects report seeing
the patterns as a single fused percept. The patterns are
then slowly and symmetrically moved apart on the
two retinae until the subject perceives a double image.
At this point the direction of pattern motion is reversed,
and the patterns are slowly moved together until the
subject again perceives a single fused image. The
surprising result is that the actual retinal disparities
necessary for refusion are always significantly less than
those required to maintain fusion once it has been
established. Thus a form of spatial hysteresis is
operative in stereopsis (see Fig. 3 and 6 of Fender and
Julesz, 1967).

Since there are topographic projections from retina
to striate cortex, it can be supposed that retinal
stimulus disparities produce equivalent disparities in
the resultant cortical responses, and that spatial
hysteresis is a cortical phenomenon associated with
stereopsis. In view of the demonstrable existence of
hysteretic effects in spatially localised neuronal ag-
gregates (9 2.1.1 and Wilson and Cowan, 1972),  it is
appropriate to look for spatial hysteretic effects directly
analogous to those discussed above in the one-
dimensional tissue model.

3.3.1. Spatial Hysteresis in the One-Dimensional
‘Tissue Model. In the one-dimensional model all stimuli
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are equivalent to vertical bars. However one of the
stimulus patterns used by Fender and Julesz (1967)
w-as a single vertical bar, so that no difficulties arise in
considering the experiment as a one-dimensional
spatial problem.

It was assumed that the retinal stimuli could be
reasonably approximated by a pair of sharply peaked
Gaussian distribution functions, one for each eye.
These stimuli were equal in amplitude and shape
throughout the experiment, and were assumed to
represent the maintained retinal discharge rather than
the transient ON response, since it must be supposed
that under the high contrast stabilised image condi-
tions employed by Fender and Julesz, the maintained
retinal discharge, rather than the transient ON re-
sponse, provided the effective stimulus to cortex. Initial-
ly the two Gaussian stimuli were placed in exact register
on the tissue model and summed point by point to
produce the net (binocular) stimulus. The active
transient response was then allowed to develope and
reach equilibrium (because of the intense and sustained
stimulation, the active transient does not in this case
decay to the resting state). Following this the two
stimuli were symmetrically moved apart by a small
increment, re-summed, and the neuronal  response was
again allowed to reach equilibrium. This procedure
was repeated to produce increasing stimulus disparity.

Mathematically this stimulation routine may be
written as

(P(x,c)) = k[exp(  - (x- ~~t)~/a~)+  exp( - (x + 2d)2/a2)],

where v is the (small) velocity at which the two “retinal”
stimuli are moved apart, and CT measures the width of
each Gaussian stimulus. In the model experiment the
continuous velocity v was approximated by shifting
the two stimuli apart in small steps at a constant (slow)
rate.

Initially with the two stimuli in exact register, the
response consisted of a single peak of sustained high
level activity as shown in Fig. 13a.  As the disparity
between the two stimuli increased, the response con-
tinued as a single peak located at the mid-point of the
binocular stimulus until a critical disparity was reached.
At this stimulus disparity, the single peak response
decayed rapidly to zero, and twin iesponse peaks
formed at the, locations of the now rather widely
separated stimuli. A spatial profile of this response is
shown in Fig.‘t3b. Further increases in stimulus
disparity merely produced further corresponding
increases in the disparity of these response peaks.

Following this the stimuli were gradually moved
together again in the same fashion. Again a critical
disparity was reached at which the response pattern
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Fig. 13. Neural activity at three stages of the Fender-Julcsz hysteresis
!oop. (E(x. t)) is plotted as a solid line and (1(x, r)) as a dashed line.
A. BI and C indicate the points on the hysteresis loop in Fig. 14 at
which the activities are plotted. Positions of the maxima of the
Gaussian stimuli are indicated under each graph by the solid
triangles. Note that although the stimuli are further apart in A than
in C- the response in A is a single peak, whereas the response in

C exhibits twin peaks

switched from two peaks of activity to a single peak.
However, this critical disparity was much smaller than
the first critical disparity described above. The
difference may be seen by contrasting Fig. 13~ with 13a.
Although the stimulus disparity shown in Fig. 13a is
greater than that shown in Fig. 13c, the response
profile shows a single peak in the first case and twin
peaks in the second case.

A more effective way of representing the resultSof
this model experiment is shown in Fig. 14 in which the
disparity between peaks of excitatory neuronal activity
is plotted as a function of the disparity between peak
amplitudes of the two stimuli. The disparity is taken
to be zero when the response consists of a single peak
of activity. Starting at zero stimulus disparity, the
arrows in Fig. 14 indicate that as the stimuli are moved
apart, the response remains unimodal until the
disparity increases beyond approximately 180 pm.
Thereafter the bimodal response is rapidly established.
As the stimuli are again brought back into register, the
arrows indicate that the response peaks do not move
together as quickly as do the stimulus peaks (because
of the retarding effects of recurrent lateral inhibition).
Furthermore refusion does not occur at 180 pm and
the bimodal response is maintained until a disparity
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Fig. 14. Simulation of the Fender-Julesz experiment on hysteresis
in binocular vision. Stimulus disparity is the distance between
maxima of the two displaced Gaussian stimuli, while (LIE,,,,,) is
the separation between maxima in the neural response. Arrows
show the hysteresis loop generated by first pulling the stimuli apart

and then bringing them back into register

of about 80 pm is reached, after which refusion is
rapidly established. The letters a-c in Fig. 14 indicate
the points on the hysteresis loop from which the
response profiles shown in Fig. 13 were taken.

