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3.1 A generic LN model. The prediction of the model at time bin i, ŷ(i),
depends on the image presented at time bin i, plus the images presented
at the previous D time bins. At each delay d, the model contains Md

filters. To generate its output, the model projects the input image at
delay d on the Md filters at that delay, generating scalars g1,d, . . . , gMd,d.
Then, the scalars at all delays, {gm,d, 0 ≤ d ≤ D, 1 ≤ m ≤ Md}, are
used as inputs to a nonlinear function N , that predicts the cell’s spike
rate a time bin i. Because this model has too many parameters, previous
methods have estimated simplified versions of this model. The red box
surrounds the filters of the models estimated by Chichilnisky et al. (2001)
and by Sharpee et al. (2006; 2008). The blue box surrounds the filters of
the spatial models estimated by Touryan et al. (2005) and by Rapela et
al. (2006). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 Simulated cell: ePPR models. (a): filters of the simulated model (Equa-
tion 3.8). (b,c): filters (b) and nonlinear functions (c) of the example
model estimated from natural data. The titles in (b) are the correspond-
ing β coefficients. (d): principal angles between the true filters and those
of models estimated from fitting subsets of the data with intermediate
level of noise. (e-g): as (b-d) but for models estimated from random data.
(h) average number of terms in ePPR models estimated from natural and
random data. For both example models, the estimated filters are simi-
lar to the true filters, and the nonlinear functions correctly indicate the
facilitatory/suppressive nature of the corresponding filters. . . . . . . . . . 101

3.3 Simulated cell: example set of MID filters estimated from natural data
(a) and random data (b). The filters are sorted from left to right in their
estimation order. As in the other four sets of MID filters, the first filter
is a good estimate, one of the other two filters (the third filter in the
example) is an mediocre estimate, the remaining filter (the second filter in
the example) is a poor estimate, and the suppressive filter is missing. MID
well approximated the true filter space only along one dimension (see red
curves in Figures 3.2d and 3.2g). . . . . . . . . . . . . . . . . . . . . . . . 102
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3.4 Simulated cell: predictive power of filters estimated by different methods.
Pearson correlation coefficient between polynomial models predictions and
simulated cell responses, as a function of the mean number of spikes per
image, or noise level, in the simulated responses. The orange, red, blue,
and cyan curves correspond to polynomials constructed with ePPR, MID,
PPR, and nSTC filters, respectively. Black curves: upper bound on the cor-
relation coefficients. (a): predictions with natural stimuli. (b): predictions
with random stimuli. Light red asterisks mark number of spikes/image
at which correlation coefficients for ePPR models are significantly greater
than those for MID models. For both natural and random data, the polyno-
mial models constructed with spatio-temporal filters, ePPR and MID, pre-
dict substantially better than those constructed with spatial filters, PPR
and nSTC. Also, ePPR filters yielded significantly better predictions than
MID filters for all conditions, excluding random data and intermediate
amount of noise (0.56 spikes/sec). . . . . . . . . . . . . . . . . . . . . . . . 104

3.5 LNL model: (a): power spectrum of the responses of the LN (black curve)
and LNL (red curve) models. The lowpass filter had a large effect on the
responses of the LN model. (b,c): estimated filters (b) and nonlinear func-
tions (c) at delays 7, 8, and 9. The ePPR estimation procedure discarded
the irrelevant terms from the forward model and learned the correct model
structure for the simulated LNL model, with two facilitatory terms at delay
7, two facilitatory terms at delay 8, and one suppressive term at delay 9.
Although the filters for the LNL model are worse estimates than those for
the LN model (Figure 3.10a), the former filters still are reasonably good
approximations of the true filters. . . . . . . . . . . . . . . . . . . . . . . . 107

3.6 Complex cell: ePPR models. (a,b): filters (a) and nonlinear functions (b)
of the example model estimated from natural data. The titles in (a) are the
corresponding β coefficients. (c,d): as (a,b) but for models estimated from
random data. (e): average number of terms in ePPR models estimated
from natural and random data. (f-g) predictive power of filters estimated
by different methods with same format as in Figure 3.4. The estimated
filters and nonlinear functions are consistent with those estimated using
previous methods. Models estimated from natural and random data are
similar to each other. However, late suppression is only present in the
model estimated from natural data. Furthermore, models estimated from
natural data recovered more filters than models estimated from random
data. For natural data, ePPR filters yielded predictions substantially bet-
ter than those estimated by other methods, and predictions from ePPR
filters were close to the upper bound on the predictive power of any model.
For random data, ePPR and MID filters estimated from 20,000 stimuli
were very similar (cf. Figures 3.6c and 3.7b) and their predictions were not
statistically different. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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3.7 Complex cell: example set of MID filters estimated from 20,000 responses.
Same format as in Figure 3.3. For natural data (a), only the first filter is
well structured. For random data (b), the three filters are well structured,
and are very similar to those estimated by ePPR (Figure 3.6c). . . . . . . 111

3.8 Simple cell: ePPR models. The format of this figure is identical to that
of Figure 3.6, but the cyan curves in (f,g) correspond to polynomial mod-
els constructed with rSTA filters. The figure in (e) does not contain error
bars because, for each number of inputs, all estimated models had the same
number of terms. The estimated filters and nonlinear functions are con-
sistent with those estimated using previous methods. Models estimated
with natural and random data are similar to each other. However, the
model estimated from natural data, but not that estimated from random
data, has features of a complex cell model. Furthermore, models estimated
from natural data recovered more filters than those estimated from ran-
dom data. For natural stimuli, predictions from ePPR filters were better
or equal than those of previous methods. For random stimuli the filters
estimated by the four methods gave similar predictions. . . . . . . . . . . 115

3.9 Selection of the best ePPR model by cross-validation. (a) correlation coef-
ficients between ePPR model predictions and cell responses as a function
of the number of terms in ePPR models. For each number of terms, n, the
value j along the y-axis, 1 ≤ j ≤ 8, is the correlation coefficient between
the responses from the simulated cell to images in the jth validation subset,
and the predictions of the ePPR model with n terms. The ePPR model
with 4 terms predicts better than all models with smaller number of terms
(p < 0.05 for all Wilcoxon signed-rank tests). We could not conclude that
the ePPR models with 4 terms predicted worse than any model with more
than 4 terms (p > 0.1 for all Wilcoxon signed-rank tests). Thus, the best
ePPR model contains 4 terms. (b): filters of the ePPR model with 4 terms.
The third filter from the left is spurious. For the simulated cell, spurious
filters appeared only in models estimated from responses with the largest
noise level. They were removed from the model using the “Removal of
spurious terms” procedure. (c): final ePPR estimate obtained by applying
the “Removal of spurious terms” procedure to the ePPR model with 4 terms.131
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3.10 Simulated cell: ePPR models without time interaction estimated from re-
sponses to natural stimuli. (a,b): filters (a) and nonlinear functions (b)
of an example model estimated from responses to natural stimuli with in-
termediate amount of noise (0.56 spikes/image). The titles in (a) are the
corresponding β coefficients. (c) predictive power of ePPR models with
and without time interaction compared to that of a polynomial model.
Orange curve: predictions for a second-order multi-dimensional polyno-
mial constructed with ePPR filters with time interaction (re-plotted from
Figure 3.4a). Red curve: predictions from ePPR models with time inter-
action. Pink curve: predictions from ePPR models without time inter-
action. Black curve: upper bound on correlation coefficients. Light red
asterisks mark number of spikes/image at which predictions of the ePPR
models with time interaction were significantly better than those of the
polynomial models. Despite the mismatch between the simulated model
in Equation 3.8, that incorporates time interactions between pixels of im-
ages at different delays, and the ePPR model without time interactions,
that cannot model these interactions, the estimated filters (Figures 3.10a)
well approximate the true filters (Figure 3.2a), and the estimated nonlin-
ear functions correctly recovered the facilitatory/suppressive nature of the
associated filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3.11 Complex cell: ePPR models without time interaction estimated from re-
sponses to natural stimuli. Same format at Figure 3.10. The filters and
nonlinear function of this model are similar to those of the model with time
interaction (Figure 3.6). The ePPR model with time interaction predicts
significantly better than the ePPR without time interactions, demonstrat-
ing the relevance of nonlinear interactions between pixels of images at
different delay for the response of this complex cell. . . . . . . . . . . . . . 157

3.12 Varying the amount of divisive inhibition. (a): principal angles between the
true filters of the simulated model (Figure 3.2a) and those of ePPR models
with time interaction estimated from responses with varying amount of
inhibition. (b,c): filters (b) and nonlinear functions (c) of the ePPR model
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Abstract

Traditionally visual cells have been characterized using their responses to artificial stimuli

by simple parametric models. However, recent investigations show that visual cells adapt

to the statistical properties of the stimuli used to probe them. Thus, to characterize visual

cells in their natural operating conditions, it is important to use naturalistic stimuli.

Simple parametric models are designed for specific classes of cells, making assumptions

about their response properties. But, if these assumptions do not match the cell response

properties, the interpretation of the estimated model parameters is questionable. An

alternative is to use generic non-parametric models that can characterize a broad range

of cell classes.

This thesis contains technical and scientific contributions. Technically, we develop

methods to estimate generic non-parametric models of visual cells from their responses

to arbitrary, including natural, stimuli. In the first part of this thesis, we introduce

the Volterra Relevant Space Technique (VRST), that allows the estimation of spatial

Volterra models of visual cells from their responses to natural stimuli. Disregarding

temporal properties of the response generation mechanism for the estimation of spatial

Volterra models is a good first approximation. However, in most conditions responses of

visual cells are not spatial, but spatio temporal. So, in the second part of this dissertation

we build the extended Projection Pursuit Regression (ePPR) algorithm, that estimates

a very general model for the characterization of visual cells in space and time. The

generality of the ePPR model reveals differences in response properties of cortical cells

to natural and random stimuli that had not been observed with existing models. Thus,
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scientifically this thesis shows that using natural stimuli for the characterization of visual

cells is relevant to understand natural vision.
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Chapter 1

Introduction

This thesis presents the material described in two self contained papers. In this introduc-

tion we describe our line of investigation (Section 1.1), summarize the results of theses

papers (Sections 1.2 and 1.3), which appear in the following two chapters, and conclude

discussing the bias/variance dilemma, a central problem overarching the research in both

papers (Section 1.4).

1.1 Estimation of general non-parametric models of visual

cells from their responses to natural stimuli

Systems-level neuroscientists have a few favorite questions, the most prominent of which

is the ‘what’ part of the neural coding problem: what makes a given sensory cell in a

particular part of the brain fire? This question has been addressed by presenting stimuli

to a cell, recording its responses, and from these stimuli and responses estimating the pa-

rameters of a model relating properties of the stimuli to properties of the cell responses.

Then, answers to the what question have been inferred from the estimated model pa-

rameters (e.g., Hartline, 1940; Kuffler, 1953; Hubel & Wiesel, 1962; P. Marmarelis &

Naka, 1972; P. Marmarelis & Marmarelis, 1978; Movshon, Thompson, & Tolhurst, 1978b,

1978a; Citron, Kroeker, & McCann, 1981; DeAngelis, Ohzawa, & Freeman, 1993b; Dan,

Attick, & Reid, 1996; Ringach, Sapiro, & Shapely, 1997; Kaplan & Benardete, 2001;
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Chichilnisky, 2001; Baccus & Meister, 2002; David, Vinje, & Gallant, 2004; Prenger, Wu,

David, & Gallant, 2004; Wu, David, & Gallant, 2006; Rapela et al., 2006; Wang et al.,

2007; Mante, Bonin, & Carandini, 2008; Rapela, Felsen, Touryan, Mendel, & Grzywacz,

2010).

Two key issues in this line of investigation are the type of stimuli used to probe the

cell and the type of model use to represent it. Regarding the stimuli, traditionally sensory

neurons have been studied with small sets of simple stimuli, specifically designed to probe

certain aspects of their response properties (e.g., Hartline, 1940; Kuffler, 1953; Barlow,

1953; Liberman, 1982), or with large sets of random stimuli (e.g., Citron et al., 1981;

Ringach et al., 1997; Chichilnisky, 2001; Baccus & Meister, 2002; Pillow et al., 2008).

However, recent investigations show that the response of cells in the visual system (David

et al., 2004; Felsen, Touryan, Han, & Dan, 2005; Sharpee et al., 2006; Wang et al., 2007;

Sharpee et al., 2008), in the auditory system (Theunissen & Shaevitz, 2006; Theunissen et

al., 2001; Wooley, Gill, & Theunissen, 2006), and in the somatosensory system (Maravall,

Petersen, Fairhall, Arabzadeh, & Diamond, 2007) adapt to the statistical properties of the

stimuli used to probe them. Thus, to characterize sensory cells in their natural operating

conditions, it is important to use naturalistic stimuli.

Regarding the model, cells are normally characterized with simple parametric mod-

els, specifically designed for a given class of cells (e.g., Movshon et al., 1978b, 1978a;

DeAngelis et al., 1993b; Dan et al., 1996; Kaplan & Benardete, 2001; Chichilnisky, 2001;

Baccus & Meister, 2002; David et al., 2004; Felsen et al., 2005; Mante et al., 2008). To

build these simple parametric models, one hypothesizes a set of rules that determine the

response of a class of cells, and then uses responses of a given cell of this class to fine tune

these rules for the characterization of the given cell. However, if the hypothesized set of

rules are not adequate to describe responses of the cells, estimated parametric models

will be suboptimal to characterize these cells, and the interpretation of their parameters

will be questionable. An alternative is to use generic non-parametric models that can
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characterize a broad range of cell classes (e.g., P. Marmarelis & Naka, 1972; P. Mar-

marelis & Marmarelis, 1978; Prenger et al., 2004; Wu et al., 2006; Rapela et al., 2006,

2010). These models avoid the tedious, difficult, and error-prone process of handcrafting

the rules used to construct parametric models. Using non-parametric models allows one

to “teach” computers by example so that they can “discover” the various heuristics and

rules needed to characterize a given cell.

In this thesis we develop two generic non-parametric methods for the characterization

of visual cells from their responses to arbitrary, including natural, stimuli. In the first

part of this dissertation we introduce the Volterra Relevant Space Technique (VRST,

Rapela et al., 2006, Chapter 2) that allows the estimation of spatial Volterra models, i.e.,

Volterra models whose response depend on only one image presented to the cell prior to

its response, from responses of visual cells to natural stimuli. We summarize the VRST

in Section 1.2. Disregarding temporal facets of the response generation mechanism for

the estimation of spatial Volterra models is a good first approximation. But in most

conditions responses of visual cells are not spatial, but spatio temporal, i.e., responses of

visual cells depend on several images presented to the cell prior to its response. So, in the

second part of this dissertation we present the Extended Projection Pursuit Regression

algorithm (ePPR, Rapela et al., 2010, Chapter 3) for the spatio-temporal characterization

of visual cells. Our results with the ePPR algorithm are summarized in Section 1.3.

1.2 Part I - the Volterra Relevant-Space Technique (VRST)

The Volterra model has a long history in the study of nonlinear physiological systems

cells (see V. Z. Marmarelis, 2004, and references therein). Spatial Volterra models are

multi-variable polynomials, where each variable represents a different point in space.

Due to the good approximation properties of polynomials (Stone-Weierstrass Theorem,

Rudin, 1976, Theorem 7.32), spatial Volterra models can characterize a broad class of

cells. However, the combination of the large number of parameters in Volterra models of
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visual cells, the poorly understood statistical structure of natural stimuli (Field, 1987; Ru-

derman & Bialek, 1994; Simoncelli & Olshausen, 2001), and the limited size of physiolog-

ical recordings, have hindered the estimation of Volterra models from responses of visual

cells to natural stimuli. To overcome these limitations we use a substantiated hypothe-

sis stating that the responses of each visual cell depend on a specially low-dimensional

subspace of the image space (de Ruyter van Steveninck & Bialek, 1988).

Several methods, in different scientific disciplines, have been proposed to estimate the

low-dimensional subspace (de Boer & Kuyper, 1968; de Ruyter van Steveninck & Bialek,

1988; Helland, 1988; Li, 1991; Sharpee, Rust, & Bialek, 2004; Touryan et al., 2005).

However, these methods have limitations for the estimation of general low-dimensional

subspaces from natural images. So in this thesis we evaluate Projection Pursuit Regres-

sion (PPR, Friedman & Stuetzle, 1981).

With the estimated low-dimensional subspace we build a low-dimensional Volterra

model. We prove that, under suitable conditions on the low-dimensional subspace, a

high-dimensional Volterra model can be rewritten as a low-dimensional one. Then we fit

the parameters of this low-dimensional Volterra model to physiological data. Finally, from

the estimated parameters of the low-dimensional Volterra model and the estimated low-

dimensional subspace, we reconstruct the parameters of the high-dimensional Volterra

model. Thus, this procedure makes possible the estimation of the parameters of high-

dimensional Volterra models from limited amounts of physiological data.

We first evaluate the feasibility of the above procedure with simulated data from cor-

tical cells. We show that PPR and the VRST recover good approximations of the true

low-dimensional subspaces and true Volterra models of simulated cells, which are more

accurate than those obtained by previous methods. However, many algorithms perform

well with simulated data, but poorly with real data. So, next we evaluate PPR and

the VRST with physiological data from a cortical complex cell (Felsen et al., 2005). We

compare PPR with Spike Triggered Covariance (STC, Touryan et al., 2005) for the es-

timation of the low-dimensional subspace, and Volterra models with a histogram-based
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model proposed by Touryan et al. (2005) to predict responses from the low-dimensional

subspace. Figure 1.1 is a representative example of this comparison. It plots the corre-

lation coefficient between predictions of models and cell responses, as a function of the

number of inputs used to estimate the parameters of the models. For any number of

inputs Volterra models yield better predictions than histogram-based models, with both

the low-dimensional subspace estimated by PPR (black vs. blue curves) and the low-

dimensional subspace estimated by STC (red vs. green curves). For more than 1,000

inputs, the low-dimensional subspace estimated by PPR produced equal or better predic-

tions than the low-dimensional subspace estimated by STC, for both the Volterra (black

vs. red curve) and histogram-based (blue vs. green curve) models. Hence, of the models

tested, the best combination is to use Volterra models with low-dimensional subspaces

estimated by PPR.

1.3 Part II - the Extended Projection Pursuit Regression

(ePPR) algorithm

In Chapter 2 we show that PPR is a good algorithm for the estimation of spatial low-

dimensional subspaces of visual cells. However, for the estimation of spatio-temporal

low-dimensional subspaces PPR is affected by the curse of dimensionality and, even for

of spatial low-dimensional subspaces, PPR has limitations. To allow the estimation of

spatio-temporal low-dimensional subspaces, and to overcome these limitations, we intro-

duce the Extended Projection Pursuit Regression (ePPR) algorithm.

The ePPR model represents the cell response as a sum of several terms. Each terms

computes the inner product between the stimuli and a filter, it uses the output of this inner

product as input to a nonlinear function, and scales the output of this nonlinear function

by an importance factor β. A unique feature of the ePPR algorithm is the efficient

optimization algorithm that it uses to non-parametrically estimate the large number of

parameters in the ePPR model. Thanks to this optimization algorithm, currently ePPR
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Figure 1.1: Cortical complex cell: predictions with two classes of models and two classes of
estimated low-dimensional subspaces. This figure shows average correlation coefficients
between cell responses and model predictions. These coefficients appear as functions
of the number of inputs used to train the models. Black curve: Volterra model using
low-dimensional subspaces estimated by PPR. Red curve: Volterra model using low-
dimensional subspaces estimated by STC. Green curve: Nonlinearity estimated from
histograms using low-dimensional subspaces estimated by STC. Blue curve: Nonlinearity
estimated from histograms using low-dimensional subspaces estimated by PPR. The size
of the error bars is two standard errors. For any number of inputs, the Volterra models
yields better predictions than the histogram based model with both low-dimensional
subspaces estimated by PPR (black versus blue curves) or by STC (red versus green
curves). For more than 1,000 inputs, the PPR low-dimensional subspaces produced equal
or better predictions than the STC low-dimensional subspaces, for both the Volterra
(black versus red curve) or histogram-based (blue versus green curve) models.
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is the only algorithm able to estimate, from responses of visual cells to natural stimuli,

low-dimensional subspaces that are spatio-temporal and contain multiple filters.

Because ePPR is an entirely non-parametric algorithm, and because the cell responses

are very noisy, ePPR estimates could have been very variable. However, this was not the

case. Several features of the ePPR estimation procedure help reduce the variability of the

estimated parameters. First, the projection pursuit strategy used by ePPR reduces the

original large-dimensional problem of estimating all the parameters in the ePPR model

to a sequence of low-dimensional problems. Second, the estimated filters are penalized

for lack of smoothness. And third, the estimation of the nonlinear functions is performed

using smoothing splines with a relatively large penalty for non-smooth estimates.

ePPR is a very general method for the characterization of visual cells. In Chapter 3 we

prove that ePPR models can uniformly approximate, to an arbitrary degree of precision,

any continuous function. To test this generality empirically, we show that ePPR recovers

very good approximations to the parameters of models of visual cells that cannot be

represented exactly with an ePPR model. Next we evaluate ePPR with physiological

data from primary visual cortex, and show that it can characterize both simple and

complex cells, from their responses to both natural and random stimuli.