The circuit indicated by the arrows in Fig. 14 is
clearly hysteretic, and is generated by spatio-temporal
interactions within the model tissue. If unimodal
responses are identified with binocular single vision
and bimodal responses with double vision. then the
hysteresis loop shown in Fig. 14 reproduces the results
of the Fender-Julesz experiment. The reader is referred
to Fig. 3 of the original article for comparison (Fender
and Julesz, 1967).

3.3.2. Random Dot Stereograms. Two other aspects
of the Fender-Julesz experiments arc also of interest.
In addition to bar targets. experiments were also
performed using highly textured two-dimensional
patterns [random dot stereograms (Julesz, 1971)].
Spatial hysteresis was again observed, but much
greater disparities were found to be necessary for
breakaway and much smaller ones for refusion. In
effect, the range of stimulus disparities over which
spatial hysteresis was operative increased in both
directions relative to the results obtained using vertical
bar targets. Since the model problem is now two-
dimensional, attempts have not yet been made to
reproduce the ,results. It seems certain however, that
the increased efirectiveness  of highly textured patterns
in producing s#atial hysteretic effects is directly related
to the fact that highly textured chess board patterns
generate much stronger cortical evoked potentials
than do simpler line targets (Spehlmann, 1965). It has
been found that a “chessboard” stimulus will similarly
produce a stronger response than a bar in the two-

dimensional tissue model, so that it is very likely that
highly textured target will also generate stronger
hysteretic effects in the two-dimensional model.

3.3.3. Occlusion Effects. The other interesting aspect
of the Fender-Julesz experiments is contained in the
determination of the duration of occlusion of the two
retinal images that is necessary to cause the breakaway
of a fused image at various disparities. As one might
expect, the critical duration of occlusion was found
to be a monotone-decreasing function of increasing
retinal stimulus disparity. It has already been shown
that strength-duration curves of Block type obtain for
threshold phenomena in the neuronal tissue model
($2.2.1).  This fact, together with the observation that
the strength of the stimulus actually delivered to the
tissue model at the site of single (fused) response peak,
decreases with increasing stimulus disparity, indicates
that a qualitatively similar occlusion effect can be
expected from the model.

3.3.4. Relation to Two Theories of Binocular Vision.
Spatial hysteresis is a key feature of the model for
stereopsis and depth perception recently developed by
Julesz (1971). The Julesz model employs two interact-
ing arrays of spring-coupled magnetic dipoles, and is
based upon an analogy to magnetic hysteresis, since
no neuronal mechanisms for spatial hysteresis w:re
known at the time it was formulated (see $5.2.15).  The
close qualitative similarity between the Julesz model,
and the neuronal tissue model described in this paper,
becomes apparent when it is realised that the locking
of magnetic dipoles effectively provides local excitatory
feedback, whereas the springs that couple adjacent
dipoles provide the equivalent of longer ranged
recurrent lateral inhibition.

Sperling (1970) has also developed a rather detailed
though qualitative physical and neuronal model’of
binocular vision. This model is similar to that one
described here, in that short range recurrent excitation
is coupled to longer ranged recurrent lateral inhibition.
However, the implications of these assumptions for
large-scale spatio-temporal phenomena are not devel-
oped in a quantitative fashion. Sperling’s postulated
neuronal  binocular field could readily be constructed
from several interconnected model tissue sheets, and
it seems clear that the spatial hysteresis effects pre-
viously discussed would provide a quantitative founda-
tion for the predictions of Sperling’s model. The
Sperling model is actually more closely related to the
difference-field model, also developed by Julesz (197 I),
than it is to the spring-coupled magnetic dipole model
described above. Furthermore, the two models do
differ in their representation of depth information, and
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in the dynamics of the process of fusion. The single
sheet neuronal tissue model presented in this paper
is not by itself a complete model for depth perception
and stereopsis. However it does provide a plausible
neuronal  interpretation of visual hysteretic phe-
nomena. It is expected that further extensions of the
tissue model will provide more insights into the
differing neuronal mechanisms underlying the Julesz
and Sperling models.

3.4. Concluding Remarks

In concluding this section it is re-emphasised that
the spatial modulation transfer function, metacontrast
and hysteretic effects were all obtained using the same
choice of parameters in Eqs. (1.3.1) and (1.3.2), i.e.,
those for the active transient mode. The different
results represent the responses of one model to differing
stimuli. This is consistent with the hypothesis advanced
in 5 2.2.3 that the active transient mode may represent
qualitatively the responses of sensory cortical tissue.
The known anatomy of striate cortex is certainly much
more complicated than is reflected in Eqs. (1.3.1) and
(1.3.2),  but it is hoped that the relative simplicity of the
model may serve as a basis for a better understanding
of the functional significance of cortical complexity.