Figure 1.2, shows an example of the features that ePPR reveals in the responses of cor-

tical cells. It shows ePPR models estimated from responses of a real complex cell (Felsen

et al., 2005) to natural and random stimuli. The spatio-temporal filters estimated from

natural data (Figure 1.2a) are consistent with previous estimations of linear subspaces

of complex cells from responses to natural (Touryan et al., 2005; Rapela et al., 2006), or

random (Movshon et al., 1978a; Chen, Han, Poo, & Dan, 2007) stimuli. In particular, the

three middle filters have clear Gabor shapes with similar orientation and spatial frequency,

but are shifted in phase. However, note that the bottom frame of the rightmost filter

(operating on the image presented between 85 and 126ms prior to the cell response) is

cross-oriented with respect to the other filters. Figure 1.2b shows the nonlinear functions
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of the model estimated from natural data. The leftmost nonlinear function is approxi-

mately a half-wave rectification. The three middle nonlinear functions, corresponding to

the filters with clear Gabor shapes in Figure 1.2a, are full-squared, in agreement with

the polarity invariance of complex cells (Movshon et al., 1978a). And the rightmost non-

linear function, corresponding to the filter with a cross-oriented frame at long delays, is

suppressive, revealing cross-oriented inhibition in the response of this complex cell. We

compared the predictive power of filters estimated by ePPR, and by previous methods:

MID (Sharpee et al., 2004), nSTC (Touryan et al., 2005), and PPR (Friedman & Stuet-

zle, 1981), using a second-order multi-dimensional polynomial as the predictive method.

Figure 1.2f plots the correlation coefficients between the complex cell responses and the

polynomial models predictions, as a function of the number of stimuli used to estimate

the filters and polynomial models. The dashed line is an upper bound on these corre-

lation coefficients. For all number of stimuli best predictions are obtained with ePPR

filters. Moreover, ePPR filters estimated using 20,000 inputs closely approximate the

upper bound on the correlation coefficients.

The ePPR model estimated from responses of the complex cell to random stimuli

(Figures 1.2c and 1.2d) is very consistent with that estimated from responses to natural

stimuli (Figures 1.2a and 1.2b). The estimated filters (Figure 1.2c) are a subset of those

obtained with natural stimuli (Figure 1.2a), and the nonlinear functions (Figure 1.2d)

correspond to those obtained from natural stimuli (Figure 1.2b). Despite this consis-

tency, two important differences emerged between the models estimated from natural

and random data: First, a filter with late suppression was recovered from natural, but

not from random, data. Second: models estimated from natural data had more filters

than those estimated from random data (Figure 6g). As for natural stimuli, predictions

from ePPR models estimated from responses to random stimuli are superior or equal than

those of previous models (Figure 1.2g).

In summary, Figure 1.2 shows that estimated ePPR models displayed several features

in common with previous characterizations of complex cells, that ePPR models estimated
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Figure 1.2: ePPR models estimated from responses of a complex cell to natural and
random data. (a,b): filters (a) and nonlinear functions (b) of a model estimated from
natural data. The titles in (a) are the corresponding β coefficients. (c,d): as (a,b) but
for models estimated from random data. (e): average number of terms in ePPR models
estimated from natural and random data. (f-g) predictive power of filters estimated by
different methods. The estimated filters and nonlinear functions are consistent with those
estimated using previous methods. Models estimated from natural and random data are
similar to each other. However, late suppression is only present in the model estimated
from natural data. Furthermore, models estimated from natural data recovered more
filters than models estimated from random data. For natural data, ePPR filters yielded
predictions substantially better than those estimated by other methods, and predictions
from ePPR filters were close to the upper bound on the predictive power of any model.
For random data, ePPR and MID filters estimated from 20,000 stimuli were very similar
and their predictions were not statistically different.
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from natural and random stimuli were very similar to each other, but displayed a few

interesting differences, and that predictions from ePPR models were close to an upper

bound on the predictive power of any model.

1.4 The bias/variance dilemma

The essence of the bias/variance dilemma lies in the fact that the mean square error of

any regression model with finite variance can be decomposed into a bias and a variance

component; whereas incorrect parametric models lead to high bias, very general non-

parametric models suffer from high variance. Prohibitively large amounts of inputs are

then needed to estimate non-parametric models. The only way to control their variance

is to use less general models. However, and this is the other face of the dilemma, as

we reduce the generality of a model, we increase the chances that their estimates are

suboptimal, or biased (Geman, Bienenstock, & Doursat, 1992).

The bias/variance dilemma is particularly relevant for the non-parametric character-

ization of visual cells using natural stimuli. This happens because natural images are

complex (Field, 1987; Ruderman & Bialek, 1994; Simoncelli & Olshausen, 2001), so the

number of descriptors needed to represent them is large, and a generic non-parametric

model, using natural images as inputs, would need a very large number of parameters.

The amount of data required to estimate the parameters of a model grows exponen-

tially with the number of model parameters. Thus, a prohibitively large amount of data

–unattainable in standard physiology experiments– would be required to estimate the

parameters of generic models of visual cells using natural stimuli as inputs.

This bias/variance dilemma can be circumvented by purposefully reducing the gen-

erality of non-parametric models, i.e., introducing bias. Of course, one must ensure that

the bias is harmless, in the sense that the functions that the less general model can well

approximate include an anticipated class of functions that one wishes to characterize. In

essence, bias needs to be designed for each particular problem.
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To address the bias/variance dilemma, in this thesis we make use the hypothesis that

the response of each visual cells depends on a low-dimensional subspace of the image

space. We then bias the estimated models to contain a small number of filters. To

further reduce variability, these filters are estimated using the projections pursuit strategy,

which is specifically designed to address the variability problem in the estimation of its

parameters.

The rest of this dissertation is organized as follows. Chapter 2 describes the VRST,

Chapter 3 presents the ePPR algorithm, and Chapter 4 closes this dissertation discussing

overarching topics and outlining directions for future work.
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Chapter 2

The Volterra Relevant Space Technique (VRST)

The response of visual cells is a nonlinear function of their stimuli. In addition, an in-

creasing amount of evidence is showing that visual cells are optimized to process natural

images. Hence, finding good nonlinear models to characterize visual cells using natu-

ral stimuli is important. The Volterra model is an appealing nonlinear model for visual

cells. However, their large number of parameters, and the limited size of physiological

recordings has hindered its application. Recently, a substantiated hypothesis that the

responses of each visual cell could depend on a specially low-dimensional subspace of the

image space has been proposed. We use this low-dimensional subspace in the Volterra

relevant-space technique to allow the estimation of high-order Volterra models. Most

laboratories characterize the response of visual cells as a nonlinear function on the low-

dimensional subspace. They estimate this nonlinear function using histograms and fitting

parametric functions to them. Here we compare the Volterra model with these histogram-

based techniques. We use simulated data from cortical simple cells, and simulated and

physiological data from cortical complex cells. Volterra models yields equal or superior

predictive power in all conditions studied. Several methods have been proposed to esti-

mate the low-dimensional subspace. In this paper we test Projection Pursuit Regression

(PPR), a nonlinear-regression algorithm. We compare PPR with two popular models

used in vision, spike-triggered average (STA) and spike-triggered covariance (STC). We

observe that PPR has advantages over these alternative algorithms. Hence, we conclude
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that PPR is a viable algorithm to recover the relevant subspace from natural images and

that the Volterra model, estimated through the Volterra relevant-space technique, is a

compelling alternative to histogram-based techniques.

2.1 Introduction

Nonlinearities are ubiquitous in the response of visual cells. Just in the primary visual

cortex, we find rectification (Movshon et al., 1978b; Albrecht & Valois, 1981), satura-

tion (Maffei & Fiorentini, 1973; Dean, 1981), expansion (Albrecht & Hamilton, 1982;

Sclar & Freeman, 1982), phase advance (Dean & Tolhurst, 1986; Carandini & Heeger,

1994), and cross-orientation inhibition (Morrone, Burr, & Maffei, 1982; Bonds, 1989),

to mention a few. Therefore, several investigators have looked for general methods to

study these nonlinearities from the retina to the cortex. In theory, white noise could be

an ideal stimulus to estimate nonlinear properties. This is because if a nonlinear system

is stimulated with a white-noise stimulus ensemble for a long enough time, then there

is a finite probability that any given stimulus will appear, probing the nonlinear system

thoroughly and efficiently However, this rationale is weak for the visual system since the

possible dimensions of stimuli space are too large (i.e., the number of possible images is

immense). Moreover, data are noisy and limited in quantity in physiological recordings.

Hence, white noise does not provide enough signal-to-noise ratio to obtain accurate esti-

mates of responses along all stimulus dimensions. Finally, some sensory neurons do not

respond well to white noise. Thus, it would be better to use natural images to concentrate

the power of the stimuli on the normal operating range of the cell.

More than 40 year ago, Barlow (1961) introduced the hypothesis that visual cells are

optimized to process natural stimuli. Since then, several investigators have provided sup-

port to this natural-adaptation hypothesis (Srinivasan, Laughlin, & Dubs, 1982; Dan et

al., 1996; Simoncelli & Olshausen, 2001) and have shown that natural images emphasize

features of responses not prominent when using synthetic stimuli (David et al., 2004).
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However, only recently, a number of studies have begun to use nonlinear models and

natural stimuli to characterize the response of visual cells. These studies obtained inter-

esting findings, but the methods had limitations for investigators interested in general

receptive fields. Some groups did not attempt to map receptive fields (Dan et al., 1996;

Vinje & Gallant, 2000, 2002; Weliky, Fiser, Hunt, & Wagner, 2003; Aggelopoulos, Franco,

& Rolls, 2005; Guo, Robertson, Mahmoodi, & Young, 2005), while others limited their

studies to linear (Theunissen et al., 2001; Ringach, Hawken, & Shapley, 2002; Smyth,

Willmore, Baker, Thompson, & Tolhurst, 2003; Willmore & Smyth, 2003) or second-

order nonlinear (Felsen et al., 2005; Touryan et al., 2005) receptive fields. More general

nonlinearities were first studied by modeling cell responses as a linear filter followed by

a point nonlinearity (Chichilnisky, 2001; Nykamp & Ringach, 2002) or by fitting a priori

models (David et al., 2004). The former models cannot capture nonlinear interactions

between subregions of the receptive field and, thus, might not be sufficiently general to

characterize responses of large classes of cells. Later, two methods that make no as-

sumptions on the response generation mechanism were introduced (Prenger et al., 2004;

Sharpee et al., 2004). These methods are powerful but they require delicate nonlinear

optimizations that could be overwhelming to many investigators.

In an attempt to overcome some of the above limitations, we explored the Volterra

model (V. Z. Marmarelis, 2004). Because it does not rely on specific assumptions about

the response-generation mechanism, this model can be applied to a broad class of cells.

Moreover, the Volterra model has a long history in the study of nonlinear physiological

systems. This model could be especially useful for visual cells, since its first-order kernels

are just like standard receptive fields. Therefore, the model can generalize them to the

nonlinear domain. The large number of parameters in Volterra models of visual cells

and limited physiological recordings have hindered its application to the visual system.

In this paper, we overcome this limitation using a recent substantiated hypothesis that

the responses of each visual cell depend on a specially low-dimensional subspace of the

image space (de Ruyter van Steveninck & Bialek, 1988; Brenner, Bialek, & de Ruyter van
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Steveninck, 2000; Sharpee et al., 2004, 2006; Bialek & de Ruyter van Steveninck, 2005;

Rust, Schwartz, Movshon, & Simoncelli, 2005). Accordingly, we introduce the Volterra

relevant-space technique to estimate Volterra models of visual cells from natural images.

Most laboratories characterize the response of visual cells as a nonlinear function on

a one- or two-dimensional subspace of the image space (Chichilnisky, 2001; Touryan,

Lau, & Dan, 2002; Sharpee et al., 2004, 2006; Simoncelli, Paninski, Pillow, & Schwartz,

2004; Touryan et al., 2005; Felsen et al., 2005). To estimate this nonlinear function,

they construct one- or two-dimensional histograms of the response as a function of the

projection of the input images on the basis of this subspace. Then, they fit parametric

functions to this histogram. Using simulated data from cortical simple cells, and simulated

and physiological data from cortical complex cells, we compare the Volterra model with

histogram-based techniques for simple- (Chichilnisky, 2001) and complex-cells (Touryan

et al., 2005).

Several methods, in different scientific disciplines, have been proposed to estimate the

low-dimensional subspace (de Boer & Kuyper, 1968; Friedman & Stuetzle, 1981; Helland,

1988; Li, 1991; de Ruyter van Steveninck & Bialek, 1988; Sharpee et al., 2004; Touryan

et al., 2005). In this paper we test Projection Pursuit Regression (PPR) (Friedman &

Stuetzle, 1981), a nonlinear-regression algorithm. We compare PPR with two popular

models used in vision, spike-triggered average (STA) (de Boer & Kuyper, 1968) and

the modification of spike-triggered covariance (STC) for natural images (Touryan et al.,

2005).

We organize the rest of this article as follows: The next section (“Theory”) describes

the theoretical underpinnings of the modeling of cells’ receptive fields. This section covers

the Volterra model (Subsection 2.2.1) and the Volterra relevant-space technique (Subsec-

tion 2.2.2). This theoretical section is followed by Methods (Section 2.3), Results (Sec-

tion 2.4), and Discussion (Section 2.5). Each theoretical material starts with an intuitive

description of ideas, so that the reader can get the gist of the paper even if skipping its
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mathematics. Then, those sections present the main mathematical results, leaving proofs

and developments to appendices.
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2.2 Theory

2.2.1 Volterra Model

A useful way to think of the Volterra model is that it is a sequence of approximations.

They are given by a sequence of filters, called kernels, with which to process the input.

When Volterra models are applied to visual cells, the zeroth-order kernel represents the

activity when the input is absent. The first-order Volterra kernel is the linear component

of the response. For example, in the spatial domain, this kernel gives the response to

small pulses of input at every position. Therefore, this kernel is a good representation

of what people traditionally call the receptive field of a cell. The second-order kernel

represents the weight that nonlinear interactions between two inputs (e.g., at two times

or two positions) have on the response. In general, the rth-order kernel represents the

weight that nonlinear interactions between r inputs have on the response.

The development of Volterra models relies on the mathematical notion of the Volterra

series introduced by Volterra (1930). In the time domain, the output y(t) of a stationary,

stable, causal system can be expressed in terms of its input signal x(t) through its Volterra

series expansion as

y(t) = k0 +

∫ ∞

0
k1(τ)x(t− τ)dτ (2.1)

+

∫ ∞

0

∫ ∞

0
k2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2

+

∫ ∞

0

∫ ∞

0

∫ ∞

0
k3(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3

+ . . .

A Volterra model is a truncated Volterra series, i.e.
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yQ,k(t) = k0 +

∫ ∞

0
k1(τ)x(t− τ)dτ (2.2)

+

∫ ∞

0

∫ ∞

0
k2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2 + . . .

+

∫ ∞

0
. . .

∫ ∞

0
kQ(τ1, . . . , τQ)x(t− τ1) . . . x(t− τQ)dτ1 . . . dτQ + ε

where the subscript Q in yQ,k indicates that the Volterra series has been truncated at

order Q, the subscript k reflects the dependence of the Volterra model on the particular

choice of kernels {k0,k1, . . . ,kQ}, and ε stands for possible errors due to truncation and

for noise in the data.

The Volterra model given in (2.2) uses one-dimensional (1D), continuous inputs. How-

ever the input to visual cells is multi-dimensional (one dimension of time, two dimensions

of space, three dimensions of color, and so on) and discrete data is normally used to

characterize their responses. Here, as a first approximation, we only use the spatial di-

mensions of the stimuli to estimate the response of visual cells, disregarding temporal

interactions. As discussed in Section 2.5, the Volterra relevant-space technique can be

extended to consider spatio-temporal interactions. The Volterra series used henceforth is

yQ,k(x) = k0 +
N
∑

i,j=1

k1(i, j)x(i, j) (2.3)

+
N
∑

i1,j1,i2,j2=1

k2(i1, j1, i2, j2)x(i1, j1)x(i2, j2) + . . .

+
N
∑

i1,j1,...,iQ,jQ=1

kQ(i1, j1, . . . , iQ, jQ)x(i1, j1) . . . x(iQ, jQ) + ε

where x ∈ R
N×N is the input image. Any Volterra model can be represented with kernels

kr that are symmetric with respect to permutations in pairs of indices (ip, jp). Hence, the

number of parameters in Volterra kernels is less than their number of kernel coefficients.
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For example, for k2 we have the symmetry k2(i1, j1, i2, j2) = k2(i2, j2, i1, j1), which implies

that the number of parameters is (N2+1)N2

2 while the number of kernel coefficients is N4.

The number of parameters of the Volterra model in (2.3), nV , is

nV =
(N2 +Q)!

N2! Q!
(2.4)

For example, a fourth-order Volterra model, Q = 4, using images of size 16×16 as in-

put, contains nV = 186, 043, 585 parameters. From the limited data that can be recorded

in physiological experiments, we cannot estimate such a large number of parameters. The

Volterra relevant-space technique described in the next section addresses this problem.
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2.2.2 The Volterra Relevant-Space Technique

Fortunately, one can reduce the dimensionality of Volterra models. This is because the

response of each visual cell depends on a low-dimensional subspace of the image space.

One reason for this low dimensionality is the high degree of correlation in natural images

(Ruderman & Bialek, 1994; Field, 1987; Srinivasan et al., 1982). Another reason is

that each neuron responds to particular features of the image, such as an edge at a given

position with a given orientation. Here, we show how to use this low-dimensional subspace

to build a low-dimensional Volterra model, and we prove the equivalence between the

original and low-dimensional Volterra models. Thus, we establish, for the first time, a

mathematical link between the low-dimensional subspace and Volterra models.

The construction of the low-dimensional Volterra model begins by projecting the input

images onto a low-dimensional subspace S. If x is an image and B = {b1, . . . ,bL : bl ∈

R
N×N} is a set of orthonormal basis functions spanning the space S, then the projected

image is

ΠS(x) =
L
∑

l=1

αl(x)bl (2.5)

where

αl(x) =
N
∑

i,j=1

bl(i, j)x(i, j) (2.6)

is the projection coefficient of image x onto the basis function bl. Using these coefficients,

the low-dimensional Volterra model is
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yQ,k(x) = q0 +
L
∑

l=1

q1(l)αl(x) + . . . (2.7)

+
L
∑

l1,...,lQ=1

qQ(l1, . . . , lQ)αl1(x) . . . αlQ(x) + ε

What are the conditions on the space S for the low-dimensional Volterra model to

be an equivalent representation of the original Volterra model in (2.3)? The answer is

given by Proposition 1 (Appendix 2.6.1). It states that if a vector space S is such that

the response of the cell to any image equals the response to the projection of the image

onto S, then the original Volterra model can be rewritten as the low-dimensional Volterra

model. A vector space S satisfying this condition is called a relevant space. That is, S is

a relevant space if and only if

yQ,k(x) = yQ,k(ΠS(x)) ∀x ∈ X, (2.8)

Any set of orthonormal basis function B = {b1, . . . ,bL : bl ∈ R
N×N} spanning a relevant

space is called a set of relevant dimensions.

We are not seeking a relevant space such that the represented images look similar to

the original ones. Instead, we are seeking a relevant space such that the response to the

original images equals the response to the represented images. This equality is as in (2.8).

Therefore, for our purposes, a relevant-space representation does not depend only on the

statistics of natural images, as in the case of image reconstruction. This representation

depends also on the properties of the cell under study.

How much do we gain by using the relevant space to represent Volterra models? The

number of parameters in the low-dimensional Volterra model , nLV , is

21



nLV =
(L+Q)!

L! Q!
(2.9)

As an example, for L = 10 relevant dimensions, a fourth-order (Q = 4) low-dimensional

Volterra model will contain nLV = 1, 001 parameters. In contrast, the number of pa-

rameters in the original Volterra model for a 16 × 16 image is nV = 186, 043, 585, (2.4).

Therefore, if a small relevant subspace can be identified, the Volterra relevant-space tech-

nique achieves enormous dimensionality reduction.

How are the coefficients, qi, of the low-dimensional Volterra model, (2.7), estimated?

We seek coefficients that minimize the difference between true responses and those pre-

dicted by the Volterra model. To obtain a convenient method for this minimization, we

begin by expressing (2.7) as the linear Volterra equation

y = Aq+ ε (2.10)

where, for K image/response pairs and M parameters, y ∈ R
K is the response vector

whose ith element, y(xi), is the response of the cell to the ith image, A ∈ R
K×M is the

data matrix, q ∈ R
M is the vector of parameters, and ε ∈ R accounts for possible errors

due to truncation and to noise in the data. For instance, for a second-order cell (Q = 2),

the ith row of matrix A, a′i, is

a′i = [1, α1(xi), α2(xi), . . . , αL(xi), α1(xi)
2, α1(xi)α2(xi), . . . , α1(xi)αL(xi), (2.11)

α2(xi)
2, α2(xi)α3(xi), . . . , αL−1(xi)αL(xi), αL(xi)

2],

and the parameters-vector q is
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q = [q0, q1(1), . . . , q1(L), q2(1, 1), q2(1, 2), . . . , q2(1, L), (2.12)

q2(2, 2), q2(2, 3), . . . , q2(L− 1, L), q2(L,L)]
′.

By using the mean-square error

MSE(k0,k1, . . . ,kQ) =
1

n

n
∑

i=1

(y(xi)− yQ,k(xi))
2 (2.13)

as the goodness-of-fit criterion, we can apply any linear technique to estimate the parameters-

vector q. The use of linear techniques in the estimation of Volterra models removes the

whiteness requirement of cross-correlation techniques. Therefore, we can use natural im-

ages to estimate Volterra models, without the need to whiten them or modifying image

statistics in any way.

Having estimated the coefficients of the low-dimensional Volterra model, one approx-

imates the true kernels, ki, in (2.3), with

k̂0 = q0 (2.14)

k̂1(i, j) =
L
∑

l=1

q1(l)bl(i, j) (2.15)

. . .

k̂Q(i1, j1, . . . , iQ, jQ) =
L
∑

l1,...,lQ=1

qQ(l1, . . . , lQ)bl1(i1, j1) . . . blQ(iQ, jQ), (2.16)

Proposition 2 (Appendix 2.6.1) provides justification for these equations. This propo-

sition proves that, if a cell can be represented by a Volterra model using true kernels

ki, then, for any set of true relevant dimensions {bi} (2.8), there exists coefficients

q0,q1, . . . ,qQ, such that a Volterra model using the true kernels, ki, generates the same
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responses as a Volterra model using the projected kernels in (2.14)-(2.16). Thus, from

a predictive perspective, these reconstructed kernels are indistinguishable from the true

kernels.

The use of (2.7)-(2.16) assumes a known order of the Volterra model, Q. Here, we

selected the order Q by cross-validation, as indicated in Section 2.3.4.1. In summary,

the Volterra relevant-space technique uses the following procedure to estimate Volterra

models from natural images:

1. Estimate the relevant space.

2. Project the images in the estimated relevant dimensions (2.6), obtaining the coef-

ficients αl.

3. Use the coefficients αl to construct the data matrix (2.11) of the linear Volterra

equation (2.10).

4. Estimate the coefficients vector, q, of the linear Volterra equation by minimizing

the MSE in (2.13).

5. Reconstruct the Volterra kernels using (2.14)-(2.16).

Code implementing this procedure along with the simulated data used in Section 2.4 can

be downloaded from http://vpl.usc.edu/projects/nonlinearReceptiveFields/.

After the relevant dimensions have been estimated, the remaining steps in the pro-

cedure (Steps 2-5) involve only linear operations, and are therefore, fast and easy to

implement. In contrast, most implementations of histogram-based methods fit a nonlin-

ear function to an estimated histogram. The selection of the optimal histogram bin size

is an open question and the nonlinear fit is slower and comparatively more difficult to

implement than the linear operations required by the Volterra relevant-space technique.
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Figure 2.1: Sample natural images.

2.3 Methods

2.3.1 Simulated Data

Responses of the cortical simple- and complex-cell models described below were generated

using 10 × 10 image patches extracted from calibrated natural images (van Hateren &

van der Schaaf, 1998). Sample natural images are shown in Fig.2.1.

2.3.1.1 Simulated Simple Cell

The simple-cell data was generated by a model similar to those previously used to describe

V1 simple cells (J. Jones, Stepnoski, & Palmer, 1987). The model consisted of a linear

spatial filter followed by a sigmoidal rectification (rect(v) = saturation/(1+exp(−slope∗

(v − threshold)))) and a Poisson spike generator. We used a sigmoidal instead of a half-

way rectification, because we wanted to use a model that was differentiable at every point.
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This differentiability allowed derivation of true Volterra kernels (see Appendix 2.6.2). The

simple-cell model is then given by

y(x) = rect(< f ,x >) (2.17)

where < . , . > represents the Euclidean inner-product operation and f is the spatial filter.

For the spatial filter we used a two-dimensional (2D) Gabor function. It had a preferred

orientation of 45◦ from vertical, a preferred spatial frequency of 2 cycles per receptive field,

a spatial bandwidth of 1.6 octaves, and an even phase. For the sigmoidal rectification

of the filtered image, we used slope=5.0 and threshold=1.0, and varied the saturation

parameter (setting it to 458, 276, 92, and 46) to obtain different mean number of spikes

per image (5, 3, 1, and 0.5 respectively). Because the responses of the simulated simple

cell followed a Poisson distribution, the signal-to-noise ratio in the responses increased

monotonically as a function of the mean number of spikes per image.

To assess the quality of the estimated relevant dimensions, we first derived analytical

relevant dimensions for the simple cell. We then computed their projection onto the

estimated relevant space. If the estimated relevant space embodies the true relevant

space, then the analytical relevant dimensions should equal their projection onto the

estimated space. In deriving the analytical relevant dimensions, we begin by observing

that the first stage of the simple-cell model is a linear filter. Hence, the response to any

image will equal (up to the noise level) the response to the image projected in the span of

the linear filter. Consequently, the linear filter spans the relevant space. After rescaling

this filter to unit norm, it is the only relevant dimension for the simulated simple cell.

The derivatives of all orders of the simple-cell model in (2.17) are non-zero. Hence,

according to (2.39), every kernel in (2.3) is non-zero. This may cause a problem when the

projections of the input images onto the filter f (the coefficients αl(x) in (2.7)) are large.

In this case, truncation errors will become significant. However, in the opposite case,
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i.e., when these projections are small, the problem is not serious. By using a model with

kernels of sufficiently high order, these truncation errors will be negligible. To minimize

the effect of truncation errors, the amplitude of the filter f was selected in such a way

that the absolute value of the largest filtered image was 1.

2.3.1.2 Simulated Complex Cell

The complex-cell data was generated by means of a spatial energy model (Adelson &

Bergen, 1985). The input image was first filtered using two Gabor filters, in quadra-

ture phase, i.e., with a 90◦ phase relationship. These filters had a vertical preferred

orientation, a preferred spatial frequency of 2 cycles per receptive field, and a spatial-

frequency bandwidth of 1.6 octaves. The outputs of these filters was then squared and

summed, generating the mean of a Poisson spike generator. The analytical expression of

the complex-cell model is then

y(x) =< f1,x >2 + < f2,x >2 (2.18)

where f1 and f2 are the linear filters in quadrature phase. To vary the mean number of

spikes in the responses we scaled the magnitude of the Gabor filters, generating responses

with 5.0, 3.0, 1.0 and 0.5 spikes per image.

As before, to assess the quality of the estimated relevant space, we derived analytical

relevant dimensions for the complex-cell model. We then compared them with their

projection onto the estimated relevant space. Due to the linear filters in the first stage

of the complex-cell model, the response to any image will equal, up to the noise, the

response to the image projected in the span of the filters. Consequently, the two linear

filters span the relevant space. Because these filters are orthogonal, after rescaling them

to unit norm, they constitute a set of relevant dimensions.
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Again, to judge the quality of the estimated kernels, we compared them with the true

kernels. We derived them for the complex-cell model using the procedure described in

Appendix 2.6.2. Only the second spatial derivatives with respect to x of (2.18), evaluated

at zero, are different from zero. Hence, from (2.39), only the second-order Volterra kernels

of the complex cell are different from zero. Therefore, the complex cell can be represented

with a second-order Volterra model.

2.3.2 Physiological Data

The physiological data used here were recorded in the laboratory of Dr. Yang Dan

and the method used to obtain them were described by Touryan et al. (2005). Animal

procedures to obtain these data were approved by the Animal Care and Use Committee

at the University of California, Berkeley. Briefly, single-cell recordings were made in area

17 of adult cats (2-6.5 kg) using tungsten electrodes. Cells were classified as simple if the

receptive fields had clear ON and OFF subregions and if the ratio of the first harmonic to

the DC component of the responses to an optimally oriented drifting sinusoidal grating

was greater than one. Natural images used in cell stimulation were selected at random

from a database consisting of a variety of digitized movies (van Hateren & Ruderman,

1998), and the center patch (12 × 12 pixels) of each image was retained. Images were

scaled so that they all had the same variance. These selected images had no temporal

correlations and were presented at a frame rate of 24 Hz in an area slightly larger than

the classical receptive field of the cell estimated by hand mapping. For analysis, Touryan

et al. binned responses at 41.8 ms, the presentation frame rate, and the bin immediately

following a frame was used as the response to that frame. They shared with us two to

four repetitions of responses from four complex cells to 24,000 natural images. Below,

we show the analysis of the cell for which we obtained the best predictions with both the

Volterra and Touryan et al. models. For this cell, both models yielded better predictions

when considering the spikes in the frame presentation bin as the cell response of to that
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frame. We used the average response across four repetitions of the stimuli as the response

variable to estimate the different models.

2.3.3 Data Partitioning

To control for possible overfitting of the different receptive field estimation models to

the data used in their estimation, we partitioned the data into disjoint training and a

test data sets. Only the training data set was used to estimate model parameters. The

test data set was reserved to evaluate the models’ predictive power. By using different

training and test data sets, the prediction results reflected the generalization ability of

the different models to predict responses to novel natural images.

In addition, between two to ten jackknifed data sets were generated by excluding dif-

ferent 10% segments of the training data set (Efron & Tibshirani, 1993). These jackknifed

data sets were used to average out the noise from the estimated relevant dimensions and

model parameters and to select model hyperparameters.

We used training sets of varying size (1,000, 3,000, 5,000, 10,000 and 15,000 im-

age/response pairs). For the simulated and physiological data we used test sets of size

4,500 and 4,000 image/response pairs, respectively.

2.3.4 Receptive Field Estimation

2.3.4.1 Volterra Relevant-space Technique

Estimating the relevant dimensions: To develop low-dimensional Volterra models,

one must estimate a set of relevant dimensions satisfying (2.8). Methods for doing this

rely on different assumptions about the statistics of the input and/or about the proper-

ties of the response-generation function. The methods of reverse correlation (de Boer &

Kuyper, 1968), spike triggered covariance (STC) (de Ruyter van Steveninck & Bialek,

1988) and maximally informative dimensions (Sharpee et al., 2004) have been intro-

duced in the field of Neuroscience. These methods are powerful, but have constraints

about the dimensionality of the relevant space, the type of stimulus used, or require an
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arduous high-dimensional nonlinear optimization that constrains the dimensionality of

estimable relevant spaces. (An exception may be the modification of STC for natural im-

ages explained in Section 2.3.4.4.) Other interesting methods involve perceptron neural

networks (Hertz, Palmer, & Krogh, 1991) and partial least squares (Helland, 1988; Geladi

& Kowalski, 1986). The former suffers from the curse of dimensionality and the latter

relies on a linear assumption about the response-generation function. Other methods

are sliced inverse regression and projection pursuit regression (PPR), both of which were

introduced in Statistics. Sliced inverse regression (Li, 1991) makes no assumptions about

the response-generation mechanism, but relies on the assumption of a spherical distri-

bution of the stimuli. In turn, PPR (Friedman & Stuetzle, 1981) makes no assumption

about the distribution of the inputs and uses the following generalized linear model for

the response-generation mechanism

y(x) = ȳ +

M0
∑

m=1

βmφm(< am,x >) (2.19)

with E{φm(< am,x >)} = 0 and E{φ2
m(< am,x >)} = 1

Provided M0 is sufficiently large, any smooth function can be represented by (2.19)

(universal approximator property, Diaconis & Shahshahani, 1984). Another interest-

ing property of PPR is that its estimation algorithm explicitly addresses the curse of

dimensionality, by separately estimating each term in the generalized linear model. In

the following experiments, we evaluated PPR for the estimation of the relevant space. In

Appendix 2.6.3, we outline the PPR algorithm (see Friedman, 1984a, for further details).

The estimated relevant dimensions for the low-dimensional Volterra model are computed

by orthonormalizing the set of projection directions, {a1, . . . ,aM0
}, in (2.19). To un-

derstand why this procedure works, let S denote the space spanned by the projection

directions, S =< a1,. . . ,aM0
>. Let us also denote ΠS the projection operator onto the

space S. Because < ai,x >=< ai,ΠS(x) >
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y(x) = ȳ +

M0
∑

m=1

βmφm(< am,x >) = ȳ +

M0
∑

m=1

βmφm(< am,ΠS(x) >) = y(ΠS(x)). (2.20)

That y(x) = y(ΠS(x)), implies that S is a relevant space for y. Consequently, a set of

relevant dimensions can be computed by orthonormalizing the set of projection directions

{a1,. . . ,aM0
}, as indicated above.

For the results reported here, we used the implementation of the PPR algorithm in R,

an environment for statistical computing (Venables & Smith, 2002). This implementation

selects initial values for the projection directions, ai in (2.19), by cross-correlating the

input images with the residuals of the responses. Consequently, it might fail to estimate

the relevant dimensions of cells for which the responses are completely uncorrelated with

the input images. For these cases one can use the implementation of PPR developed by

Roosen (1994), which allows the specification of initial projection directions. However,

for all the conditions reported below, there was enough correlation between images and

responses for the R implementation of PPR to estimate good relevant dimensions.

The estimation of the projection directions requires two runs of the PPR algorithm.

The first run estimates the number, L, of projection directions needed to characterize the

cell. Then, the second run estimates the L projection directions. In the first run, for each

jackknifed data set in our training set (Section 2.3.3), we ran the PPR algorithm with

parameters M0 = 1 and M = 6. These parameters allowed assessing the predictive error

of PPR models with one to six projection directions (see Appendix 2.6.3). For each jack-

knifed data set, PPR generates a predictive-error-versus-number-of-projection-directions

curve. The PPR predictive-error curves of different jackknifed data sets were averaged.

This average generated a new curve that was used to select the number of projection

directions. PPR predictive-error-versus-number-of-projection-directions curves follow a

common pattern. Before a critical number of terms, the predictive error decreases sub-

stantially as we increase the number of terms. Increasing the number of terms beyond the

critical value yields only small reductions in predictive error. We selected the number of
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projection directions as the largest number, between one and six, for which the error bars

(size ten standard errors) did not intersect those of the previous number of projection

directions.

After choosing the number of PPR projection directions, L, we proceeded to estimate

the projection directions. We ran the PPR algorithm, with parameters M0 = L and

M = 6, for the N (2 ≤ N ≤ 10) jackknifed data sets, estimating N sets of L noisy

projection directions. To attenuate the effect of noise, we averaged these sets of projection

directions, as described in Section 2.3.5.

Note that PPR uses raw natural images as inputs, in contrast to spike-triggered

techniques, which use spike-triggered images, i.e., images weighted in proportion to their

corresponding response.

Estimating the low-dimensional Volterra model: Having estimated the relevant

dimensions, we constructed the low-dimensional Volterra model (2.7). We estimated its

parameters, qi, by minimizing the mean-square error between the responses of the cell

model and the predictions of the low-dimensional Volterra model. As noted in Sec-

tion 2.2.2, the solution to (2.13) is a linear problem. We solved it using the pseudoinverse

computed from the singular value decomposition (Mendel, 1995).

Selecting the order of Volterra models: For each training jackknife data set

(Section 2.3.3), we estimated low-dimensional Volterra models of different orders. We then

evaluated the predictive power of these models using the 10% portion of the training data

not included in the jackknife data set. The predictive power was the cross correlation

between cell responses and Volterra model predictions. We then generated a curve of

predictive power versus model order. Curves of different data sets were averaged. The

least order maximizing the average predictive power was selected as the order of the

Volterra model.
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2.3.4.2 Spike-triggered Average

Suppose the responses of a cell are generated by a static nonlinearity on the projection

of input images along a single relevant dimension. In other words, suppose y(x) = N(<

h,x >)+ǫ, where y(x) is the response of the cell to image x, h is a linear filter, < . , . > is

the inner-product operation and N is a static nonlinearity. When the images are Gaussian

white noise, the filter h is proportional to the cross-correlation between the inputs and

the responses (P. Marmarelis & Marmarelis, 1978).

However, natural images are not white noise. For them, when the cell can be rep-

resented as a linear device, the cross-correlation between the stimuli and the responses

equals the product of the autocorrelation of the inputs and the filter, i.e., Cyx = Cxxh.

Then, for non-white inputs and a linear cell, the filter h can be recovered as h = C−1
xxCyx.

The autocorrelation matrix, Cxx, for natural stimuli is nearly singular. Therefore, its true

inverse tends to amplify noise. To avoid this problem, we regularized the autocorrelation

matrix using the truncated singular value decomposition (Hansen, 1987) and computed

the pseudoinverse (Ben-Israel & Greville, 1980) from this regularized matrix. The compu-

tation of the truncated singular value decomposition uses a threshold to decide how many

singular values to include in the regularized matrix. For each condition in the studies re-

ported below, we selected the optimal threshold by using k-fold cross-validation (Efron &

Tibshirani, 1993). We used the jackknifed data sets from the training data (Section 2.3.3)

to estimate different STA filters. To minimize the effect of noise, the average of these

filters was used as the final STA estimate.

2.3.4.3 Histogram-based Model for Simple Cells

The histogram-based model for simple cells characterizes the response to an image x as

a linear filter, h, followed by a static one-dimensional nonlinearity (Chichilnisky, 2001).

Precisely, y(x) = N(< h,x >)+ǫ. We estimated the linear filter using STA and the static

nonlinearity by fitting the parameters of the same sigmoidal function used to generate the

simulated data to a histogram of responses as a function of projections of input images
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in the estimated filter. We used histograms with equi-spaced bins and selected the bin

size from the data range using the Sturges rule (Sturges, 1926).

2.3.4.4 Spike-triggered Covariance for Natural Images

For Gaussian white-noise stimuli, consider stimuli that elicit spikes (spike-triggering stim-

uli). The variance of the projections of these stimuli along the cell’s relevant dimensions

should be larger or lower than the variance along non-relevant dimensions. The dimen-

sions with large or low variance correspond to the eigenvectors of the autocovariance

matrix with large or low eigenvalues respectively. For Gaussian stimuli, Spike-Triggered

Covariance (STC) (de Ruyter van Steveninck & Bialek, 1988; Simoncelli et al., 2004)

identifies these “extreme” eigenvectors as the relevant dimensions of a cell.

Touryan et al. (2005) have proposed a modification of STC for natural stimuli. This

modification starts by whitening the natural stimuli. Denote by U the matrix of eigen-

vectors of the autocovariance of the stimuli (one eigenvector per column), and by λi its

eigenvalues. The matrix of normalized eigenvectors is defined as

Un = U













1√
λ1

0

. . .

0 1√
λn













(2.21)

Then the whitened natural images are Xw = XUn. STC for natural images now performs

a classical STC analysis on the whitened natural images, estimating a set of relevant

dimensions, Vw (one relevant dimension per column). Finally, the estimated relevant

dimensions of the cell, V (one relevant dimension per column), are V = UnVw.

The autocovariance matrix of natural images is nearly singular, so its last eigenval-

ues (λi, i >> 1) will be very small and tend to amplify noise. To avoid this effect, a

threshold is selected and eigenvalues below this threshold are set to one. In this way,

only the eigenvectors corresponding to large eigenvalues are normalized in (2.21). With
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physiological and simulated data, we used different threshold values for different cells and

selected the value maximizing the predictive power. Best predictions were obtained using

thresholds that normalized around 35% of the eigenvectors. So, for the results reported

below, we used this criterion to select the threshold. The same criterion was used by

Touryan et al. (2005). Multiple sets of STC relevant dimensions were estimated using

the jackknifed data sets from the training data (Section 2.3.3). We then averaged these

sets (Section 2.3.5) to obtain the final STC estimates.

2.3.4.5 Histogram-based model for Complex Cells

To reconstruct the nonlinear function from the relevant space by a histogram method,

we use the technique proposed by Touryan et al. (2005). We construct two independent

histograms for responses as a function of projections of images in each of the two estimated

relevant dimensions. We then fit a power function, f(p) = β|p|γ + r0 to each histogram

(where f(p) is the response of the cell to a given image, p the projection of the image onto

a estimated relevant dimension, and β, γ, and r0 are free parameters). The reconstructed

nonlinearity is then the sum of the power functions fitted to each histogram, y(x) = f1(<

φ1,x >) + f2(< φ2,x >) (where y(x) is the response of the cell to image x, f1 and f2 are

the power functions fitted to the histograms, φ1 and φ1 are the first and second relevant

dimensions, and < . , . > is the inner product operation).

2.3.5 Averages of Sets of Relevant Dimensions

We wish to average N sets of L estimated relevant dimensions, when each set has been

estimated from a different portion of the training data. All sets describe, with noise, a

common relevant space. The goal is to estimate this common space. Because different

sets might represent the common space in different coordinate systems, we cannot average

them element by element. To perform the average, we instead collected the N sets into a

matrix A. In A, columns {(i− 1)L, . . . , iL} correspond to the relevant dimensions of the

ith set. The column space of A spans an L-dimensional relevant space (signal) and a noise
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space. We use the singular-value decomposition (SVD) to separate the column space of

A into a signal and an orthogonal noise space (Scharf, 1991). Specifically, we compute

the SVD of A, A = UΣUT , and use the first L left singular vectors (first L columns of

matrix U) to represent the signal space. Thus, the first L columns of matrix U are the

average of the N sets of L relevant dimensions.