4. Discussion

Throughout this paper it has been assumed that
the appropriate description of the dynamics of nervous
tissue is in terms of the interactions between aggregates
of neurons distinguish according to cellular type.
Given this assumption it is natural to chose as dynam-
ical variables the proportions of neurons in the various
aggregates becoming activated per unit time in a
small region of the tissue. With this choice of variables,
and a few simplifications such as time coarse-graining
and the neglect of relative refractoriness, the model
embodied in Eqs. (1.3.1) and (1.3.2) is readily derived.

The anatomy represented in the model is a
reasonable approximation to actual neuronal tissue,
for the basic circuitry has been proposed for many
neuronal  regions. For example, the model anatomy
is similar to that of the olfactory bulb and pre-pyriform
cortex (Allison, ,<19.53). The primitive nature of these
structures re-inforces the idea that the present model
may serve as a t&t simple approximation to the more
complex structures of cerebral neo-cortrx-and  related
thalamic nuclei. However even this simple model
exhibits considerable complexity. Three fundamentally
distinct dynamical response modes have been found,
each associated with a different set of connectivity

parameters. Since these parameters are anatomical
in nature, it has been postulated that each mode
represents a different anatomical specialisation of
neuronal  tissue to perform a distinct physiological
function.

Of the three anatomies perhaps the most interesting
one is that supporting active transient responses. It
has been shown that there is a threshold for the genera-
tion of active transients, involving both spatial and
temporal summation. Further properties include
variable latencies, edge enhancement of sufficiently
wide stimuli, and a relationship between the width of
the neuronal representation of a stimulus and the
stimulus intensity. Since these properties are all
characteristic of primary sensory systems, it is pos-
tulated that the active transient anatomy is charac-
teristic of primary sensory cortex, particularly of
primary visual cortex. This postulate is supported by
the fact that such a model anatomy reproduces, with
one fixed set of parameters, a variety of sensory
experiments: spatial modulation transfer determina-
tions, metacontrast effects, and the spatial hysteresis
effect discovered by Fender and Julesz (1967).

The second model anatomy supports the genera-
tion of long-lasting oscillatory responses, and is
assumed to be characteristic of thalamic tissue. The
characteristic responses are spatially localised limit
cycles for constant spatially inhomogeneous stimuli.
The frequency of such oscillations codes for stimulus
intensity, and again, edge enhancement occurs for
sufficiently wide stimuli. Frequency de-multiplication
of stimulus pulse trains also occurs, and with suitable
diffuse dis-inhibition, propagating waves are generated.
It is suggested that such dis-inhibition is one of the
factors contributing to the generation of the various
rhythms observed in the EEG.

The third model anatomy supports the genera&u
of spatially inhomogeneous stable steady states of
neuronal  activity. Excitation to such states by brief
stimuli involves threshold effects and spatial and
temporal summation. Such spatially inhomogeneous
states retain information about the contours of stimuli.
It is therefore postulated that these states may be
involved in short-term memory and that the associated
anatomy, involving strong recurrent excitatory inter-
connexions, is characteristic of archi- and pre-frontal
cortex.

The various properties described above all arise
from the interplay between short range recurrent
lateral excitation and longer ranged recurrent lateral
inhibition. The current model may therefore be
thought of as a natural extension of several previous
studies of spatial interactions in nervous tissue.



I

. ’

76 H. R. Wilson and J. D. Cowan: Functional Dynamics of Nervous Tissue Kybernrrik .

Perhaps the first important study was that of Beurle
(1956) who analysed the properties of a medium
composed exclusively of excitatory neurons. Inhibitory
neurons were not included and the refractory periods
of the excitatory neurons were assumed to be so long
that each could tire only once in response to a given
stimulus, although this assumption was later removed
in computer simulation studies by Beurle (1962) and
Farley and Clark (1961). The present model may be
thought of as an extension of Beurle’s to include the

multiple firing of neurons and recurrent lateral
inhibition as well as excitation. The most elegant and
best known studies of a system involving lateral
inhibition are those of Hartline and Ratliff on the
compound eye of Limulus (Hartline and Ratliff, 1958;
Ratliff. 1965). The present model may also be thought
of as an extension of the Hartline-Ratliff paradigm to
incorporate recurrent lateral excitation. An attempt
by Griffith (1963, 1965) to develope a neuronal -‘field
theory” may also be cited here. although it was
unsuccessful, mainly because of a failure to deal with
inhibition as arising from a distinct aggregate of
inhibitory neurons. The appropriate two variable
description of excitatory-inhibitory interactions in a
net was first developed by Cowan (1968,197O)  and has
been used in this paper. Finally, the present model is an
extension to the spatial domain of the non-linear
dynamics of localised neuronal aggregates previously
developed by the authors (Wilson and Cowan, 1972).