2.3.6 Scaling Kernels

To display kernels and to measure the goodness of fit of estimated kernels, we scaled

them in proportion to their mean contribution to the response of the cell. The first-order

kernel was scaled by the mean absolute value of the stimuli. In turn, the second-order

kernel was scaled by the mean absolute value of the autocorrelation. Precisely, denoting

the mean of z by z, the scaled first- and second-order kernels are ks1(i, j) = k1(i, j)|x(i, j)|

and ks2(i1, j1, i2, j2) = k2(i1, j1, i2, j2)|x(i1, j1)x(i2, j2)|, respectively.

2.3.7 Displaying Kernels

In this paper, we represent first- and second-order spatial Volterra kernels slices in three-

dimensional (3D) spaces. We display 3D spaces as perspective and contour plots. First-

order kernels k1(i, j), have two independent variables, the dimensions of space, and one

dependent variable, the amplitude. The latter is represented on the vertical axis of the

3D plots, with i and j along the X and Y axes respectively. Second-order kernels,

k2(i1, j1, i2, j2), have four independent variables and one dependent variable. We display

second-order kernel slices respect to different reference positions. That is, we fix the

reference position (i1, j1) and plot the value k2(i1, j1, i2, j2) on the vertical axis, with

i2 and j2 on the X and Y axes respectively. These plots show contributions to the

response of interactions between individual pixels of the image and pixel x(i1, j1). The

kernels shown in Section 2.4 have been scaled (Section 2.3.6). This allows the reader

to appreciate visually the average contribution of a kernel to the cell response and to
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compare the contributions from different kernels. For predicting responses, on average,

larger kernels are more relevant than smaller ones.

2.3.8 Goodness of Fit of Kernels

To measure the goodness of fit of estimated to true kernels we scaled them (Section 2.3.6),

and computed their mean-square error (MSE). The MSE is a scale sensitive measure.

This implies that if true and estimated kernels have small amplitude, then the MSE

between them will be small, independently of how well they correlate. For measuring

errors between scaled kernels, this scale sensitivity is a good property. This is so because

scaled kernels with small amplitudes contribute little to the response and thus it does not

matter how well the estimated correlates with the true kernel. Moreover, the MSE allows

the comparison of errors across different kernels. This happens because the amplitude of

scaled kernels indicates their mean contribution to the response. Therefore, a similar MSE

for different scaled kernels indicates that they contribute similar errors to the response.

2.3.9 Volterra terms contributions

To assess the importance of individual Volterra terms to the response, we decomposed

(2.3) as a sum of terms of increasing nonlinear order,

y(x) = y0 + y1(x) + . . .+ yQ(x), (2.22)

where
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y0(x) = k0, (2.23)

y1(x) =
N
∑

i,j=1

k1(i, j)x(i, j), (2.24)

. . .

yQ(x) =
N
∑

i1,j1,...,iQ,jQ

kQ(i1, j1, . . . , iQ, jQ)x(i1, j1) . . . x(iQ, jQ) (2.25)

We wanted to know how relevant was each term relative to the others for the genera-

tion of the response. For this purpose, we defined the contribution of the ith term to the

response y(x) to image x as contribi(x) = |yi(x)|/
∑Q

j=0 |yj(x)|.

The definition of contribution is such that if for a given image the contribution of a

specific term is large, then, if we set to zero the component of the response due to that

term, the response is largely modified. On the other side, if the contribution of a term is

small, then the response is mostly unaffected when we set to zero the component of the

response due to that term.
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2.4 Results

We initially evaluated the Volterra relevant-space technique with models of cortical sim-

ple and complex cells. The use of simulated data allowed us to derive analytically true

relevant dimensions and the true Volterra kernels of the cell models. We could then

compare these true parameters with those estimated from input/output data. The out-

come of these comparisons appear in Sections 2.4.1.1 and 2.4.2.1. Next, we compared the

Volterra model with two other well-known models that also use relevant dimensions. For

the simulated simple cell, the comparison was with a model using STA to recover a single

relevant dimension and histograms to estimate the nonlinearity (Chichilnisky, 2001). For

the simulated complex cell, the comparison was with a model using STC to recover the

relevant space and histograms to estimate the nonlinearity (Touryan et al., 2005). In

Sections 2.4.1.2 and 2.4.2.2, we present the results of comparing PPR with STA and STC

respectively. In turn, Sections 2.4.1.3 and 2.4.2.3, compare the Volterra model with the

histogram-based models for, respectively, the simulated simple and complex cells. Fi-

nally, we use physiological data from cortical complex cells to show the feasibility of our

methods with real data (Section 2.4.3).

2.4.1 Simulated Simple Cell

2.4.1.1 True Parameters

We used Projection Pursuit regression (PPR) to estimate the relevant space of the simu-

lated simple cell. For this estimation, we used a training set of 5,000 patches from natural

images. Fig. 2.2a shows the curve of predictive error versus the number of estimated rel-

evant dimensions for the simple cell. Using two estimated relevant dimensions leads to a

large reduction in prediction error compared to using only one dimension. In contrast,

using more than two estimated relevant dimensions yield only small reductions in pre-

dictive error. (Here, we define large as the lack of intersection between neighboring error

bars – size ten standard errors.) Based on these data, we used the projection directions
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Figure 2.2: Goodness of fit of PPR models as a function of number of estimated relevant
dimensions. (a) Simulated simple cell. (b) Simulated complex cell. (c) Cortical complex
cell. The size of error bars is 10 standard errors. Based on these data, we use two, two,
and three estimated relevant dimensions for the Volterra model of the simulated simple
cell, simulated complex cell, and cortical complex cell respectively.

of a two-term PPR model to compute the estimated relevant dimensions for the Volterra

model (Section 2.3.4.1).

Although we estimated two significant relevant dimensions from the data, as described

in Section 2.3.1.1, the relevant space of the simple-cell model is spanned by a single

relevant dimension. What matters for our method is that this space is part of the larger,

estimated one. If this holds, then the estimation of the Volterra model, by minimization

of (2.13), can prune non-relevant estimated space. (This pruning could be done, e.g.,

by setting appropriate coefficients to zero.) We must thus ensure that the true relevant

dimension is similar to its projection onto the estimated relevant space. The left column

of Fig. 2.3 shows the analytical relevant dimension of the simple-cell model. The right

column shows the projection of this dimension onto the estimated relevant space. Despite

the effects of noise, the projection of the true relevant dimension onto the estimated
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relevant space captures well the preferred orientation, spatial frequency, and phase of the

analytical one.

To measure the goodness of fit of the true relevant dimension and its projection

onto the estimated relevant space, we plot the coefficients of the true relevant dimension

against the coefficients of its projection. We then fit a linear model to this plot and use

the coefficient of determination (or r2 statistic) of the fitted linear model as the goodness-

of-fit measure. The r2 statistic is the ratio between the reduction in variance achieved

by the regression model (the total variance of the outputs minus the variance of the

residuals) and the total variance of the outputs. Without a relationship between the true

relevant dimension and its projection onto the estimated relevant space, the r2 statistic

would be zero. In contrast, if the true relevant dimension were identical to its projection,

then the r2 statistic would be 1. For the simple cell, the r2 statistic for the analytical

relevant dimension and its projection onto the estimated relevant space was 0.94.

Having estimated the relevant dimensions, we next estimated Volterra models of differ-

ent orders using the same set of 5,000 image/response pairs used to estimate the relevant

dimensions. We selected the order of the Volterra model as the least order maximizing the

average predictive power (Section 2.3.4.1). Fig. 2.4a shows the mean predictive power of

simple-cell Volterra models as a function of their order. Second- and third-order Volterra

models lead to large improvements in cross-correlation (Here, large is defined as the lack

of intersection between neighboring error bars – size two standard errors), illustrating the

relevance of nonlinear contributions to characterize the simple-cell data. Volterra models

of order higher than three do not lead to improvements in predictive power. Based on

these data, we selected a third-order Volterra model.

How important are high-order nonlinearities in the description of responses? To an-

swer this question we defined a simple measure of the relative importance of each Volterra

term to the overall response (Section 2.3.9). We expected that the relative contribution

to the response of different Volterra terms should be dependent on the response range.

Higher responses might be more nonlinear and thus, would require higher-order Volterra
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Figure 2.3: Simulated simple cell: relevant dimensions. (a), (c): analytical relevant
dimension. (b), (d): projection of the analytical relevant dimension onto the estimated
relevant space. (a), (b): perspective plot. (c), (d): contour plot. The analytical relevant
dimension is accurately approximated by its projection onto the relevant space, r2 = 0.94.
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Figure 2.4: Correlation coefficients between cell responses and the Volterra-model pre-
dictions versus the order of the Volterra model. (a) Simulated simple cell. (b) Simulated
complex cell. (c) Cortical complex cell. The size of error bars is two standard errors.
The order of the Volterra model was selected as the least order maximizing the average
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Figure 2.5: Simulated simple cell: mean relative contributions of Volterra terms to the
response. Contributions have been averaged over different response ranges: (a) small
responses (first quartile), (b) medium responses (second and third quartiles), and (c)
large responses (fourth quartile). As the responses increase, high-order Volterra terms
become more important.

terms. Fig. 2.5 shows the mean relative contributions of different Volterra terms to the

response of the simple cell. We show the mean contributions for groups of small (first

quartile), middle (second and third quartiles), and large (fourth quartile) responses. For

small responses (Fig. 2.5a), the most important terms are the low-order ones. In con-

trast, for medium (Fig. 2.5b) and large (Fig. 2.5c) responses, the situation reverses and

high-order terms become dominant. Therefore, even for a cell often considered linear as

the simple cell, high-order nonlinearities may matter, specially when describing responses

to stimuli causing large responses. In the natural world, most responses may be small,

as contrasts tend to be low (Balboa & Grzywacz, 2000; Tadmor & Tolhurst, 2000; Rud-

erman & Bialek, 1994; Zhu & Mumford, 1997), but some responses will be high, as the

distribution of natural intensities is kurtotic (Field, 1987).

To assess the quality of the estimated kernels, we compared them with the true kernels

derived from the analytical expression of the simple-cell model (Appendix 2.6.2). The
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left-column in Fig. 2.6 shows the first-order true kernel, whereas its estimation appears

in the right-column. Similarly, Fig. 2.7 shows the second-order kernel slice with respect

to Position (6, 6), this was the slice with largest error. The kernels have been scaled to

reflect their mean contribution to the cell response (Section 2.3.7).

To measure the goodness of fit of estimated to true kernels we scaled them, in propor-

tion to their mean contribution to the response, and computed their MSE (Section 2.3.8).

For the simple cell, the MSE between scaled true and estimated kernels was 2.42E-03 for

the first-order kernel (Fig. 2.6) and 1.83E-03 for the second-order kernel slice with respect

to Position (6, 6) (Fig. 2.7). This slice had the largest MSE among all second order kernels

slices (the MSE averaged across all second-order kernel slices was 1.74E-04). Therefore,

despite the noise, the estimated kernels accurately approximate their true values.

Although for the simple cell the first-order kernel is similar to the second-order kernel

slice with respect to Position(6, 6), their interpretation is different. The first-order kernel

indicates that the natural image would elicit response if it were bright in the yellow

region and dark in the red region. In turn, the second-order kernel slice indicates that

simultaneous bright stimuli anywhere in the yellow region and at Position (6, 6) would

facilitate the response. However, having bright stimuli in the red regions and at Position

(6, 6) at the same time would inhibit the response. In other words, first-order kernels

describe how much a stimulus at a given position linearly contributes to the response.

Second-order kernels describe nonlinear modulations of responses, through interactions

between stimulus pairs at given positions.

2.4.1.2 PPR versus STA

So far, we showed that PPR is a good technique to estimate relevant dimensions to use

in the construction of Volterra models of simulated simple cells. Here, we compare PPR

with STA, a technique often used to estimate the relevant dimension of simple cells.

In particular, we compared the convergence properties of both algorithms parametric on

number of inputs and signal-to-noise ratio. Fig. 2.8a plots the r2 statistic for the regression
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Figure 2.6: Simulated simple cell: first-order kernels. (a), (c): true. (b), (d) estimated.
(a), (b): perspective plot. (c), (d): contour plot. Despite the noise, the estimated kernel
accurately approximates its true value, MSE=2.42E-03.
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Figure 2.7: Simulated simple cell: second-order kernel slices with respect to Position (6,
6). (a), (c): true. (b), (d) estimated. (a), (b): perspective plot. (c), (d): contour plot.
Blue arrows in the contour plots indicate the reference position. Despite the noise, the
estimated kernel accurately approximates its true value, MSE=1.83E-03.
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between the coefficients of the true and estimated relevant dimensions as a function of

the number of inputs used in the estimation. For this plot, the average response of

the simulated simple cell was 5 spikes/image. Fig. 2.8b plots the same r2 statistic as

a function of the number of spikes per image in the simulated responses, when using

5,000 inputs in the estimation. These figures show that the two PPR relevant dimensions

better approximate the true relevant dimension of the simple-cell model than the relevant

dimension estimated by STA (black versus green curve). The superiority of PPR over

STA is not due to the fact that PPR is using two relevant dimensions to approximate the

true relevant dimension, while STA is using only one. PPR also outperforms STA when

using one relevant dimension (red versus green curves).

2.4.1.3 Volterra model versus histogram-based model

Section 2.4.1.1 showed that Volterra models can represent the nonlinearities of simple cells

well, starting from its estimated relevant dimension. We now compare the Volterra model

with another popular technique to represent nonlinearities, namely, a histogram-based

model (Section 2.3.4.3). To make our comparison independent from the method used to

estimate the relevant space, we compare the predictive power of the Volterra model using

the two PPR relevant dimensions, the Volterra model using the STA relevant dimension,

the nonlinearity estimated from histograms using the first PPR relevant dimension, and

the nonlinearity estimated from histograms using the STA relevant dimension. (We use

only the first PPR relevant dimension with the histogram-based model, since it is one-

dimensional. In other words, this model accepts only one relevant dimension as input.)

The predictive power of these models as a function of the number of inputs (using a mean

response of 5 spikes/image) is plotted in Fig. 2.9a. A plot as a function of the number

of spikes/image (using 5,000 images) appears in Fig. 2.9b. Note that, as discussed in

Sec. 2.3.3, the data used to evaluate the different models was different from that used

to estimate their parameters. Thus, the predictive power measures are not inflated by

over-fitting effects.
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Figure 2.8: Simulated simple cell: comparison between PPR and STA. The figures show
the r2 statistic for the regression of the coefficients of the true and estimated relevant
dimensions. This statistic appears as a function of (a) the number of inputs, when the
mean response of the simulated cell is 5 spikes/image, and (b) the mean number of spikes
in the responses, when using 5,000 image/response pairs. Black curve: r2 statistic between
the true relevant dimension and its projection onto a space spanned by two PPR relevant
dimensions. Red curve: r2 statistic between the true and one PPR relevant dimensions.
Green curve: r2 statistic between the true and STA relevant dimensions. The size of the
error bars is two standard errors. PPR performs better than STA either when using one
(red versus green curve) or two (black versus green) relevant dimensions to approximate
the true relevant dimension.
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Figure 2.9: Simulated simple cell: predictions of the Volterra model and the nonlinearity
estimated from histograms. This figure shows average correlation coefficients between
simulated cell responses and model predictions. These coefficients appear as functions
of (a) the number of inputs (using a mean response of 5 spikes/image) and (b) the
number of spikes per image (using 5,000 image/response pairs). Black curve: Volterra
model using the two PPR relevant dimensions. Red curve: Volterra model using the
STA relevant dimension. Green curve: Nonlinearity estimated from histograms using
the STA relevant dimension. Blue curve: Nonlinearity estimated from histograms using
the first PPR relevant dimension. The size of error bars is two standard errors. For
sufficiently high number of inputs and signal-to-noise ratio, the Volterra model using the
relevant dimensions estimated by PPR performs better than the nonlinearity estimated
from histograms. When using the STA relevant dimension, both models perform equally.
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The figures show that, when using the relevant dimensions estimated by PPR, the

Volterra model predicts better than the nonlinearity estimated from histograms. This

superiority holds for moderate to high number of inputs, i.e., more than 1,000 im-

age/response pairs, and for moderate to high signal-to-noise ratios, i.e., more than 1

spike per image. When using the STA relevant dimension, the Volterra model performs

at the same level as the nonlinear function estimated from histograms. This is significant,

because the simulated data accurately matches the assumptions of the STA-histogram

model. Moreover, the parametric nonlinear function fitted to the histogram in the re-

construction of the nonlinear function (Section 2.3.4.3) was the same sigmoidal function

used to generate the simulated responses (Section 2.3.1.1). Therefore, that the Volterra

model is at least as good, making no assumptions on the response-generation mechanism

is important.

2.4.2 Simulated Complex Cell

2.4.2.1 True Parameters

As for simple cells, we also used PPR to estimate the relevant space of the simulated

complex cell from 5,000 stimulus/response pairs. Figure 2.2b shows the mean error as a

function of the estimated number of relevant dimensions. Two is the largest number of

estimated relevant dimensions for which models predict significantly better than models

using fewer dimensions. Consequently, we computed the relevant dimensions for the

Volterra model from a two-term PPR model.

The left columns of Fig. 2.10 and Fig. 2.11 show the first and second analytical relevant

dimensions of the complex-cell model. In turn, the right columns show their projection

onto the space spanned by the two estimated relevant dimensions. The analytical relevant

dimensions are accurately approximated by their projection onto the estimated relevant

space (first relevant dimension r2 = 0.96, second relevant dimension r2 = 0.95).

With these relevant dimensions we estimated Volterra models of different orders, us-

ing the same set of 5,000 stimulus/response pairs as for the estimation of the relevant
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Figure 2.10: Simulated complex cell: first relevant dimension. (a), (c): first analytical
relevant dimension. (b), (d): projection of first analytical relevant dimension onto the
estimated relevant space. (a), (b): perspective plot. (c), (d): contour plot. The analytical
relevant dimension is well approximated by its projection onto the estimated relevant
space, r2 = 0.96.
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Figure 2.11: Simulated complex cell: second relevant dimension. (a), (c): second ana-
lytical relevant dimension. (b), (d): projection of second analytical relevant dimension
onto the estimated relevant space. (a), (b): perspective plot. (c), (d): contour plot. The
analytical relevant dimension is well approximated by its projection onto the estimated
relevant space, r2 = 0.95.

53



dimensions. We selected the order of the Volterra model as the least order maximizing

the average predictive power (Section 2.3.4.1). Fig. 2.4b shows the mean predictive power

of complex-cell Volterra models as a function of their order. Linear models predict the

responses poorly due to a model mismatch. A linear model cannot accurately predict a

quadratic response. Second- and higher-order Volterra models perform equally well. So,

we used a second-order Volterra model to characterize the complex-cell data.

As for the simulated simple cell, we looked at the contributions of the various Volterra

terms to the response. We again averaged the contributions across small (first quartile),

medium (second and third quartiles), and large (fourth quartile) responses. These con-

tributions are shown in Fig. 2.12. The simulated complex cell is purely second order,

so the second-order Volterra term should be the only one that contributes to the re-

sponse. Accordingly, medium and large responses are dominated by the second-order

term. However, the spontaneous, zeroth-order, Volterra term has been spuriously fitted

to a non-zero value. Its contribution is largest for small responses. Such spurious fits may

occur because, at small responses, the Poisson distribution is highly kurtotic, admitting

values that would be outliers in Gaussian distributions. Consequently, our least-square

fit, that is sensitive to outliers, might not be sufficiently robust at small responses. Never-

theless, these plots indicate that one should focus on the second-order kernel to interpret

the responses of the simulated complex cell.

To assess the quality of the estimated kernels for the complex cell, we compared

them with their true values. The left column in Fig. 2.13 shows the first-order true

kernel, whereas its estimation appears in the right column. Similarly, Fig. 2.14 shows the

second-order Volterra kernel slice with respect to Positions (6, 6). The kernels have been

rescaled to reflect their mean contributions to the cell response (Section 2.3.7).

To measure the goodness of fit of estimated to true kernels we scaled them, in propor-

tion to their mean contribution to the response, and computed the MSE between them

(Section 2.3.8). The MSE between scaled true and estimated kernels was 5.6E-04 for the

first-order kernel (Fig. 2.13), and 1.42E-03 for the second-order kernel slice with respect
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Figure 2.12: Simulated complex cell: mean relative contributions of Volterra terms to
the response. Contributions have been averaged over different response ranges: (a) small
responses (first quartile), (b) medium responses (second and third quartiles), and (c)
large responses (fourth quartile). Medium and large responses of the purely-quadratic
complex cell model are dominated by the second order Volterra term. The contributions
of the zeroth-order term reflect a spurious fit (see text).
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to Position (6, 6) (Fig. 2.14). This slice was the one with maximum MSE among all slices

(the mean MSE across all slices was 3.06E-04). Thus, despite the noise, the estimated

kernels accurately approximate their true values.

Note that for the complex cell, the first-order kernel should be zero. The estimated

kernel is not zero and has structure. This is because in the linear Volterra equation,

(2.10), small first-order coefficients, corresponding to a first-order Volterra term with

small contribution (Fig. 2.12), will be dominated by large coefficients, corresponding to

spontaneous and second-order Volterra terms with large contributions. Then, in the

regression procedure, the small first-order coefficients will tend to fit noise. Subsequently,

in the reconstruction of the estimated first-order kernel, (2.15), these noisy first-order

coefficients will multiply relevant dimensions with clear structure, generating first-order

kernels with spurious structure. Consequently, we should not try to interpret kernels

corresponding to terms whose contributions to the response is very small.

2.4.2.2 PPR versus STC

The last section showed that PPR is a good technique to estimate relevant dimensions to

use in the construction of Volterra models of simulated complex cells. Here, we compare

PPR with the modification of STC for natural images proposed by Touryan et al. (2005),

henceforth referred as STC for natural images. These authors mentioned that natural

images are highly variable in their global contrast, i.e., variance. To avoid possible con-

trast adaptation of the cells, they normalized the natural images to have equal variance.

Our simulated complex cell did not include adaptation mechanisms, so we did not need to

normalize the images to have equal variance. When we used STC for natural images with

simulated responses to non-equal-variance images, we obtained poor results. But when

we used responses to equal-variance images we obtained satisfactory results. To alleviate

this problem, we equalized the variance of the natural images as a pre-processing step

before computing STC. However, in these situations, we did not modify the simulated

responses. The variance-equalization step was only necessary for the estimation of STC
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Figure 2.13: Simulated complex cell: first-order kernels. (a), (c): true. (b), (d): esti-
mated. (a), (b): perspective plot. (c), (d): contour plot. The kernels have been scaled to
reflect their mean contribution to the cell response. Although the estimated but not the
true kernel has some structure, the amplitude is low, making the estimation not much
different from zero, MSE=5.6E-04.
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Figure 2.14: Simulated complex cell: second-order kernel slices with respect to Position
(6, 6). (a), (c): true. (b), (d): estimated. (a), (b): perspective plot. (c), (d): contour
plot. Blue arrows in the contour plots indicate the reference position. Despite the noise,
the estimated kernel accurately approximates its true values, MSE=1.42E-03.
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for natural images. Having estimated the relevant dimensions, the original, non-equal

variance natural images were used to recover the nonlinearity using histograms.

Fig. 2.15a shows the average r2 statistic as a function of the number of images for

several conditions involving PPR and STC. Fig. 2.15b plots the average r2 statistic as a

function of the average number of spikes in the responses. STC achieves its best perfor-

mance with responses to natural images with equal variance (red curve), as in Touryan et

al. (2005). When the responses correspond to non-equal-variance images, STC for natu-

ral images performs poorly (blue curve) and the variance-equalization pre-processing step

significantly improves its performance (green curve). With non-equal-variance data, PPR

outperforms STC for natural images for any number of inputs or signal-to-noise ratios

(black versus green and blue curves). However, STC has an advantage in running time

over PPR. The latter is a time consuming iterative algorithm, requiring several estima-

tions of smooth functions and least-squares minimizations. STC is a fast algorithm that

only requires the computation of covariance matrices and their spectral decomposition.

A fast algorithm was essential for the online estimation of the relevant dimensions of a

cell, an impressive task performed by Touryan et al. (2005).

2.4.2.3 Volterra model versus histogram-based model

Section 2.4.2.1 showed that Volterra models can represent the nonlinearities of com-

plex cells well, starting from its estimated relevant dimensions. Here, we compared the

performance of the Volterra model with that of a complex-cell histogram-based model

(Section 2.3.4.5). To make the results independent from the method used to estimate

the relevant dimensions, we compare the Volterra model using the relevant dimensions

estimated by PPR, the Volterra model using the STC relevant dimensions, the histogram-

based model using the PPR relevant dimensions, and the histogram-based model using

the STC relevant dimensions. Fig. 2.16a and Fig. 2.16b plot the correlation coefficient be-

tween the simulated cell responses and the models predictions as a function of the number

of inputs and the number of spikes in the simulated responses, respectively. The relevant
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Figure 2.15: Simulated complex cell: comparison between PPR and STC for natural im-
ages at various conditions. These conditions were the following: Red curve: STC1, equal-
variance responses; Green curve: STC2, non-equal-variance responses with variance-
equalization pre processing; Blue curve: STC3, non-equal-variance responses without
variance-equalization pre processing. The black curve is for PPR with non-equal-variance
responses. The figure shows average r2 statistic for the two relevant dimensions of the
simulated complex cell. This statistic appears as a function of (a) the number of inputs,
when the mean response is 5 spikes/image, and (b) the number of spikes per image,
when using 5,000 image-response pairs. The size of the error bars is two standard errors.
STC achieves its best performance for responses to equal-variance images. Variance-
equalization pre processing improves the performance of STC when using responses to
non-equal-variance images. For responses to non-equal variance images, PPR outperforms
STC for any number of inputs and signal-to-noise ratios.
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dimensions estimated by PPR yield better predictions than those estimated by STC, for

both the Volterra (black versus red curves) and the histogram-based models (blue versus

green curves). When using the PPR relevant dimensions, the Volterra model predicts re-

sponses slightly better than the histogram based model (black versus blue curves). With

the STC relevant dimensions, both models perform similarly (red versus green curves).

2.4.3 Cortical Complex Cell

Our results with simulated data from a cortical complex cell have shown that PPR can

effectively estimate the cell’s true relevant dimensions. Moreover, these results showed

that the Volterra relevant-space technique can accurately estimate the cell’s true Volterra

kernels. Finally, the results indicated that a Volterra model accurately predicts the

simulated cell’s responses. However, these results cannot tell whether our method is

practical for real cells. Here, we test PPR, STC, the Volterra model, and the histogram-

based model with physiological data from a cortical complex cell obtained by Touryan et

al. (2005).

As for the simulated data, we began by estimating the mean predictive error of PPR

models as a function of the number of estimated relevant dimensions as shown in Fig. 2.2c.

Based on this figure, we used three relevant dimensions for the Volterra model. The

relevant dimensions estimated by PPR were noisy. To smooth them, we applied a low

pass filter. We then orthonormalized them. The resulting relevant dimensions used to

estimate the Volterra model are shown in Fig. 2.17. They have clear structure, showing

a 45◦ orientation preference. These relevant dimensions yielded better predictive values

than the original noisy relevant dimensions.

As before, we selected the order of the Volterra model as the least order maximizing the

average predictive power. Fig. 2.4c shows the mean predictive power of Volterra models

as a function of their order. Based on this data, we selected a second-order Volterra model

for the cortical complex cell. As for the simulated complex cell, we determined the relative

contributions of the various Volterra terms to the response of the cortical complex cell.

61



0 5000 15000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Inputs

C
or

re
la

tio
n 

co
ef

fic
ie

nt

PPR−Volterra
STC−Volterra
STC−Histogram
PPR−Histogram

5 spikes/image
(a)

0 1 2 3 4 5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Spikes/images

PPR−Volterra
STC−Volterra
STC−Histogram
PPR−Histogram

5000 inputs
(b)

Figure 2.16: Simulated complex cell: predictions of the Volterra model and the non-
linearity estimated from histograms. This figure shows average correlation coefficients
between simulated cell responses and model predictions. These coefficients appear as
functions of (a) the number of inputs when the mean responses was 5 spikes/image, and
(b) the number of spikes per image, when using 5,000 image/response pairs. Black curve:
Volterra model using the PPR relevant dimensions. Red curve: Volterra model using the
STC relevant dimensions. Green curve: nonlinearity estimated from histograms using
the STC relevant dimensions. Blue curve: Nonlinearity estimated from histograms using
the PPR relevant dimensions. The size of the error bars is two standard errors. The
relevant dimensions estimated by PPR yield better predictions than those estimated by
STC. When using the PPR relevant dimensions, the Volterra model predicts responses
slightly better than the histogram-based model.
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Figure 2.17: Cortical complex cell: PPR relevant dimensions. (a), (d): first relevant
dimension. (b), (e): second relevant dimension. (c), (f): third relevant dimension. (a),
(b), (c): perspective plot. (d), (e), (f): contour plot. The relevant dimensions have clear
structure, showing a 45◦ orientation preference.
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Figure 2.18: Cortical complex cell: mean relative contributions of Volterra terms to the
response. Contributions have been averaged over different response ranges: (a) small
responses (first quartile), (b) medium responses (second and third quartiles), and (c)
large responses (fourth quartile). This complex cell has a large spontaneous activity.
Relative contributions from the first-order term are negligible. As the response level
increases relative contributions from the spontaneous term become smaller, while relative
contributions from the second-order term become larger.

We averaged the contributions across small responses (first quartile), medium responses

(second and third quartiles), and large responses (fourth quartile). These contributions

are shown in Fig. 2.18. At all response levels, the term with most relative contribution was

the spontaneous one, indicating that the complex cell had a strong background activity.

Also, relative contributions from the first-order term are negligible, as for the simulated

complex cell (Figure 2.12). As the response level increased, relative contributions from

the spontaneous term became smaller, while contributions from the second-order term

increased.

The left column of Fig. 2.19 shows the estimated first-order kernel and the right

column the estimated second-order kernel slice with respect Position (5, 9). This was the

second order kernel slice with largest value. Both kernels have been scaled to reflect their

mean contribution to the cell response. Because contributions from the first order Volterra
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term are negligible (Fig. 2.18), as in the case of the simulated complex cell, the first order

kernel is probably spurious (see discussion at the end of Section 2.4.2.1). Thus, we refrain

from interpreting this kernel. The second-order kernel slice with respect to Position (5, 9)

is positive everywhere, being larger in the vicinity of the reference position (blue arrow)

and smaller at positions along the central diagonal. Thus, positive correlations between

a point of light at the reference position and a point of light in its close surrounding will

induce the strongest pairwise response facilitation. In turn, positive correlations between

a point of light at the reference position and a point of light in the central diagonal (along

the anti-preferred orientation) will induce weaker facilitation.

Points outside and near the boundary of the receptive field should not modulate the

response in any sense, either linearly or nonlinearly. For the linear kernel, we observe that

points near the boundary of the receptive field are close to zero. This is what we would

expect from a well estimated linear kernel. However, the second-order kernel slice is posi-

tive everywhere. This illustrates a problem, because it shows that points on the boundary

of the receptive field nonlinearly modulate the cell response. This problem could be an

artifact of over smoothing the PPR relevant dimensions. However, these possibly over-

smoothed relevant dimensions lead to better predictions than relevant dimensions with

less smoothing (including non-smoothed relevant dimensions). An alternative explana-

tion is that the nonlinear component of the receptive field could be larger than its linear

component. The size of the images used in the physiological experiments could have been

adequate to characterize the linear component of the receptive field, as illustrated in

Figures 2.19a and 2.19c, but not large enough to characterize the nonlinear component,

Figures 2.19b and 2.19d.

Because the cortical complex cell’s responses are dominated by the second-order ker-

nel, it is now presented in greater detail. Fig. 2.20 shows estimated second-order kernel

slices with respect to Positions (7, 7) and (9, 5). The former slice (Fig. 2.20, left col-

umn) is nearly flat and contains the smallest pairwise facilitation among all second-order
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Figure 2.19: Cortical complex cell: first and second-order kernels. (a), (c): first order. (b),
(d): second-order kernel slice with respect to Position (5, 9). (a), (b): perspective plot.
(c), (d): contour plot. The blue arrow in (d) points to the reference position of the second-
order kernel slice. Because contributions from the first order Volterra term are negligible
(Fig. 2.18), as in the case of the simulated complex cell, the first order kernel is probably
spurious. The second-order kernels slice indicates that positive correlations between a
point of light at the reference position and a point of light in its close surrounding will
induce the strongest pairwise response facilitation. In turn, positive correlations between
a point of light at the reference position and a point of light in the central diagonal (along
the anti-preferred orientation) will induce weaker facilitation.
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slices. For the latter slice (Fig. 2.20, right column) facilitation is strongest for inter-

actions between the reference position and points in its close vicinity, or points in the

brightest region on the top-left quadrant. Facilitation is weaker for interactions between

the reference position and points along the central red band.

We next performed an STC analysis on the responses of the cortical complex cell and

selected its first two relevant dimensions to describe the relevant space. As described

in Section 2.3.4.4, we regularized the STC relevant dimensions by only normalizing the

eigenvectors corresponding to the 35% largest eigenvalues. These relevant dimensions

are shown in Fig. 2.21. Thy show a cleaner structure than that of the PPR relevant

dimensions in Fig. 2.17. However, best relevant dimensions are those that lead to better

predictions, which we discuss next.

To compare the performance of the Volterra model with that of the complex-cell

histogram model, and to make the results independent of the algorithm used to estimate

the relevant dimensions, we evaluated the predictive power of both models with PPR and

STC relevant dimensions. Fig. 2.22 shows average cross-correlation coefficients between

the predictions of the models and the complex-cell responses as a function of the number

of inputs. Note that, as discussed in Sec. 2.3.3, the data used to evaluate the different

models was different from that used to estimate their parameters. Thus, the predictive

power measures are not inflated by over-fitting effects.

For any number of inputs, the Volterra models yields better predictions than the his-

togram based model with both the PPR relevant dimensions (black versus blue curves)

and the STC relevant dimensions (red versus green curves). For more than 1,000 in-

puts, the PPR relevant dimensions produced equal or better predictions than the rel-

evant dimensions estimated by STC, for both the Volterra (black versus red curve) or

histogram-based (blue versus green curve) models. These results are not due to a faulty

implementation of the STC algorithm or histogram based models. The correlation coeffi-

cient of the histogram-based model estimated from 20,000 images using the STC relevant

dimensions lies in the upper range of those reported in Figure 6 of Touryan et al. (2005).
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Figure 2.20: Cortical complex cell: second-order kernel slices estimated from PPR rel-
evant dimensions. Slices correspond to different reference positions. (a), (c): Position
(7, 7); (b), (d): Position (9, 5). Blue arrows in the contour plots indicate the reference
positions. The slice with respect to Position (7, 7), left column, is nearly flat and contains
the smallest pairwise facilitation among all second-order slices. For the slice with respect
to Position (9, 5), right column, facilitation is strongest for interactions between the ref-
erence position and points in its close vicinity, or points in the brightest region on the
top-left quadrant. Facilitation is weaker for interactions between the reference position
and points along the central red band.
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Figure 2.21: Cortical complex cell: STC relevant dimensions. (a), (c): first relevant
dimension. (b), (d): second relevant dimension. (a), (b): perspective plots. (c), (d):
contour plots. These relevant dimensions show a cleaner structure than that of the PPR
relevant dimensions in Fig. 2.17. However, best relevant dimensions are those that lead
to better predictions (see text).
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Hence, of the models tested, we found that the best combination is to use Volterra models

with PPR relevant dimensions.
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Figure 2.22: Cortical complex cell: predictions with two classes of models and two classes
of estimated relevant dimensions. This figure shows average correlation coefficients be-
tween cell responses and model predictions. These coefficients appear as functions of the
number of inputs. Black curve: Volterra model using the PPR relevant dimensions. Red
curve: Volterra model using the STC relevant dimensions. Green curve: Nonlinearity
estimated from histograms using the STC relevant dimensions. Blue curve: Nonlinearity
estimated from histograms using the PPR relevant dimension. The size of the error bars
is two standard errors. For any number of inputs, the Volterra models yields better pre-
dictions than the histogram based model with both the PPR relevant dimensions (black
versus blue curves) and the STC relevant dimensions (red versus green curves). For more
than 1,000 inputs, the PPR relevant dimensions produced equal or better predictions
than the relevant dimensions estimated by STC, for both the Volterra (black versus red
curve) or histogram-based (blue versus green curve) models.
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2.5 Discussion

Receptive fields are the main theoretical framework to represent functional properties of

visual cells. In the most standard form, receptive fields tell how a cell responds when

a point of light falls in a position of space (or time). Therefore, traditionally, one can

think of receptive fields as spatial (or temporal) impulse responses, i.e., we tend to think

of receptive fields as linear filters. In addition, the majority of stimuli used to obtain

receptive fields are artificial, e.g., dots of light, oriented bars, or sinusoidal gratings.

Receptive fields obtained with such stimuli have been useful. However visual cells are

often nonlinear and their functional properties may depend on the stimulus used to map

them. In that case, we would like to map nonlinear receptive fields with natural images.

How could receptive-field properties depend on the stimulus used to map them? One

reason is that sensory systems adapt to the environment, changing their own functional

properties (see Grzywacz & Balboa, 2002, and references therein). Another reason is that,

as demonstrated by Proposition 2, by using a given stimuli set to characterize a cell, we

can only observe the projection of the cell kernels onto the relevant space defined by the

statistics of the stimulus set. In other words, the stimuli used to probe a cell constrains

the functional properties that can be observed from its responses. We thus searched for

a model that would allow us to map nonlinear receptive fields with natural stimuli. We

explored the Volterra model, as it encompasses the receptive field as the first-order kernel

and generalizes receptive fields to the nonlinear domain.

The large number of parameters in spatial Volterra models has hindered their appli-

cation in the field of visual Neuroscience. Fortunately, responses of visual cells appear

to depend on a very low-dimensional subspace of the image space (Section 2.2.2). Con-

sequently, we could introduce the Volterra relevant-space technique for Volterra models.

This representation allows us the estimation of Volterra models from natural images.

To test the Volterra relevant-space technique, we used data from simulated cortical

simple and complex-cell models, for which we could analytically derive the true Volterra
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kernels. The complex cell model, by being purely quadratic, can be exactly represented

by a finite-order Volterra model. This is not the case for the simple-cell model, for which

Volterra kernels of any order are non-zero. (However, when the projections of the input

images onto the relevant dimensions are not too large, the Volterra model can be a good

approximation for the simple-cell model. This would be true for natural images, which

tend to have low contrasts – (Balboa & Grzywacz, 2000; Tadmor & Tolhurst, 2000;

Ruderman & Bialek, 1994; Zhu & Mumford, 1997)) Thus, the simple-cell model is a

challenging test for the Volterra relevant-space technique. For both models, we showed

that estimated kernels accurately approximate their true counterparts (Figs. 2.6, 2.7, 2.13,

and 2.14), illustrating that the Volterra relevant-space technique can accurately estimate

Volterra models.

We also applied the Volterra relevant-space technique to physiological data from cor-

tical complex cells. The estimated Volterra models yielded predictions of responses that

were superior to those of a histogram-based model (Figure 2.22). This establishes this

technique as a viable alternative for the estimation of nonlinear receptive fields with

natural images.

An important step in the Volterra relevant-space technique is the estimation of rele-

vant dimensions. We explored here three methods for this determination, namely, PPR,

STA, and STC. For simulated data from cortical simple- (Fig. 2.8) and complex-cells

(Fig. 2.15) we found that the relevant dimensions estimated by PPR better approximated

the true relevant dimensions of the cell models. For physiological data from cortical com-

plex cells, the relevant dimensions estimated by PPR yielded equal or better predictions

than those estimated by STC (Fig. 2.22). Furthermore, based on the simulated complex-

cell data, PPR will probably succeed in estimating relevant dimensions for non-equal

variance responses, while STC will likely fail. In contrast, a disadvantage of PPR is its

running time. PPR is a time-consuming iterative algorithm, requiring several estimations

of smooth functions and least-squares minimizations. STA and STC are comparatively

fast algorithms that only require matrix operations.
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We also showed that the Volterra model has advantages over histogram-based Models

for representing nonlinearities. For simulated data from simple and complex cells, we

observed that, when using PPR relevant dimensions, the Volterra model could predict

responses significantly better than the histogram-based models. When using the STA

or STC relevant dimensions the Volterra model performs equally as the histogram based

models (Fig. 2.9, Fig. 2.16). For physiological data from cortical complex cells, the

Volterra model predicted responses better than a histogram-based model when using

either PPR or STC relevant dimensions (Fig. 2.22). In summary, the Volterra model

predicts responses equally or better than histogram-based models. A further advantage

is that after the relevant dimensions have been estimated, the Volterra relevant-space

technique uses only linear operations. Thus, it is fast and easy to implement. In contrast,

most implementations of histogram-based techniques require nonlinear optimizations that

are slower and more subtle to implement.

From a prediction point of view, Volterra models are very accurate. However, a

note of caution is pertinent regarding the interpretation of estimated Volterra kernels.

Because Volterra models have a large number of parameters, physiological data is limited

in size, and neurons are noisy, least-squares fits to Volterra models can achieve similar

predictive values with qualitatively different parameters. This could happen even after

using different data sets to estimate a model and evaluate its predictive power. To

minimize the effect of this problem, we have adopted several caution measures. First,

we always use separate evaluation and test data sets (Section 2.3.3). Second, we divide

our evaluation data set into jackknifed data sets (Efron & Tibshirani, 1993), estimate

separate parameters (relevant dimensions and Volterra coefficients) for each jackknifed

data set, and average our estimates. Third, we evaluate the relative contributions of

Volterra terms (Figures 2.5, 2.12, 2.18), and we do not try to interpret kernels of terms

with low relative contributions (see justification in last paragraph of Section 2.4.2.1).