It is to be emphasised that all spatial interactions
in the model are recurrent. This feature distinguishes
the model from retinal models such as Sperling’s
(1970). It is in fact the incorporation of recurrent
excitatory interactions that leads to the active prop-
erties of the model tissue: thresholds for self-generated
excitation, inhomogeneous stable steady states, limit
cycle oscillations, spatial hysteresis, and so on. Such
active properties seem to be present in cortical and
thalamic responses as manifested in such phenomena
as short term memory, selective attention, dreaming,
and ultimately in cognition. Obviously these active
properties must be characteristic of centrai rather than
retinal or other peripheral processes. mecurrent
interactions are present in the retina, but are almost
certainly inhibitory, and involved in adaptation
(Rushton. 1965).]

The model developed here is only a crude first
approximatioh  to the anatomical and physiological
complexity of actual nervous tissue. However, now
that a framework for dealing with spatio-temporal
interactions between aggregates of distinct neuron
types has been developed, it will be seen that the model
may be readily extended to include spatio-temporal

interactions among three or more aggregates. In
general, the model for N aggregates will involve N
simultaneous first order integro-differential equations
of the same form as Eqs. (1.3.1) and (1.3.2),  together
with N2 connectivity functions specifying the spatial
interactions among and within the N aggregates. The
model can readily incorporate such further corn-
plexities as the differential magnification of central
and peripheral regions in cortical area 17 (Daniel and
Whitteridge, 1961) through the use of spatial connec-
tivity functions with position dependent coefficients.
In such a fashion the model may be extended to
incorporate much more of the detailed complexity of
nervous tissue. To cite but one example, the “simple”
and “complex” neurons of Hubel and Wiesel (1963,
1965, 1968) might be modelled as two distinct ag-
gregates of excitatory neurons.

In concluding, one important ambiguity in the
anatomical interpretation of the present model should
be noted. It has been assumed that all recurrent
interactions occur between neurons located in the
grey matter of a single anatomical region of cortex
or thalamus. However, it is known that many cortical
and thalamic regions are reciprocally and topo-
graphically connected. If the conduction time for
impulse propagation between two such reciprocally
connected regions is sufficiently short, then some oi the
dynamical properties of the cortical tissue model might
actually be properties of the two interconnected
regions rather than of either one in isolation. The
resolution of such ambiguities must await further
anatomical and physiological data.

5. Appendix
5.0. Introduction .A

The fundamental equations discussed in this
paper, Eqs. (1.2.1) and (1.2.2) and the time-coarse
grained forms (1.3.1) and (1.3.2) are inherently non-
linear, and generate complex non-linear phenomena.
Linear equations cannot generate such phenomena as
active transients that persist after the cessation of
stimuli, limit cycle oscillations, or spatially in-
homogeneous stable steady states. Furthermore, even
in Eqs. (1.3.1) and (1.3.2) it is not possible to solve for
the spatial steady states and then determine their
stability by linear analysis. Fortunately it is possible
to linearise Eqs. (1.3.1) and (1.3.2) about a spatially
homogeneous state, (E(x,  r)) = (E,(t)) and (Z(x, r))
= (lo(t)) and then study stability properties of the
resulting equations. The point is that given (E,) and
(1,) it is always possible to choose constant values of
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<Ox, t)> and <Qk 0) so as to make (<E,), <I,)) a
steady state (not necessarily stable) of Eqs. (1.3.1) and
(1.3.2).

5.1. Linearised Stability Analysis

It is therefore assumed that appropriate values of
(P(x. r)) and (Q(x,  t)) have been chosen in such a
fashion, so that the linearised forms of Eqs. (1.3.1) and
(1.3.2) are, respectively

&<E’k t)> = - k,Wk 0) + &C<E’k t)> 0 Pee(x)
- <I’(x9t))OBi&x)+ tp’(x9t)>]  (5.1.1)

and
II

<E’k W = Wxt t)> - (E,(t)>

PC (I’(X,  t)> = - ki(l’(x, t)> + siC<E’(X,t))  0 Bei

-(I’(X,t)>OPii(X)i  (Q'(x,t))](5.1.2)
where

and similarly for (I’), (P’), and (Q’),  and where

k, = 1+ r,X C<Eoh &,)I ;

,Se=[l--r,(E,)].F
<E’)=O!
(I’)=0

ki = 1+ ri$ CC&), (&)I ;

Si = [l - ri(ZO)]  . -1
(E’)=O ’
<I’)=0

In principle Eqs. (5.1.1) and (5.t.2) may be solved
exactly by Fourier transforming with respect to x.
Unfortunately, the inverse transform involves extrac-
tion of quartic roots, so that the method is not prac-
ticable. However all the important properties may be
obtained by considering only perturbations that are
spatially periodic. It will therefore be assumed that
(P’(x. t)) and (Q’(x,  t)) have Fourier series representa-
tions, so that only solutions need be considered for
individual harmonics of (P’> and (Q’)..

The response of the’linearised tissue equations to‘C
will be of the form

(E’(x,  t;> = (E’(t)) cos[2_“RXj  ; _1 L 1
2nz.x

[ I
(5.1.3)

(I’(x, t)) = (Z’(t)) cos - .L

On substituting these expressions into Eqs. (5.1.1) and
(5.1.2) one obtains:

2 S b  D-k,+ eeeee
1+ (2n7ra,,/L)2 1 . <E’(t)>

2S b. (r.e it? 1.s-
1 + (2nAuiJLJ2 1 . <W) + se (5.1.4)

and

P-g <I’(t)> = 2Sib,io,i
I+ (2n7ra,JL)2 1 * <E’(t)>

2Sibiiqi
I+ (2n7TfJii/L)2 I

. <w> . (5.1.5)

These equations are of the form

&<E’) = Cl (E’) - c2(II) -t se I

d
pz (I’) = c3 (E’) - c4 (I’) .

The eigenvalues are therefore proportional to

cl-C4fI/[(~1+C4)2-‘k2~3]/2. (5.1.6)

Thus a necessary condition for stability is that cq > ci.
It follows from Eqs. (5.1.4) and (5.1.5) that this condi-
tion is

2Sibiiaii 2 S b  ts
1 + (2rmii/L)2 +ki> e ee ee

1+(2nRa,,/L)’
Sk,. (5.1.7)

Ifthe homogeneous steady state ((Eo), <IA)) is near
the resting state (O,O),  then k, and ki will both be
approximately unity. If tee> Uii, the conditions (5.1.7)
will be satisfied for all n as long as Sibiicii  > S b Qe er ee - 1.
When this condition is met, a sufficient condition for
the stability of the solutions of Eqs. (5.1.4) and (5.1.5) is
that the square root in (5.1.6) be imaginary. For t&
to be the case it is necessary and sufficient that

16s S.b. O- b .ae L *e le e, et
(1 +(2n7Zaa,,/L)2)(1+(2n7T0,JL)2)

2 S b  CT
’1 + (2; G,JL)2

2Sibiiai,
+ 1 +(2nnoiJL)2 + ki-k,1 2.(5.1.8)

Suppose that (5.1.8) is satisfied for small n, if k, is even
slightly different from ki however, the inequality will be
violated for sufficiently large n. Thus for sufficiently
large values of n the eigenvalues of Eqs. (5.1.4) and
(5.1.5) must be real. In such a case the requirement for
stability becomes

or
Cl -Cc,+ [(Cl +C,)2-‘k2C3]<o

c2c3<c1cq.
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In terms of the coefficients in (51.4) and (5.1.5) this
condition becomes:

4s S.6. a .  b  .ae I te *e et er
(1 +(2H71ai,/L)Z)(1+(2nKa,JL)‘)

2Sb a> e t-e ee
1 + (2nxaJL)’ - k

2Sibiiaii
1 +(2nnaiJL)2

+k, . (5.1.9)
I

Since k, and ki are both positive, it follows that (5.1.9)
is automatically satisfied for very large n. Suppose
that the coefficients have been chosen so that (5.1.9)
is also satisfied for small n. For the remaining inter-
mediate values of n however, the situation may be
different. It has already been argued on physiological
grounds that aei >aee [Eq. (1.4.3)].  If in addition
aie> aii, then the left hand side of (5.1.9) will decrease
faster than the right hand side as n increases. It is thus
possible that (5.1.9) will be violated for intermediate
values of n, thus leading to instability.

These considerations lead to the conclusion that
Eqs. (5.1.1) and (5.1.2) may be stable with respect to
harmonic perturbations of both low and high spatial
frequency, yet unstable to perturbations of inter-
mediate spatial frequency. Even if the equations are
not actually unstable with respect to such intermediate
frequencies, they will be less stable than at high fre-
quencies, and consequently more sensitive. This
property is manifest in the spatial modulation transfer
function of the non-linear Eqs. (1.3.1) and (1.3.2). It is
also the basis for the edge enhancement effects in the
active transient mode, and for the edge extraction
effects in the steady state mode.

Unfortunately, linearised analysis tells one little
about the oscillatory mode since limit cycle oscillations
are functions of the global properties of the non-linear
equations. Nor does the linearised analysis indicate
whether an instability at intermediate frequencies will
lead to an active transient response, or to a spatially
inhomogeneous steady state.

l.~&f,./  p.56. Such redundancy is not necessarily a simple in-
crc‘ase  of the number of neurons involved in any given operation
(v. Neumann op cirl. but rather an increased complexity ofthe overall
operations served by neurons inter-connected into radially organised
nets (Winograd,and  Cowan op cir). In such &ncrionully redundant
nets each neur& is involved in numerous local operations. and
each local opera&on  is effected by many different groups of neurons.

2. ,$‘(J./ p. 56.’ The laminar structure ofcortex’and thalamus does
not vitiate the argument for radial redundancy. Such structure may
be no more than the most economical way to specify and realise
inter-connexions within and among functional columns.

3 9 1.0  p. 5X. The neglect ofany relative refractory period during
which neurons have higher !han normal thresholds leads to a great

simplification of the theory. Equations incorporating relative
refractory neurons have been developed in a previous paper (Wilson
and Cowan. 1972). All the results obtained in the current paper can
be obtained by specialisation from these equations.