Fourth, whenever possible, we compare Volterra kernels estimated from different sets of

relevant dimensions.
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In this paper, we have contrasted Volterra and histogram-based models. However,

these two types of models are complementary, each describing the nonlinearity in a dif-

ferent way. For one- or two-dimensional relevant spaces, histogram-based models provide

a succinct way of visualizing the nonlinearity. The nonlinearity would depend on the

projection of the input images on one or two relevant dimensions. On the other hand,

Volterra models can be estimated from many more than two dimensions and show more

explicitly how individual pixels in the image contribute, linearly and nonlinearly, to gen-

erate responses. This is more in line with conventional models of receptive fields and

thus, may facilitate mechanistic interpretations for the cells. This mechanistic view of

the nonlinearity could be of interest to many physiologists. For example, in the retina,

starburst amacrine cells may produce a lateral nonlinear facilitation of the responses of

certain ganglion cells. This facilitation would be mediated by acetycholine (ACh) (Tauchi

& Masland, 1984; Amthor, Grzywacz, & Merwine, 1996). To validate this hypothesis,

one could estimate Volterra models of the appropriate ganglion cells, while blocking ACh

and in control condition. The prediction would be that a nonlinear Volterra kernel would

lose a central facilitatory zone while blocking ACh.

2.5.1 Relation to Previous Research

Wiener series predated Volterra models for the characterization of nonlinear physiological

systems. Wiener developed this series as an orthogonal representation of Volterra series

for white noise inputs (Wiener, 1958). Later Lee and Schetzen (1965) introduced an effi-

cient method to estimate Wiener series, the cross-correlation technique. This technique

allowed many investigators to use Wiener series to study visual neurons (P. Marmarelis

& Naka, 1972; Victor & Shapley, 1980; Emerson, Citron, Vaughn, & Klein, 1987; Living-

stone & Conway, 2003). Wiener series have several analytical and practical advantages

over Volterra series, and the cross-correlation technique greatly simplifies their estimation.

However, Wiener series have the following three major limitations for the characterization

of visual cells from natural images, namely: First the orthogonality properties of Wiener
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series and the cross-correlation technique apply only to Gaussian white noise inputs. Sec-

ond, Wiener kernels lack the relatively simple interpretations of Volterra kernels. Third,

the kernels estimated by cross-correlation have large estimation variance (V. Z. Mar-

marelis, 2004).

These limitations motivated the development of other methods for the estimation of

Volterra models. Their main problem is the exuberance of parameters, so dimensionality-

reduction techniques are needed to make the estimation of Volterra models feasible. The

kernels-expansion technique, initially proposed by Wiener for the estimation of Wiener

kernels, has been the method of choice for the estimation of Volterra models (Bose, 1956;

Lee, 1964; Amorocho & Brandstetter, 1971; Watanabe & Stark, 1975; V. Marmarelis,

1993). It reduces the number of parameters by compacting the representation of kernels

and avoids the computation of cross-correlations, performing instead least-squares fitting

of the actual data to model parameters. The representation of Volterra kernels is com-

pacted by expressing them as linear combinations of a few basis functions. One then uses

the compact representation to build a low-dimensional Volterra model. Then, the kernels

of the original Volterra model are reconstructed from the estimated parameters of the

low-dimensional Volterra model.

The critical step in the dimensionality reduction of Volterra models for visual cells is

the selection of basis functions. This is critical, because they could bias the estimated

kernels. For example, first-order Volterra kernels can only be linear combinations of

the selected basis functions, as shown in (2.15). Therefore, an improper selection of

basis functions will impede a correct estimation of Volterra kernels. This error will be

independent of the amount and quality of data used in the estimation procedure.

Marmarelis used Laguerre basis functions to analyze systems excited by 1D, tempo-

rally modulated, inputs (V. Marmarelis, 1993). One rationale for selecting such basis

functions is that discrete Laguerre basis functions are complete and orthonormal. Fur-

thermore, they have an exponential time decay. Such decay approximates well the known
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linear kernels of many physiological systems with 1D, temporally modulated inputs. How-

ever, it is not clear whether higher-order Volterra kernels can be represented by similar

basis functions as those for first-order Volterra kernels. Another issue is that, for every

cell under study, the experimenter must select the number of Laguerre basis functions,

i.e., L in (2.15) and (2.16), to represent the kernels. The experimenter must also select

the parameter α of the Laguerre basis functions. Marmarelis (1993) recommended a judi-

cious selection of L and α based on trial and error. Later, Mistis and Marmarelis (2002)

proposed a method to learn the parameter α from input/output data.

For systems excited by 2D inputs, e.g., visual cells, 1D Laguerre basis functions cannot

be used to represent their 2D kernels. No known set of orthonormal 2D basis functions

fulfills the role that Laguerre functions have for systems with 1D, temporally modulated,

inputs. Moreover, the number of parameters needed to characterize 2D basis functions is

larger than that required for 1D basis functions. Tuning these parameters thus becomes

an arduous process in the 2D case. For systems excited by inputs varying in time and

space, i.e., 3D inputs, this problem is aggravated even further.

These difficulties in the selection of basis functions motivated our search for an alter-

nate method to reduce the dimensionality of Volterra models. Instead of reducing the

dimensionality of the unknown kernels of the Volterra model, we thought that a better

approach might be to reduce the dimensionality of the input images. This latter reduction

leads to the Volterra relevant-space technique. The Volterra relevant-space technique has

the following three advantages with respect to the kernels-expansion technique:

1. The effectiveness of the low-dimensional representation of Volterra models depends

upon using a small set of basis functions. In the kernels-expansion technique, the

assumption for effectiveness is that the kernels of the Volterra model can be rep-

resented using a small set of basis functions. This assumption cannot be tested

experimentally a priori. In the Volterra relevant-space technique, the assumption

is that, for a given cell, the relevant-space is low-dimensional. As demonstrated in

77



previous studies (de Ruyter van Steveninck & Bialek, 1988; Sharpee et al., 2006;

Rust et al., 2005), this assumption has experimental support.

2. Optimization of (2.8) allows the Volterra relevant-space technique to estimate the

relevant dimensions from the data. Consequently, the Volterra relevant-space tech-

nique avoids the bias introduced in the estimates of kernels by an improper, ad hoc

selection of basis functions.

3. As described in Section 2.3.4.1, the solution of (2.8) is a well-studied problem in

different fields of science. We can then use the expertise from these field in the

estimation of Volterra models.

2.5.2 Limitations of Volterra Models

Although one can use Volterra models to study receptive fields, they have limitations in

their applicability. We list the following three:

1. Convergence of Volterra series requires certain smoothness conditions on the func-

tion being approximated (Palm & Poggio, 1977). This requirement is not severe,

since the firing rate of visual cells can be adequately approximated by smooth func-

tions.

2. The response could depend on very high-order Volterra terms. Consequently, even

using the Volterra relevant-space technique, we might not be able to estimate them

from a limited amount of physiological data. However, because many cells in the

early visual system have been adequately characterized with linear or quadratic

models, this scenario does not seem a strong limitation. Furthermore, studies of

statistics of natural images find that distributions of variables that modulate re-

sponses tend to have maxima at values that generate little response. For example,

the distribution of contrasts tends to be maximal at zero (Balboa & Grzywacz,

2000; Tadmor & Tolhurst, 2000; Ruderman & Bialek, 1994; Zhu & Mumford,
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1997). Therefore, responses to natural images may be low, generating relatively

little high-order nonlinearities.

3. A cell response may admit a Volterra representation, with all relevant terms of

moderate order, but it may not depend on a low-dimensional subspace of the im-

age space. In such a case, the Volterra relevant-space technique will not provide

substantial dimensionality reduction to allow the estimation of high-order Volterra

models. However, physiological experiments with some cells in the early visual sys-

tem come to our aid (de Ruyter van Steveninck & Bialek, 1988; Sharpee et al.,

2006; Rust et al., 2005), showing that the responses of these cells depend on such a

low-dimensional subspace.

2.5.3 Extension to the Temporal Domain

Although we focus this paper on spatial Volterra models, extending the Volterra relevant-

space technique to include time is theoretically not a limitation. We just need to add the

temporal dimension to the Volterra model (2.3), yielding

yQ,k(x) = k0(t) +

Nt
∑

t=1

Ns
∑

i,j=1

k1(i, j, t)x(i, j, t) + . . .+ (2.26)

+

Nt
∑

t1,...,tQ=1

Ns
∑

i1,j1,...,iQ,jQ=1

kQ(i1, j1, t1, . . . , iQ, jQ, tQ)x(i1, j1, t1) . . . x(iQ, jQ, tQ) + ε

The Volterra relevant-space technique can also be extended to include the temporal di-

mension. However, the estimation of relevant dimensions in spatio-temporal models be-

comes a higher-dimensional problem and consequently, a more difficult one.
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2.6 Appendices

2.6.1 Proofs

Proposition 1. Given yQ,k(x) : ℜ
N×N → ℜ, as in (2.3). If a vector space S, spanned

by a set of basis functions {b1, . . . ,bL : bl ∈ R
N×N}, fulfills (2.8), then (2.3) can be

expressed as (2.7), where q0, . . . , qQ are

q0 = k0 (2.27)

q1(l) =

N
∑

r,s=1

k1(r, s)bl(r, s) (2.28)

. . .

qQ(l1, . . . , lQ) =

N
∑

r1,s1,...,rQ,sQ=1

kQ(r1, s1, . . . , rQ, sQ)bl1(r1, s1) . . . blQ(rQ, sQ) (2.29)

Proof. From (2.3), (2.5), and (2.8), observe that

yQ,k(x) = yQ,k(

L
∑

l=1

αl(x)bl) = k0 +

N
∑

r,s=1

k1(r, s)

(

L
∑

l=1

αl(x)bl(r, s)

)

+ . . . (2.30)

+

N
∑

r1,s1,...,rQ,sQ=1

k2(r1, s1, . . . , rQ, sQ)





L
∑

l1,...,lQ=1

αl1(x)bl1(r1, s1) . . . αlQ(x)blQ(rQ, sQ)





+ ε

Switching the order of summations in (2.30), we see that

yQ,k(x) = k0 +

L
∑

l=1

(

N
∑

r,s=1

k1(r, s)bl(r, s)

)

αl(x) + . . . (2.31)

+

L
∑

l1,...,lQ=1





N
∑

r1,s1,...,rQ,sQ=1

kQ(r1, s1, . . . , rQ, sQ)bl1(r1, s1) . . . blQ(rQ, sQ)



αl1(x) . . . αlQ(x)

+ ε

Substituting (2.27)-(2.29) into (2.31), we obtain (2.7).

Proposition 2. Given yQ,k(x) : ℜN×N → ℜ, as in (2.3), assume that a vector space

S, spanned by a set of basis functions B = {b1, . . . ,bL : bl ∈ R
N×N}, satisfies (2.8).
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Consider the set projection coefficients of the kernels in the space S given in (2.27)-

(2.29), and the projected kernels in the space S, k̂i, obtained by using these projection

coefficients in (2.14)-(2.16), Then it is true that

yQ,k(x) = yQ,k̂(x) ∀x ∈ X, (2.32)

Proof. From (2.3),

yQ,k̂(x) = k̂0 (2.33)

+

N
∑

i,j=1

k̂1(i, j)x(i, j)

+ . . .

+

N
∑

i1,j1,...,iQ,jQ=1

k̂Q(i1, j1, . . . , iQ, jQ)x(i1, j1) . . . x(iQ, jQ) + ε

Substituting (2.14)-(2.16) into (2.33), we see that

yQ,k̂(x) = q0 (2.34)

+

N
∑

i,j=1

(

L
∑

l=1

q1(l)bl(i, j)

)

x(i, j) + . . .

+

N
∑

i1,j1,...,iQ,jQ=1





L
∑

l1,...,lQ=1

qQ(l1, . . . , lQ)bl1(i1, j1) . . . blQ(iQ, jQ)





x(i1, j1) . . . x(iQ, jQ) + ε

Substituting (2.27)-(2.29) into (2.34), we then find that

yQ,k̂(x) = k0 (2.35)

+

N
∑

i,j=1

[

L
∑

l=1

(

N
∑

r,s=1

k1(r, s)bl(r, s)

)

bl(i, j)

]

x(i, j) + . . .

+

N
∑

i1,j1,...,iQ,jQ=1





L
∑

l1,...,lQ=1





N
∑

r1,s1,...,rQ,sQ=1

kQ(r1, s1, . . . , rQ, sQ)bl1(r1, s1) . . . blQ(rQ, sQ)





bl1(i1, j1) . . . blQ(iQ, jQ)

]

x(i1, j1) . . . x(iQ, jQ) + ε
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Interchanging the order of summations, (2.35) can be expressed as

yQ,k̂(x) = k0 (2.36)

+

N
∑

r,s=1

k1(r, s)

[

L
∑

l=1

(

N
∑

i,j=1

bl(i, j)x(i, j)

)

bl(r.s)

]

+ . . .

+

N
∑

r1,s1,...,rQ,sQ=1

kQ(r1, s1, . . . , rQ, sQ)





L
∑

l1=1

(

N
∑

i1,j1=1

bl1(i1, j1)x(i1, j1)

)

bl1(r1, s1)



 . . .





L
∑

lQ=1





L
∑

iQ,jQ=1

blQ(iQ, jQ)x(iQ, jQ)



 blQ(rQ, sQ)





+ ε

Substituting (2.6) into (2.36), and using (2.5) and (2.8) we see that

yQ,k̂(x) = k0

+

N
∑

r,s=1

k1(r, s)

(

L
∑

l=1

αl(x)bl(r.s)

)

+ . . .

+

N
∑

r1,s1,...,rQ,sQ=1

kr(r1, s1, . . . , rQ, sQ)





L
∑

l1=1

αl1(x)bl1(r1, s1)



 . . .





L
∑

lQ=1

αlQ(x)blQ(rQ, sQ)



+ ε = yQ,k

(

L
∑

l=1

αl(x)bl(r.s)

)

= yQ,k(ΠS(x)) = yQ,k(x)
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2.6.2 True Volterra Kernels

To simplify notation, we use 1D vectors to represent input images, by concatenating the

rows of their 2D representation. Then, the Volterra representation of the response is

given by

yQ,k(x) = k0 +
N×N
∑

i=1

k1(i)x(i) + . . . (2.37)

+
N×N
∑

i1,...,iQ=1

k2(i1, . . . , iQ)x(i1) . . . x(iQ) + ε

If the function describing the response model, yQ,k(x), is analytic on an open set

|x| < R0 centered at zero with radius R0 then at each point x in that set, yQ,k(x) has

the Taylor-series representation (Brown & Churchill, 1996)

yQ,k(x) = yQ,k(0) +

N
∑

i=1

∂yQ,k(0)

∂xi
x(i) + . . . (2.38)

+
N
∑

i1,...,iQ=1

1

Q!

∂QyQ,k(0)

∂xi1 . . . ∂xiQ
x(i1) . . . x(iQ) + ε

By the uniqueness of Taylor series, comparing (2.37) and (2.38), we derive the true

Volterra kernels

k0 = yQ,k(0) (2.39)

k1(i) =
∂yQ,k(0)

∂xi

. . .

kQ(i1, . . . , iQ) =
1

Q!

∂QyQ,k(0)

∂xi1 . . . ∂xiQ
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The functions describing the simple- and complex-cell models in (2.17) and (2.18)

respectively are analytic. Hence, their analytic kernels can be calculated from (2.39).
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2.6.3 Projection Pursuit Regression

The Projection Pursuit Regression (PPR) model represents the response of the sys-

tem, y, to its input, x = (x1, . . . , xN )′, using the non-linear transformation given in

(2.19) (Friedman & Stuetzle, 1981; Friedman, 1984a). The projection part of the name

indicates that the input vector x is projected onto the direction-vectors a1,a2, . . . ,aM0
.

In turn, the pursuit part indicates that an optimization technique is used to find a good

set of direction-vectors. The estimation of the PPR model parameters is a two-stage

process. They comprise a forward stepwise procedure followed by a backward stepwise

procedure. The PPR algorithm is controlled by two parameters, M and M0. Parameter

M controls the forward procedure and parameter M0 the backward procedure.

2.6.3.1 Forward stepwise procedure

For the forward procedure, an initial M -term model of the form given by (2.19) is con-

structed. First, a trial direction a1 is used to compute the values zi1 =< a1,xi >,

i = 1, . . . , n, where xi = (xi1, . . . , xiN )′ is the ith input and n is the number of inputs.

Then, denoting the response of the system to input xi by yi and ỹ1i = yi− ȳ, a scatter plot

of (ỹ1i , zi1) is constructed. This scatter plot is smoothed to obtain a first estimate φ1 in

(2.19). Next, a1 is varied to minimize the sum of squares
∑n

i=1(ỹ
1
i − φ1(zi1))

2, where for

each a1 in the optimization procedure, a new φ1 is computed using the smoothing pro-

cedure. The result of this estimation, a the pair (a1, φ1), is then standardized according

to (2.19), and the corresponding value β1 is calculated. We now have the approximation

yi = ȳ + β1φ1(< a1,xi >), i = 1, . . . , n. Next we treat ỹ2i = yi − ȳ − β1φ1(zi1) as the

response. We then fit a second term β2φ2(zi2) to this modified response in the same

manner that we fitted β1φ1(zi1) to ỹ1i . This gives the approximation yi = ȳ + β1φ1(<

a1,xi >) + β2φ2(< a2,xi >), i = 1, . . . , n. Continuing in this fashion, we arrive at the

forward stepwise estimated model
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yi = ȳ +
M
∑

m=1

βmφm(zim) i = 1, . . . , n (2.40)

2.6.3.2 Backward stepwise procedure

Next, models of decreasing order m = M−1,M−2, . . . ,M0 are fit in a backward stepwise

manner. For each term in the model, the sum of squared residuals

n
∑

i=1

[

yi − ȳ −
m
∑

l=1

βlφl(zil)

]2

(2.41)

is minimized with respect to βl,al, and φl. The initial values for these parameters are

the solutions for the m most important values of the m + 1 terms in the previous order

m+ 1 model, where importance is measured by |βl|.
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Chapter 3

The Extended Projection Pursuit Regression (ePPR)

algorithm

A central goal of systems Neuroscience is to characterize the transformation of sensory

input to spiking output in single neurons. This problem is complicated by the large

dimensionality of the inputs. To cope with this problem, previous methods have estimated

simplified versions of a generic linear-nonlinear (LN) model and required, in most cases,

stimuli with constrained statistics. Here we develop the extended Projection Pursuit

Regression (ePPR) algorithm that allows the estimation of all the parameters, in space

and time, of a generic LN model using arbitrary stimuli. We first prove that ePPR models

can uniformly approximate, to an arbitrary degree of precision, any continuous function.

To test this generality empirically, we use ePPR to recover the parameters of models of

cortical cells that cannot be represented exactly with an ePPR model. Next we evaluate

ePPR with physiological data from primary visual cortex and show that it can characterize

both simple and complex cells from their responses to both natural and random stimuli.

For both simulated and physiological data, we show that ePPR compares favorably to

spike-triggered and information-theoretic techniques for the estimation of the filters of

LN models. To our knowledge ePPR is the first algorithm to estimate, from natural and

random stimuli, a generic LN model that is spatio-temporal, uses two-dimensional images

as inputs, and whose linear component contains more than one filter. Thus, ePPR may
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be a good standard model to unify the characterization of all visual cells in early stages

of the visual system.

3.1 Introduction

One of the most important problems in Neuroscience is to characterize functionally how

sensory neurons transform their input to spiking output. Two central issues for these

characterizations are the stimuli used to probe a cell and the model used to represent

it. Regarding the stimuli, traditionally sensory neurons have been studied with small

sets of simple stimuli, specifically designed to probe certain aspects of their response

properties (e.g., Liberman, 1982; Hartline, 1940; Kuffler, 1953; Barlow, 1953), or with

large sets of random stimuli (e.g., P. Marmarelis & Marmarelis, 1978). However, recent

work (Theunissen, Sen, & Doupe, 2000; David et al., 2004; Felsen et al., 2005; Wooley

et al., 2006; Sharpee et al., 2006, 2008) has shown that observable properties of sensory

cells depend on the statistical properties of the stimuli used to probe them. Therefore, to

understand how sensory cells operate in natural conditions, it is important to characterize

them from their responses to natural stimuli (Felsen & Dan, 2005). Regarding the model,

cells of different classes are normally characterized with different parametric models.

Based on prior evidence, a model that contains the relevant structure for a class of cells is

proposed, and parameters of this model are fitted to experimental data from a cell of this

class. A problem with this approach is that the hypothesized model structure may not be

correct, making the interpretation of the fitted parameters questionable. An alternative

is to use generic models that can well approximate cells from a large set of classes. Here

we address both of these issues by developing a method to estimate a generic model that

can characterize responses of many classes of cells to arbitrary, including natural, stimuli.

We focus the description and evaluation of this method on the visual system, though the

method is applicable to other sensory modalities.
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Using natural images to characterize visual cells is non-trivial. Natural images are

complex (Simoncelli & Olshausen, 2001), so the number of descriptors needed to repre-

sent them is large, and a generic model would need a very large number of parameters to

characterize responses of visual cells to natural stimuli. Due to the curse of dimensional-

ity (Bellman, 1961) the amount of data required to estimate the parameters of a model

grows exponentially with the number of model parameters. Therefore, a prohibitively

large amount of data –unattainable in standard physiology experiments– would be re-

quired to estimate the parameters of generic models of visual cells using natural stimuli

as inputs.