1 .$ :.O p. %‘. It was first pointed out to the authors by W. J.
Freeman Jr., that if excitatory neurons are taken to be mitral cells.
and inhibitory neurons to be granule cells, the theory can be seen to
incorporate the basic cytoarchitectonic features of the olfactory
bulb. Similarly, pre-pyriform cortex may be taken to consist of
excitatory pyramidal neurons and inhibitory neurons. The fact that
the pre-pyriform or olfactory cortex is phyiogenetically one of the
most primitive parts of the brain is further support for the investiga-
tion of a model such as is presented here as a prelude to the devel-
opment of more complex models that might more fully incorporate
the detailed architecture of cerebral cortex.

5.3 1.2  11.  jY. This expression is an extension of that introduced
by Beurle (1956)  and is based on the assumed odditiciry of post-
synaptic effects. Sperling ( 1970)  introduced dioisice or shunting inhi-
bition to model retinal interactions. As Sperling indicated. shunting
inhibition is a convenient means for the introduction of back-ground
adaptation. Divisive inhibition could easily be introduced into the
present model. but has been excluded, partly to preserve the mathe-
matical simplicity of the model and also because there is as yet very
little experimental evidence for the existence of such inhibition in
cerebral cortex.

6. $ I .I p. 60. The effects of multimodal densities C(3) on .yc(flV)
hare been discussed in a previous paper (Wilson and Cowan. 1972).

7. ,\“ I._’ ,~.60. In actual fact the analysis given above represents a
simplification of the actual details of the interactions that lead to the
activation of neurons in the sheet. A more detailed analysis can be
sketched out as follows [see Cowan (1972) for more details]. At any
instant 1. the proportion per unit time of neurons at x reaching a
fixed threshold with a mean excitation NC comprises a proportion
per unit time reaching the threshold for the firs? rime in the interval
IO. I). plus a proportion per unit time reaching the threshold for the
second time. plus a proportion per unit time reaching the threshold
for the third time. . . . . and so on. Let h(ive. 3,) be the proportion
per unit time described above. It has been shown for a wide variety
of neuronal models (Johannesma. 1967; Roy and Smith. 19693  that h
is a sigmoidal function of fl‘, for a lixed threshold 3,. However, by
assumption the threshold is itself a randomly varying parameter
with the distribution function G(3,). It folfows that the distribution
function for the proportion per unit time of neurons reaching
threshold at I is

*i’
1 h(N*.  3,) Gf3,) d3,.

This expression is certainly monotone increasing with &, Indeed
it will be sigmoidal if C(3,)  is unimodal. The simplification in the
text amounts to the assumption that h equals the Heaviside step
function d[nc - S,]. This implies the neglect of neuronal  activations
caused byflucruutions about the mean level flc,, hence the description
of .rP, as the expected proportion of neurons reaching threshold per
unit time. Similar considerations would obtain if thresholds were
to be fixed at a single value. and fluctuations ofconnectivity, or in the
activity itself. were to be considered.

8.31.2  p. 60. This correlation is on a neuron by neuron basis.
That is. neurons that are strongly excited at t are likely to have just
been strongly excited. and are therefore likely to have just been
activated and therefore used at t. Thus the expected number of
neurons activated during the interval &will tend to be smaller than
R, .yc(me) 8~. As a consequence there will be pucruarions  about the
mean activity E(x.r) 6~. However the correlation-time of such
fluctuations cannot be greater than the membrane time-constant p.
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since membrane potential decays with such a time course. Indeed
the actual correlation-time will be considerably shorter than mainly
because of the smoothing elTect of the spatial summation of afferent
excitation by individual neurons, the occurrence of multiple kings
of neurons, and also because of intrinsic fluctuations of neuronal
thresholds and similar noisy events. Thus over an aggregate or
tissue. correlations between sensitive neurons and excited neurons
may be expected to be small and of short duration. Moreover in
3 I .3. the time coarse-grained expressions (E) and (I) are introduced
and used throughout the subsequent analysis. (E) and (I) are
obtained from E and I respectively by filtering with a smoothing
time-constant equal to p. Such a lilter automatically eliminates all
high frequency oscillations greater than p-’ c.p.s..  and consequently.
the correlations referred to above.

9.j 1.3 p. 60. Recent evidence suggests that Shall’s estimated may
be too small (Scheibel and Scheibel, 1970). However it is often the
case that longer axon processes are thicker and have higher conduc-
tion velocities. Therefore the argument for neglecting conduction
terms for lateral interactions remains valid. However the situation
may be very different when projections from one anatomical region
to another are considered.

IO. $ /.4 p. 62. In a few instances the effects of a non-monotone
form for Bei have been investigated. The function chosen possessed
a local minimum at the origin and symmetric maxima located a
specified distance to either side. The attempt was to model Cajal’s
cell& d double bouqer dendritiyue, which has been supposed to be
inhibitory (Szentagothai. 1967). Such a choice did not appear to
yield any qualitatively new results. .however.