A common strategy to overcome this problem is to assume that the cell response

follows a LN model. A generic version of this model is shown in Figure 3.1. The response

of the model at time bin i is assumed to depend on the image presented at time bin i, plus

the images presented on the previousD time bins. At each delay d, the model containsMd

filters. To generate its response, the model computes the dot product between the input

image at delay d and each of the Md filters at that delay, generating scalars g1,d, . . . , gMd,d.

Then the scalars at all delays, {gm,d, 0 ≤ d ≤ D, 1 ≤ m ≤ Md}, are used as inputs to a

nonlinear function N , that predicts the cell’s spike rate at time bin i1.

However, even this generic LN model has a large number of parameters. For instance,

for images of size 32 × 32 pixels, a model with Md = 3 for all d and D = 4 will contain

32×32×3×(1+4) = 15, 360 filter parameters, as well as additional parameters needed to

describe the nonlinear function N . To avoid problems associated with estimating such a

large number of parameters, previous techniques (Chichilnisky, 2001; Sharpee et al., 2004;

Touryan et al., 2005; Rapela et al., 2006) have estimated simplified versions of this model.

STA can only estimate one filter per delay, i.e., Md = 1 for all d (Figure 3.1, red box),

and requires a radially symmetric distribution of the input images (Chichilnisky, 2001;

Paninski, 2003). STC allows the estimation of multiple filters, but has more stringent

1A more standard definition of a LN model would use spatio-temporal filters, concatenating the ith

filters at all delays to give the ith spatio-temporal filter. But our definition is more convenient to introduce
of the extended Projection Pursuit Regression model below, while both definitions are equivalent.
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Figure 3.1: A generic LN model. The prediction of the model at time bin i, ŷ(i), depends
on the image presented at time bin i, plus the images presented at the previous D time
bins. At each delay d, the model contains Md filters. To generate its output, the model
projects the input image at delay d on the Md filters at that delay, generating scalars
g1,d, . . . , gMd,d. Then, the scalars at all delays, {gm,d, 0 ≤ d ≤ D, 1 ≤ m ≤Md}, are used
as inputs to a nonlinear functionN , that predicts the cell’s spike rate a time bin i. Because
this model has too many parameters, previous methods have estimated simplified versions
of this model. The red box surrounds the filters of the models estimated by Chichilnisky
et al. (2001) and by Sharpee et al. (2006, 2008). The blue box surrounds the filters of
the spatial models estimated by Touryan et al. (2005) and by Rapela et al. (2006).

90



convergence conditions than STA, in that the distribution of the input images needs to

be Gaussian (Paninski, 2003). Thus, neither STA or STC work with natural stimuli.

Touryan et al. (2005) and Rapela et al (2006) proposed techniques that can use natural

stimuli, but neglect the temporal dimension of the inputs, i.e., D = 0 (Figure 3.1, blue

box). The method introduced by Sharpee et al (2004) can estimate spatio-temporal

models from responses of visual cells to natural images. But with physiological data this

methods has only been used to estimate models with one filter per delay, i.e., Md = 1 for

all d (Sharpee et al., 2006, 2008, Figure 3.1, red box). Using filters estimated by Spike

Triggered Covariance (de Ruyter van Steveninck & Bialek, 1988) and a parametric model

for the nonlinear function, Rust et al (2005) estimated all parameters of the generic LN

model in Figure 3.1, but at the cost of restricting the stimulus ensemble to vary along a

single spatial dimension (i.e., binary random bars), and constraining the statistics of the

inputs to be Gaussian white noise.

An alternative to simplifying the general LN model in Figure 3.1, or constraining

the statistics of its inputs, is to use an efficient optimization strategy to enable the

estimation of all its parameters using arbitrary inputs. The Projection Pursuit Regression

algorithm (PPR, Friedman & Stuetzle, 1981) provides one such strategy. By decomposing

a high-dimensional estimation problem into a sequence of lower dimensional ones, PPR

is one of the few multivariate methods able to bypass the curse of dimensionality (Huber,

1985). In Rapela et al. (2006) we showed that PPR compared favorably with previous

methods for the spatial characterization of visual cells, i.e., characterizations as a function

of only one image presented to the cell before its response. However, responses of a visual

cells are not a spatial, but spatio-temporal, i.e., responses of visual cells depend on several

images presented to the cell before its response. For spatio-temporal characterizations

of visual cells, the efficient optimization strategy of PPR is not sufficient to escape the

curse of dimensionality. Here, we introduce the extended Projection Pursuit Regression

(ePPR) algorithm, which extends the PPR algorithm to allow the estimation of all the

parameters of the model in Figure 3.1 using natural images. In addition, the ePPR
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estimation algorithm is designed to be robust to correlations in natural images, and the

ePPR estimation problem is regularized to allow estimations using images of large size

as inputs.

The ePPR model is very general. Below we prove that it can uniformly approximate,

to an arbitrary degree of precision, any continuous function with inputs in the unit cube.

To test this generality empirically, we use ePPR to recover the parameters of a LN

model of a complex cell with divisive normalization, and a linear-nonlinear-linear (LNL)

extension of it, neither of which can be represented exactly with an ePPR model. We

then evaluate if, despite the mismatch, ePPR provides good approximations of the LN

and LNL models. Next we test this generality with physiological data, by using ePPR

to characterize cortical complex and simple cells. ePPR models can be estimated with

stimuli with arbitrary statistics. To validate this, for the simulated and cortical cells

studied in this article, we compare ePPR models estimated from their responses to natural

and random data.

The rest of the article is organized as follows. Section 3.2 summarizes the ePPR

algorithm (Details are provided in Appendix 3.8.2). Section 3.3 presents the results

of the application of ePPR to recover the parameters of the simulated cells. Next we

use ePPR to characterize a complex cell (Section 3.4) and simple cell (Section 3.5). We

discuss advantages and disadvantages of ePPR, and draw final conclusions, in Section 3.6.

Supplementary information is provided in appendices.

3.2 Extended Projection Pursuit Regression

In this section we introduce the ePPR algorithm. Because ePPR extends PPR, we start

by summarizing the PPR algorithm in Section 3.2.1. Then Sections 3.2.2-3.2.4 describe

the extensions introduced into PPR. Detailed algorithmic descriptions of PPR and ePPR

are given in Appendix 3.8.1 and Appendix 3.8.2, respectively.
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3.2.1 Projection Pursuit Regression

The PPR model is show in Equation 3.1. For an input xi ∈ R
n the output of the PPR

model ŷ(i) ∈ R is given by the mean response ȳ plus M0 terms of the form βmφm(αT
mxi).

In these terms, βm ∈ R is an importance coefficient, and φm is a uni-dimensional nonlinear

function acting on the dot product between the unit-norm direction αm ∈ R
n and xi.

ŷ(i) = ȳ +

M0
∑

m=1

βmφm(αT
mxi) (3.1)

with ||αm||2 = 1,
1

n

n
∑

i=1

φm(αT
mxi) = 0, and

1

n

n
∑

i=1

φ2
m(αT

mxi) = 1

The algorithm used to estimate the parameters of the PPR model finds the prediction

function ŷ minimizing the sum of squared errors (SSE) with the response function y

(Equation 3.2). To escape from the curse of dimensionality, it estimates one term of

Equation 3.1 at a time, as follows: Having determined the functions φ1, φ2, . . . , φm−1 and

the unit vectors α1, α2, . . . , αm−1, the estimation algorithm chooses a unit vector αm and

a function φm that minimize the SSE in Equation 3.3. To avoid local minima in this

greedy procedure, PPR uses a backward stepwise procedure.

SSE =
N
∑

i=1

(y(i)− ŷ(i))2 (3.2)

SSE =
N
∑

i=1

(rm(i)− φm(αT
mxi))

2,where rm(i) = y(i)−
m−1
∑

j=1

φj(α
T
j xi) (3.3)

Approximation theory results for PPR

What types of functions can be well approximated by PPR models?
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PPR models can represent exactly a large class of functions. For instance, any multi-

dimensional polynomial can be represented exactly by a PPR model (Proposition 1 in

Appendix 3.8.3). Although not all functions admit an exact PPR representation, any

continuous function, with inputs in [0, 1]p, can be uniformly approximated, to an arbi-

trary degree of precision, by a PPR model. This follows from (1) the Stone-Weierstrass

theorem (Rudin, 1976) which implies that polynomials are dense on [0, 1]p, and (2) the

previous result that polynomials can be represented exactly by PPR models.

It is conceivable that a given function could be well approximated by a PPR model

but that the greedy PPR estimation algorithm does not converge to the optimal approx-

imation. So, the following question becomes relevant.

Under what conditions will the PPR estimation algorithm converge to its best approxima-

tion?

For inputs x, samples from a probability distribution P uniform on the unit ball or

multivariate Gaussian, Donoho et al. (1985) announced a proof of strong converge, i.e.,

rm → 0 in the norm of L2(P ). In addition, Jones (1987) proved strong convergence

for general P , when the nonlinear functions are given by the conditional expectations

(Equation 3.4) and the estimated projection directions are uniformly close to the optimal

greedy projection directions (Equation 3.5).

φm(z) = E(rm(X)|αT
mX = z) (3.4)

E(φm(αT
mX))2 > ρ sup

bT b=1

E(φm(bTX))2, ρ fixed, 0 < ρ < 1. (3.5)

However, with empirical data these conditions cannot be verified and one cannot know

if PPR has converged to the optimal solution.
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3.2.2 Spatio-Temporal models

In Rapela et al. (2006), we estimated spatial PPR models of visual cells. The responses

of these models depended on a single image presented to the cell before its response.

However, we would like to estimate spatio-temporal PPR models, i.e., models whose

response depends on several past images, as is known to be the case for most visual cells.

To predict the cell response at time bin i, in Rapela et al. (2006) we used as input to

PPR the vector representation of the image presented at time bin i2. Calling Ii ∈ R
p×p

the image presented at time i, and vec : R
p×p → R

p2 the operation that transforms

an image into its vector representation, the input to PPR in Rapela et al. (2006) was

xi = vec(Ii) ∈ R
p2 .

A first type of spatio-temporal model uses the spatial PPR model in Equation 3.1, but

taking as input the concatenation of the images presented at time bins {i, . . . , i−D}, i.e.,

xi = [vec(Ii)
T , . . . , vec(Ii−D)

T ]T ∈ R
(D+1)p2 . As PPR models, spatio-temporal models of

this type, can uniformly approximate, to an arbitrary degree of precision, any continuous

functions with inputs in the unit cube. A limitation of this type of model is that the

dimensionality of the inputs grows in proportion to the memory D of the model, which

complicates the estimation of the filters αm in Equation 3.1. Also, to build these models,

the memory D must be determined in advance.

A second type of spatio-temporal model is obtained by adding to Equation 3.1 extra

terms operating on images at different delays, as shown in Equation 3.6. The estimation

algorithm for this type of model requires only simple modifications to the PPR estimation

algorithm (Appendix 3.8.2). An advantage of this type of model is that the dimensionality

of the inputs does not grow with the memory D of the model, simplifying the estimation

of the filters. In addition, the estimation algorithm learns, in a single run, the optimal

memory, D, required to characterize a cell. A disadvantage is that Equation 3.6 is not

the most general spatio-temporal extension of the PPR model. In particular, pixels of

images occurring at different delays are contained in different terms in Equation 3.6, and

2In the vector representation, the columns of an image are concatenated together to form a long vector.
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different terms are combined linearly. Therefore, nonlinear interactions between pixels of

images at different delays cannot influence the predictions of this type of model.

ŷ(i) = ȳ +
D
∑

d=0

Md
∑

m=1

βm,dφm,d(α
T
m,dxi−d) (3.6)

with
1

n

n
∑

i=1

φm,d(α
T
m,dxi−d) = 0, and

1

n

n
∑

i=1

φ2
m,d(α

T
m,dxi−d) = 1

We call models of the first type ePPR models with time interaction, and models of

the second type ePPR models without time interaction. Selecting between these types

of model is a tradeoff between model generality and optimization feasibility. When the

memory of a cell is short, and/or the response sampling rate is small, and/or there is

enough physiological data to make possible the estimation of the larger spatio-temporal

filters, then models with time interaction are preferable. One possibility to determine the

memory of the cell is to estimate an ePPR model without time interactions. Then, if the

memory, D, of this model is sufficiently short, or the amount of data is sufficiently large,

a more general ePPR model with time interactions can be estimated. In what follows we

will refer to Equation 3.6 as the ePPR model, with the caveat that for models with time

interaction several images are concatenated into a single input, as indicated above, and

the memory of the model is set to D = 0.

3.2.3 Robustness to correlations in natural images

With simulated data we observed that the filters of PPR models estimated from natural

data were significantly worse than those estimated from random data. As noted in Ap-

pendix 3.8.1, a key step in PPR is the solution of a nonlinear least-squares problem for

estimating a projection direction αm (minimization of the SSE in Equation 3.14). In PPR,

this problem is solved using the Gauss-Newton method (Nocedal & Wright, 2006), which,

in turn, requires the solution of a linear system of equations Ax = b, Equation 3.17. The

Gauss-Newton algorithm is guaranteed to converge if the eigenvalues of A are bounded
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away from zero (Nocedal & Wright, 2006). This is the case for the matrix A constructed

from random data, but not for the one constructed from natural data, which cause A to

have zero eigenvalues. Thus, for natural data, the Gauss-Newton is not guaranteed to

converge. To overcome this problem, we replaced the Gauss Newton by a Trust Region

method (Nocedal & Wright, 2006). The latter method is guaranteed to converge under

very general conditions, which do not require non-zero eigenvalues (Nocedal & Wright,

2006).

3.2.4 Smooth prior for large-dimensional filters

Responses of visual cells contain high levels of noise. Then, estimating ePPR parameters

by minimizing Equation 3.2 leads to estimates that overfit the noise, i.e., narrowly focusing

on the training error is likely to return estimates that describe the training set well, but

perform poorly in predicting responses to novel data. A common strategy to overcome this

problem is to penalize the estimated function, ŷ, based on some a priori measure of how

likely ŷ is to overfit noise. In ePPR, ŷ is penalized for containing non-smooth projection

directions αm,d. The ePPR objective function, Equation 3.7, contains a penalty term

λΣD
d=0Σ

Md

m=1||Lαm,d||
2. In this term, L is a smoothing operator such that ||Lαm,d||

2 will

be large when αm,d is non-smooth. In turn, the regularization parameter λ controls the

tradeoff between fitting the responses accurately and estimating smooth filters αm,d. For

the results shown below, we chose L to be a 3 × 3 Laplacian operator. To select the

parameters λ, we used the procedure described in Appendix 3.8.2.2.

J =
N
∑

i=1

(yi − ŷ(xi))
2 + λ

D
∑

d=0

M0
∑

m=1

||Lαm,d||
2 (3.7)

In summary, ePPR fits the spatio-temporal model in Equation 3.6 by optimizing the

criterion in Equation 3.7, using a Trust Region method that is robust to correlations
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in natural images. An implementation of the ePPR algorithm can be downloaded from

http://vpl.usc.edu/projects/ePPR/.

3.3 Simulated cell

Here we evaluate ePPR for the characterization of a simulated complex cell. For the

simulations we used a simplified version of a divisive gain control model, as have been

used to describe nonlinear properties of neurons in primary visual cortex (Heeger, 1992).

The mean response of the simulated cell at time i is given by ȳ(i) in Equation 3.8, where

[x(i)T , x(i− 1)T , x(i− 2)T ] stands for the (transpose of the) concatenation of the images

at time i, i−1, and i−2. The noisy response is a Poisson random variable with this mean.

The spatio-temporal filters, f1, f2, f3, used in this model are shown in Figure 3.2a. The

filters f1 and f2 are facilitatory, because larger dot products with these filters produce

stronger mean responses, while the filter f3 is suppressive, because larger dot products

with this filter produce weaker mean responses. The parameter γ controls of the mean

of the responses and, because the noise was Poisson, it also controls the level of noise

in the responses. To study the effect of noise in the estimated models, we varied γ to

generate 3 sets of 24,000 responses with different levels of noise. For all three sets we

fixed the inhibitory constant ω so that the mean of the denominator in Equation 3.8, for

all simulated responses, was 4.26, i.e., on average the divisive normalization reduced the

unnormalized cell response by more than four times. We study the effects of varying the

amount of inhibition in Appendix 3.8.5. Further details on the simulation procedure are

given in Section 3.7.3. Note that, due to the divisive normalization, Equation 3.8 cannot

be represented exactly by an ePPR model. Thus, this model tests the generalization of

ePPR. To further test this generalization, in Section 3.3.3 we use ePPR to characterize a

LNL extension of this complex cell model.
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ȳ(i) = γ

(

[x(i)T , x(i− 1)T , x(i− 2)T ]f1
)2

+
(

[x(i)T , x(i− 1)T , x(i− 2)T ]f2
)2

1 + ω ([x(i)T , x(i− 1)T , x(i− 2)T ]f3)
2 (3.8)

The ePPR estimation procedure makes no assumption about the statistical properties

of the stimuli used to estimate its model parameters. To validate this, we estimated ePPR

models from simulated responses to natural and random ensembles. For the real complex

and simple cells the natural ensemble (quasi-natural sequence ensemble, Section 3.7.2)

approximates the spatial statistics of natural movies, but is temporally uncorrelated.

To mimic this, for the simulated cell we used a reshuffled natural movie as the natural

ensemble (natural sequence ensemble, Section 3.7.2). But, to assess the influence of

temporal correlations on ePPR estimates, we also estimated ePPR models from responses

to the unshuffled natural movie (Appendix 3.8.6).

Nonlinear interactions between pixels of images at different delays are relevant to the

simulated model in Equation 3.8. Accordingly, predictions from ePPR models with time

interaction were significantly better than those of ePPR models without time interaction

(Figure 3.10c). In this section we show the parameters of ePPR models with time in-

teraction, and in Figures 3.10a and 3.10b (Appendix 3.8.4) we show the parameters of a

model without time interaction.

All models in this section were estimated using sets of 20,000 responses, and their

predictive power was evaluated using a disjoint set of 4,000 responses. The estimation

of the filters and nonlinear function in ePPR is entirely nonparametric. The conjunction

of this non-parametric estimation with the very large amount of noise in the simulated

responses could lead to estimates with large variability. To study this variability, for each

level of noise in the simulated responses, we estimated five models from distinct resampled

subsets of the training data set (see Section 3.7.4). Figures 3.2d, 3.2g, and 3.2h quantify

the variability in the estimated parameters. For simplicity, Figures 3.2b, 3.2c, 3.2e, and
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3.2f, 3.3a, and 3.3b show parameters of example models (estimated from responses with

intermediate amount of noise).

3.3.1 Data from natural images

Estimated filters

Figure 3.2b shows contour plots of the filters from the example ePPR model estimated

using natural data with intermediate amount of noise. The title of each contour plot is

the corresponding β coefficient. Qualitatively the estimated filters look very similar to the

true filters of the simulated model (Figure 3.2a). To quantify this similarity, we computed

the principal angles between true and ePPR filter spaces (Section 3.7.5). These principal

angles show how much of the three dimensional structure of the true filter space is well

approximated by the estimated filter space. If the three principal angles are relatively

small, then the estimated filter space well approximates the true filter space along its

three dimensions. But, if only the first n principal angle are small, then the estimated

filter space is a good approximation of the true filter space only along n dimensions. The

orange curve in Figure 3.2d plots the averaged principal angles between the true and

estimated filter spaces. The three principal angles are relatively small, showing that the

filter space estimated by ePPR is a good approximation of the true filter space along

its three dimensions. Moreover, the size of the error bars is small indicating a small

variability in the estimated filters.

For comparison, we also estimated 4 sets of Maximally Informative Dimensions fil-

ters (MID; Sharpee et al., 2004, Section 3.7.9) from 4 different jackknifed subsets of the

training dataset. Figure 3.3a shows an example set of MID filters. These filters are plotted

from left to right in their estimation order. As in all our MID estimates for the simulated

cell, the first MID filter was a good estimate, one of the other two filters was a mediocre

estimate (third filter in Figure 3.3a), and the remaining filter was a poor estimate (sec-

ond filter in Figure 3.3a). In addition, MID did not recovered the inhibitory filter in any

of 4 sets of estimated filters. The red curve in Figure 3.2d plots the average principal
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Figure 3.2: Simulated cell: ePPR models. (a): filters of the simulated model (Equa-
tion 3.8). (b,c): filters (b) and nonlinear functions (c) of the example model estimated
from natural data. The titles in (b) are the corresponding β coefficients. (d): princi-
pal angles between the true filters and those of models estimated from fitting subsets
of the data with intermediate level of noise. (e-g): as (b-d) but for models estimated
from random data. (h) average number of terms in ePPR models estimated from natural
and random data. For both example models, the estimated filters are similar to the true
filters, and the nonlinear functions correctly indicate the facilitatory/suppressive nature
of the corresponding filters.
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Figure 3.3: Simulated cell: example set of MID filters estimated from natural data (a)
and random data (b). The filters are sorted from left to right in their estimation order.
As in the other four sets of MID filters, the first filter is a good estimate, one of the other
two filters (the third filter in the example) is an mediocre estimate, the remaining filter
(the second filter in the example) is a poor estimate, and the suppressive filter is missing.
MID well approximated the true filter space only along one dimension (see red curves in
Figures 3.2d and 3.2g).

angles between the true and MID filter spaces. The small first principal angle shows that

the MID filter space well approximated the true filter space along one dimension. But

the larger second and third principal angles indicate that the MID approximations along

more than one dimension were poor.