II.3 1.4 p.62. These inequalities do not strictly preclude the
possibility of some intermediate spatially uniiorm state being stable.
However. such a state has never been found.

12. ,\c /.4 p. 63. The point is that dilIerent choices of these param-
eter values can be compensated for by suitable alterations of the
values of the other parameters. For example. an increase in the
values of re and ri can be compensated by increasing the values of
the coupling coeflicients h,j..

I 3.9 2.2 11.  63. Because  ofthc complexity of Eqs. (1.3.I)and  11.32)
and the number of parameters involved. one cannot be certain that
these modes exhaust the possibilities. Furthermore. it has proved
to be impossible to determine the dependence of different modes on
parameter values. However. it is shown that certain relationships do
exist between the various parameters that serve to partly specify the
modes (see 4 5.1).

14.  .\c 22.2  p. 65. L. M. Glass (personal communication) has
observed that the Mach band phenomenon (another edge en-
hancement effect). also has a delinite latency associated with its
development.

15. ,f 3.3.4 p. 74. Hysteresis in model neuronal  nets had already
been demonstrated (Harth er ul.. 1970). However the phenomena
described were purely temporal, and were not analogous to the
spatio-temporal hysteresis discovered by Fender and Julesz.

Acknowledgemenr.  We should like to express our gratitude to
our colleagues in the Department of Theoretical Biology. The
University of Chicago, for many helpful comments. and to the
National Institutes of Health and the Alfred P. Sloan Foundation for
partial support of th&research work reported in this paper.

:

References
Al1ison.A.C.: Biol. Rev. 28, 195 (1953)
AndersenP, Anderss0n.S.A.:  Physiological basis of the alpha

rhythm. New York: Appleton-Century-Crofts 1968

Andersen,P., Eccles,J.C.: Nature (London) 196, 645 (1962)
Beurle,R.L.:  Phil. Trans. Roy. Sot. B, 240, 55 (1956)
Beurle,R. L.: Phil. Trans. Roy. Sot. B, 240, 55 (1956)
Beurle,R. L.: In: Foerster,H. v., Zopf,G. W. (Eds.): Principles of self-

organization, 291. Pergamon Press 1962
Bishop,P.O., Coombs,J.S.,  Henry,G.H.: J. Physiol. 219, 625, 659

(1971)
Bishop,P.O, Kozak,W., Levick,W.R., Vakkur,G.J.:  J. Physiol.

(London) 163, 503 (1962)
Blinkov,S.M., Glezer,I.I.:  The human brain in figures and tables.

New York: Plenum Press 1968
Brind1ey.G. S.: Physiology of the retina and visual pathway. London:

Edward Arnold 1970
Bums.B.D.:  J. Physiol. 112, 156 (1951)
Bums.B.D.:  The mammalian cerebral cortex. London: Edward

Arnold 1958
Bums.B.  D.: The uncertain nervous system. London: Edward

Arnold 1968
Bums. B. D.. Heron, W.. Pritchard,R.: J. Neurophysiol. 25. 165

(1962)
Campbell. F. W., Green.D.G.: J. Physiol. 181, 576 (1965)
Co1onnier.M.L.: in: Eccles,J.C. (Ed.): Brain and conscious ex-

perience. Berlin-Heidelberg-New York: Springer !965
Cowan.J.  D.: In: Caianiello, E. R. (Ed.): Neural networks. Berlin-

Heidelberg-NW York: Springer 1968
Cowan. J. D.: In: Gerstenhaber, M. (Ed.): Mathematical problems

in. the life sciences. I. pp. 1-57. Providence,R.I.. American
Mathematical Society 1970

Cowan.J.  D.: In: Rice.S.  A.. Freed. K. F.. Light.J.C. (Eds.): Statistical
mechanics - new concepts. new problems, new applications.
Chicago: University of Chicago Press 1972

Cragg. B. G.. Temper1ey.H.N.V.: Brain. 78. 304 (1955)
Creuzfeldt. 0.. Ito, M.: Exp. Brain Res. 6. 324 (1968)
Daniel, P. M., Whitteridge.D.: J. Physiol. 159. 203 (1961)
Demetrescu. M.. Demetrescu.M.. 1osif.G.: Electroenceph. clin.

Neurophysioi. 18. l-24 (1965)
Dewan.E.  M.: J. Theoretical Biology 7. 141 (1964)
Ditchburn. R. W.. Ginsborg. B. L.: Nature. 170, 36 ( 1952)
Donchin.  E.: Vision Res. 7. 79 (1967)
Eccles. J. C.: The physiology of synapses. New York: Academic Press

1964
Eccles. J. C.: Epilepsia. 6, 89 (1965)
Far1ey.B.. C1ark.W.A.: In: Cherry.C.  (Ed.): Information theory

(p. 242) (Fourth London Symposium). London: Butterworth
and Co. 1961 .?.

Fender.D.. Ju1esz.B.:  J. Opt. Sot. Am. 57. 819 (1967)
Freeman. W. J.: Logistics Review $5 (1967)
Freeman. W. J.: Math. Biosci. 2, 181  (1968a)
Freeman, W. J.: J. Neurophysiol. 31.337 (1968b)
Fuster,J.M.,  Alexander,G.E.: Science 173,652 (1971)
Griflith. J. S.: Bull. Math. Biophys. 25. 111 (1963)
Griflith.J.S.:  Bull. Math. Biophys. 27, 187 (1965)
Harth.E. M.. Csermely,T.J., Beek.B., Lindsay,R.D.: J. Theor.

Biol. 26. 93 (1970)
Hartline,H.  K.: Am. J. Physiol. 121. 400 (1938)
Hart1ine.H. K., Ratliff, F.: J. Gen. Physiol. 41, 1049 (1958)
Hebb. D. 0.: The organization of behavior. New York: John Wiley

1949
Hollander. H.: Exp. Brain Res. 10, 219 (1970)
Hubel.D.H.,  Wiese1,T.N.: J. Physiol. 165, 559 (1963)
Hube1.D. H., Wiesel,T. N.: J. Neurophysiol. 28, 229 (1965)
Hub&D.  H.. Wiese1,T.N.: J. Physiol. 195, 215 (1968)
Johannesma, P. I. M.: In: Caianiello, E.R. (Ed.): Neural networks.

p. 116. Berlin-Heidelberg-New York: Springer 1968



X0 H. R. Wilson and J. D. Cowan: Functional Dynamics of Nervous Tissue

Julesz. B.: Foundations ofcyclopean perception. Chicago: University
of Chicago Press 1971

KahnemanD.:  Quart. J. exp. Psychol. 17. 308 (1965)
Kahneman.D.: Psychol. Bull. 70. 404 (1968)
Kali1.R. E.. Chase.R.: J. Neurophysiol. 33. 459 (1970)
Kirkwo0d.J.G.:  J. Chem. Phys. 14. 180 (1946)
Koh1ers.P.A.: Vision Res. 2, 277 (1962)
Kohlers. P.A.. R0sner.B.S.:  Am. J. Psychol. 73. 2 (1960)
LeGrand,Y.: Light. color. and vision. New York: John Wiley I957
Lorente de N&R.: In: Fu1ton.J.F. (Ed.): Physiology of the nervous

system. p. 288. New York: Oxford University Press 1949
MacKay. D. M.: In: Schmitt,F.O. (Ed.): Neurosciences  research

symposium summaries, p. 397. Cambridge. Massachusetts:
M.I.T. Press 1970

Mountcast1e.V.B.: J. Neurophysiol. 20. 408 (1957)
0shima.T.:  In: Jasper.H. (Ed.): Basic mechanisms of the epiiepsies.

p. 253. Boston: Little. Brown & Co. 1969
Poggio.G. F.. Viernstein.L.J.: J. Neurophysiol. 27. 517 (1964)
Po1yak.S.L.: The vertebrate visual system. Chicago: University of

Chicago Press 1957
Purpura.D.R.:  In: Schmitt.F.0.  (Ed.): The neurosciences: Second

study program. New York: Rockefeller Universrty Press 1970
Ra1l.W.: J. Cell. Comp. Physiol. 46. 413 (19.55)
Ratliff. F.: Mach bands. London: Holden-Day 1965
Roy.B.K.. Smith.D.R.: Bull. Math. Biophys. 31. 341 (1969)
Rusht0n.W.  H.: Proc. Roy. Sot. London. B. 162. 20 ( 1965)

Sanders0n.K.J.:  Exp. Brain Res. 13,  159 (1971)
Scheibel, M. E., Scheibel,A. B.: In: Schmitt, F. 0. (Ed.): The neuro-

sciences - Second study program. New York: Rockefeller
University Press 1970

Shol1.D.A.: The organization of the cerebral cortex. London:
Methuen 1956

Spehlmann,R.: Electroenceph. clin. Neurophysiol. 19, 560 (1965)
Sper1ing.G.: J. Am. Psychol. 83, 461 (1970)
Sper1ing.G.: Perception and Psychophysics 8, 143 (1970)
Szentagothai,J.: In: Lissak,K. (Ed.): Recent development of neuro-

biology in Hungary 1. 9 (1967)
Tasaki, I.: In: Field,J., Magoun, H. W., Hal1.V.  E. (Eds.): Handbook

of physiology, Section I: Neurophysiology, p. 75, 1950
Utt1ey.A.M.: Proc. Roy. Sot. B, 144, 229 (1955)
von Neumann.J.:  In: Shannon,C., McCarthy,J. (Eds.): Automata

studies. p. 43. Princeton: Princeton University Press 1956
Wi1son.H.R.. Cowan.J.D.:  Biophys. J. 12. 1 (1972)
Winograd. S.. C0wan.J.D.:  Reliable computation in the presence of

noise. Cambridge, Mass.; M.I.T. Press 1963
2usne.L.:  Visual perception of form. New York: Academic Press

1971

%

Dr. Hugh R. Wilson
Dept. of Theoretical
The University of Chicago
Chicago. Ill.. USA