Estimated nonlinear functions

Figure 3.2c shows the nonlinear functions of the ePPR model estimated from natural

data. These functions map the dot product of an image and the corresponding filter

onto the contribution of the term to the prediction of the model. Points with large

magnitude in these nonlinear functions are either all positive or all negative. If they

are all positive, the filter associated with the nonlinear function will facilitate the cell

response, and if they are all negative the filter will suppress the cell response. Points

with large magnitude in the two leftmost nonlinear functions are all positive, while those

in the rightmost nonlinear function are all negative. Thus, the two leftmost filters in
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Figure 3.2b are facilitatory, while the rightmost filter is suppressive. Since this agrees with

the construction of the model cell, the estimated nonlinear functions correctly recovered

the facilitatory/suppressive nature of the associated filters.

Predictive power

We compared the predictive power of filters estimated from different methods: ePPR;

MID; normalized spike triggered covariance (nSTC; Touryan et al., 2005, Section 3.7.10),

as has been previously employed to characterize complex cells (Touryan et al., 2002;

Felsen et al., 2005); and PPR (Appendix 3.8.1)3. Because some of the above methods do

not provide a predictive model, and to make the comparison of the predictive power of the

filters independent of the predictive model used by each method, we used a second-order

multi-dimensional polynomial (Section 3.7.12) as the predictive model for all the methods.

For each number of spikes per image, or noise level, in the simulated responses, and for

each type of filter (ePPR, MID, PPR, or nSTC) we constructed a second-order multi-

dimensional polynomial, use it to predict responses to the 8 testing subsets (Section 3.7.4),

and computed the Pearson correlation coefficient between each of these predictions and

the simulated cell responses. Figure 3.4a, plots the mean of these correlation coefficients,

with error bars of size one standard deviation, as a function of the or noise level in the

simulated responses. The orange, red, blue, and cyan curves correspond to ePPR, MID,

PPR and nSTC filters, respectively. The black curve is an upper bound on the correlation

coefficient that any model can achieve (Section 3.7.7). Light red asterisks indicate that

correlation coefficients for ePPR filters were significantly greater than those for MID filters

(Wilcoxon signed-rank test, p < 0.01, Section 3.7.13). The polynomial models constructed

with spatio-temporal filters, ePPR and MID, predicted responses substantially better

than those constructed with spatial filters, PPR and nSTC. In addition, at all noise

3PPR and nSTC, as implemented here (Section 3.7.10), can only estimate spatial filters, i.e., filters
that operate on a single image presented to the cell prior to its response. For these methods, we estimate
filters operating on the image presented to the cell at the same time bin as the response. This choice
optimized the models predictions.
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Figure 3.4: Simulated cell: predictive power of filters estimated by different methods.
Pearson correlation coefficient between polynomial models predictions and simulated cell
responses, as a function of the mean number of spikes per image, or noise level, in the
simulated responses. The orange, red, blue, and cyan curves correspond to polynomi-
als constructed with ePPR, MID, PPR, and nSTC filters, respectively. Black curves:
upper bound on the correlation coefficients. (a): predictions with natural stimuli. (b):
predictions with random stimuli. Light red asterisks mark number of spikes/image at
which correlation coefficients for ePPR models are significantly greater than those for
MID models. For both natural and random data, the polynomial models constructed
with spatio-temporal filters, ePPR and MID, predict substantially better than those con-
structed with spatial filters, PPR and nSTC. Also, ePPR filters yielded significantly better
predictions than MID filters for all conditions, excluding random data and intermediate
amount of noise (0.56 spikes/sec).

levels, polynomial models constructed with ePPR filters predicted responses significantly

better than those constructed with MID filters.

3.3.2 Data from random images

As for natural data, the filters of the example model estimated from random data look

similar to the true filters of the simulated model (Figures 3.2a and 3.2e). This simi-

larity holds for the five ePPR models estimated from the fitting subsets of the training

dataset with 20,000 responses (orange curve in Figure 3.2g). As for natural data, the

MID filter space well approximated the true filter space along one dimension, but the

104



approximation along more than one dimension was poor (Figure 3.3b and red curve

in Figure 3.2g). Also, the nonlinear functions estimated from random data correctly

indicated the excitatory/inhibitory nature of the corresponding filters (Figure 3.2f). Fur-

thermore, second-order multi-dimensional polynomials constructed with ePPR or MID

predicted responses substantially better than those constructed with PPR or STC filters

(Figure 3.4b). In addition, polynomial models constructed with ePPR filters predicted

responses significantly better than those constructed with MID filters at low and high

noise levels (Wilcoxon signed-rank test, p < 0.01 for 0.17 and 5.62 spikes/sec).

Figure 3.2h plots the average number of terms in ePPR models as a function of the

number of spikes/image, or noise level, in the simulated responses. At the intermediate

(0.56 spikes/image) and low noise levels (5.62 spikes/image), all ePPR models estimated

from natural or random data contained good approximations to the 3 filters of the sim-

ulated cell, and at the high noise level (0.17 spikes/image) some models missed one or

two of these filters. We note that for every noise level ePPR recovered, statistically, the

same number of terms from natural and random data, which is relevant for interpreting

the models estimated from real cells (see below).

Due to the divisive inhibition, the simulated complex cell model cannot be repre-

sented exactly by an ePPR model. Nevertheless, ePPR provided very good approxima-

tions. These approximations remained good for responses simulated with other amounts

of normalizations (Appendix 3.8.5). In addition, the simulated model in Equation 3.8

contains nonlinear interactions between pixels of images at different delays. As discussed

in Section 3.2.2, these interactions cannot be accounted by ePPR models without time

interactions. Nevertheless, these models provided good approximations to the true pa-

rameters of the simulated model (Figure 3.10 in Appendix 3.8.4). This shows that ePPR

has good generalization properties.
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3.3.3 Linear-nonlinear-linear model

The linear-nonlinear-linear model (LNL, Korenberg & Hunter, 1986) is a block structured

model that found early applications in the auditory (Weiss, 1966) and visual (Weiss,

1966; Spekreijse, 1969; Spekreijse & Oosting, 1970; Spekreijse & Reits, 1982) systems.

To further test the generality of ePPR, we used it to characterize a LNL extension of

the previous complex cell LN model (Equation 3.8). The mean responses of the LNL

model were generated by filtering the mean responses of the simulated LN model with

intermediate amount of noise (Section 3.7.3) with a linear-phase lowpass filter with a

cutoff frequency of π/2 cycles per sample, and with a length of 15 samples. Responses

of the LNL model were Poisson random variables with these means. To illustrate the

differences between the mean responses of the LN and LNL models, Figure 3.5a plots

their power spectrum.

The forward ePPR model (Appendix 3.8.2) estimated from responses of the LNL

model was configured to contain n[i] terms at delay i with n =[1,1,1,1,1,1,2,4,4,4,2,1,1,1,1].

That is, the forward model contained terms at 15 delays. But the ePPR estimation pro-

cedure discarded the irrelevant terms, so that the final ePPR estimated model contained

only terms at delays 7, 8 and 9 (Figures 3.5b, and 3.5c). Considering that the lowpass

filter after the nonlinear function in the LNL model introduces a delay of 7 samples, we

see that ePPR has learned the correct model structure for this LNL model.

Comparing the filters of the ePPR model without time interaction estimated from

responses of the LNL model (Figure 3.5b) with those estimated from responses of the LN

model (Figure 3.10a), we see that the linear filter following the nonlinearity in the LNL

model has a detrimental effect on the quality of the estimated ePPR filters. For example,

the true filters at delay 0 are positioned in the top-left quadrant (Figure 3.2a), but the

most important estimated filter at delay 0 (Figure 3.5b, top-left panel) is incorrectly

positioned at the center. Still, these filters capture important features of the true filters,

like their Gabor shape, orientation, and spatial frequency. Also, the nonlinear functions
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Figure 3.5: LNL model: (a): power spectrum of the responses of the LN (black curve)
and LNL (red curve) models. The lowpass filter had a large effect on the responses of
the LN model. (b,c): estimated filters (b) and nonlinear functions (c) at delays 7, 8,
and 9. The ePPR estimation procedure discarded the irrelevant terms from the forward
model and learned the correct model structure for the simulated LNL model, with two
facilitatory terms at delay 7, two facilitatory terms at delay 8, and one suppressive term
at delay 9. Although the filters for the LNL model are worse estimates than those for the
LN model (Figure 3.10a), the former filters still are reasonably good approximations of
the true filters.

have proper quadratic shapes, and correctly indicate the facilitatory or suppressive nature

of the corresponding filters (Figure 3.5c).

In summary, we have shown that ePPR successfully characterized a simulated complex

cell from responses to natural and random stimuli. ePPR recovered all the underlying

filters and nonlinear functions from the simulated cell, including those that were suppres-

sive. In addition, predictions from ePPR filters were superior to predictions from filters

estimated by previous methods. The generality of ePPR was demonstrated by using it to

characterize a simulated complex cell with divisive normalization, and a LNL extension

of it, neither of which can be represented exactly as an ePPR model.
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3.4 Complex cell

In the previous section we showed that ePPR was able to characterize a simulated com-

plex cell from its responses to either natural or random data. We now use the method

to characterize a real complex cell recorded from an anesthetized cat. Experimental

procedures are described elsewhere (Felsen et al., 2005).

A unique characteristic of the data recorded by Felsen et al. (2005) is that individual

cells were probed with both natural and “matched” random stimuli (Section 3.7.1). Below

we first characterize the complex cell from its responses to the natural stimuli, and then

from its responses to the matched random stimuli.

To determine the memory of the cell, we first estimated ePPR models without time

interaction. Then, because the memory was short, and the amount of data large, we

estimated models with time interaction. In this section we present models with time

interaction, and Figure 3.11 (Appendix 3.8.4) shows a model without time interaction

estimated from responses to natural stimuli.

To assess the dependence of ePPR estimates on the size of the training dataset, we

estimated models using sets of 3,000, 10,000, and 20,000 responses. For each of these

sets, 5 ePPR models were estimated from different fitting subsets (Section 3.7.4). For

simplicity, we show the parameters of example models estimated from a fitting subset

of the training dataset with 20,000 responses, but the number of terms and correlation

coefficients plots show averages across the 5 estimated models.

3.4.1 Data from natural images

We recorded responses to four repeats of the quasi-natural sequence ensemble (Sec-

tion 3.7.2). The mean total number of spikes in these four sets of responses was 87,258.

We used the mean of these sets of responses to estimate the parameters of the different

models.
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The filters of the example ePPR model estimated from natural data (Figure 3.6a) are

consistent with previous estimations of linear subspaces of complex cells from responses to

two-dimensional natural (Touryan et al., 2005; Rapela et al., 2006), or random (Movshon

et al., 1978a; Chen et al., 2007) images. In particular, the three middle filters have clear

Gabor shapes with similar orientation and spatial frequency, but are shifted in phase.

However, note that the bottom frame of the rightmost filter (operating on the image

presented between 85 and 126ms prior to the cell response) is cross-oriented with respect

to the other filters.

For comparison, we estimated a set of 6 MID filters (Section 3.7.9) using the training

dataset with 20,000 responses (Figure 3.7). Only the first MID filter (leftmost filter in

Figure 3.7a) is well structured, and this filter is similar to the most relevant ePPR filter,

according to the β coefficient (leftmost filter in Figure 3.6a). That ePPR recovered more

filters with good structure than MID could be explained as as a flaw of ePPR in estimating

spurious filters, or as a flaw of MID in failing to recover relevant filters. We will return

to this point below.

Figure 3.6b shows the nonlinear functions of the example model estimated from natu-

ral data. The leftmost nonlinear function is approximately a half-wave rectification. The

three middle nonlinear functions, corresponding to the filters with clear Gabor shapes

in Figure 3.6a, are full-squared, in agreement with the polarity invariance of complex

cells (Movshon et al., 1978a). That complex cells can be characterized with half-wave

and full-squared nonlinear functions has been previously reported (Rust et al., 2005,

Figure 5). And the rightmost nonlinear function, corresponding to the filter with a cross-

oriented frame at long delays, is suppressive, revealing cross-oriented inhibition in the

response of this complex cell.

As for the simulated cell, we compared the predictive power of filters estimated by

ePPR, MID, nSTC, and PPR, using a second-order multi-dimensional polynomial as the

predictive method (Section 3.7.12). Figure 3.6f plots the correlation coefficients between

the complex cell responses and the polynomial models predictions, as a function of the
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Figure 3.6: Complex cell: ePPR models. (a,b): filters (a) and nonlinear functions (b) of
the example model estimated from natural data. The titles in (a) are the corresponding
β coefficients. (c,d): as (a,b) but for models estimated from random data. (e): aver-
age number of terms in ePPR models estimated from natural and random data. (f-g)
predictive power of filters estimated by different methods with same format as in Fig-
ure 3.4. The estimated filters and nonlinear functions are consistent with those estimated
using previous methods. Models estimated from natural and random data are similar
to each other. However, late suppression is only present in the model estimated from
natural data. Furthermore, models estimated from natural data recovered more filters
than models estimated from random data. For natural data, ePPR filters yielded predic-
tions substantially better than those estimated by other methods, and predictions from
ePPR filters were close to the upper bound on the predictive power of any model. For
random data, ePPR and MID filters estimated from 20,000 stimuli were very similar (cf.
Figures 3.6c and 3.7b) and their predictions were not statistically different.
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Figure 3.7: Complex cell: example set of MID filters estimated from 20,000 responses.
Same format as in Figure 3.3. For natural data (a), only the first filter is well structured.
For random data (b), the three filters are well structured, and are very similar to those
estimated by ePPR (Figure 3.6c).

number of stimuli used to estimate the filters and polynomial models. The dashed line is

an upper bound on these correlation coefficients (Section 3.7.7). For all number of stimuli

best predictions are obtained with ePPR filters. Moreover, ePPR filters estimated using

20,000 inputs closely approximate the upper bound on the correlation coefficients. This

indicates that the filters with good structure estimated by ePPR and not by MID (cf.

Figures 3.6a and 3.7a) are relevant for the predictions of the model, and therefore not

spurious.

Figure 3.11c (Appendix 3.8.4) replots the correlation coefficients of the ePPR poly-

nomial model with the correlation coefficients on ePPR models with and without time

interactions. It shows that ePPR models with time interaction predict better, or at the

same level, as polynomial models, and substantially better than ePPR models without

time interaction. Thus, nonlinear interactions between pixels of images at different delays

are relevant for the response of this complex cell.
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3.4.2 Data from random images

We recorded responses to two repeats of the quasi-random sequence ensemble (Sec-

tion 3.7.2). The mean total number of spikes in these responses was 73,022.5. We used

the mean of these sets of responses to estimate parameters of the different models.

Figure 3.6c shows that the filters obtained with random stimuli are a subset of those

obtained with natural stimuli (Figure 3.6a). The leftmost filter estimated from random

stimuli corresponds to the leftmost filter estimated from natural stimuli, the second (from

the left) filter estimated from random stimuli corresponds to the second filter estimated

from natural stimuli, and the third filter estimated from random stimuli corresponds

to the fourth filter estimated from natural stimuli (but they are reversed in polarity).

Figure 3.6d shows that the nonlinear function obtained with random stimuli correspond

to those obtained from natural stimuli (Figure 3.6b).

For comparison, Figure 3.7b shows a set of 3 MID filters (Section 3.7.9) estimated

from 20,000 responses. All of these filters have good structure, and are very similar to

those estimated by ePPR. This shows that our implementation of the orthogonalization

procedure recommended by Dr. Sharpee for the estimation of multiple MID filters (Sec-

tion 3.7.9) is correct. Also, the similarity between the ePPR and MID filters suggests

that the filters estimated by these methods are not spurious.

As expected, because ePPR and MID estimated similar filters from datasets with

20,000 responses, the predictions of the second-order multi-dimensional polynomial mod-

els estimated from ePPR filters were not better than those from MID filters (Figure 3.6g,

rightmost points in orange and red curves, Wilcoxon signed-rank test, p > 0.05, Sec-

tion 3.7.13). However, for the smaller training datasets, ePPR filters predictions were

significantly better than those of MID filters (p < 0.01, for 10,000 and 3,000 stimuli). As

explained in Section 3.7.7, because we recorded responses to only two repeats of random

stimuli, the calculated upper bound is loose.

Two important differences emerged between the models estimated from natural and

random data: First, a filter with late suppression was recovered from natural, but not

112



from random, data. This difference was not an idiosyncrasy of the example models shown,

but was present in most ePPR models estimated with more than 3,000 responses (all 5

models estimated from 20,000 natural responses, 3 of the 5 models estimated from 10,000

responses, but no model estimated from random responses, showed late suppression).

Second: models estimated from natural data had more filters than those estimated from

random data (Figure 3.6g).

In summary, in this section we demonstrated the feasibility of ePPR to characterize a

complex cell from its responses to natural and random stimuli. We showed that estimated

ePPR models had several features in common with the energy model of complex cells,

that ePPR models estimated from natural and random stimuli were very similar to each

other, but displayed a few interesting differences, and that predictions from ePPR models

were close to an upper bound on the predictive power of any model.

3.5 Simple cell

The ePPR model is general and one can use it to characterize a wide variety of visual

cells. Here, we test this generality by using ePPR to model a cortical simple cell (Felsen

et al., 2005) from its responses to both natural and random stimuli. We follow the same

procedure as in Section 3.4.

For natural stimuli, we recorded responses to two repeats, obtaining two sets of re-

sponses with a mean total number of spikes of 8,753. For random stimuli we also recorded

responses to two repeats, obtaining two sets of responses with a mean total number of

spikes of 6,673.5.

Figure 3.8 shows that the estimated filters and nonlinear functions follow the same

pattern as for the complex cell (Figure 3.6). Natural and random stimuli yield similar
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filters and nonlinear functions. Consistently with earlier data, the filters are Gabor-

like and oriented, and their nonlinear functions are half-wave rectifications (Movshon et

al., 1978b). However, two important differences are evident: First, as for the complex

cells, explaining responses to natural stimuli requires more filters (compare Figures 3.8a

and 3.8c, see also Figure 3.8e). Second, the model estimated from random data, with an

estimated filter that has frames with similar shape at all delays, but whose amplitudes

are modulated in time (Figure 3.8c), and with a half-wave rectification, (Figure 3.8d),

resembles the classical space-time separable model for simple cells (DeAngelis et al.,

1993b; DeAngelis, Ohzawa, & Freeman, 1993a). In contrast, the model estimated from

natural data has mixed features of simple and complex cells. For this model, the most

important term according to the β coefficient (left column in Figures 3.8a and 3.8b) is also

typical of a simple cell. However, the least important term (right column in Figures 3.8a

and 3.8b) is consistent with the energy model for complex cells (Adelson & Bergen, 1985):

The second filter has a similar shape as the first filter, but it is shifted in phase, and its

nonlinear function is fully rectified. Therefore, if we look only at the most important term

of the model estimated from natural data, we see a typical space-time separable simple

cell. But, if we look at all the terms, we see a mixture of a simple and a complex cell.

For filters estimated from 20,000 natural stimuli, third-order polynomials (Section 3.7.12)

generated significantly better predictions with ePPR filters that with MID filters (Wilcoxon

signed-rank test p < 0.01, Figure 3.8f, Section 3.7.13). Also, for 20,000 and 10,000 natural

stimuli, predictions from ePPR filters were significantly better than those from regularized

spike triggered average (rSTA; Smyth et al., 2003, Section 3.7.11) (p < 0.01, Figure 3.8f).

And for all number of natural stimuli ePPR filters yielded better predictions than PPR

filters4 (p < 0.01). For random stimuli all four models predicted similarly (Figure 3.8g).

4PPR models were estimated using the images presented to the cell at the time bin before the response
of the cell.
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Figure 3.8: Simple cell: ePPR models. The format of this figure is identical to that of
Figure 3.6, but the cyan curves in (f,g) correspond to polynomial models constructed
with rSTA filters. The figure in (e) does not contain error bars because, for each number
of inputs, all estimated models had the same number of terms. The estimated filters and
nonlinear functions are consistent with those estimated using previous methods. Models
estimated with natural and random data are similar to each other. However, the model
estimated from natural data, but not that estimated from random data, has features of
a complex cell model. Furthermore, models estimated from natural data recovered more
filters than those estimated from random data. For natural stimuli, predictions from
ePPR filters were better or equal than those of previous methods. For random stimuli
the filters estimated by the four methods gave similar predictions.
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In summary, in this section we demonstrated the feasibility ePPR to characterize

a simple cell from its responses to natural and random image sequences. We showed

that estimated ePPR models had several features in common with the standard space-

time separable model for simple cells. Also, ePPR models estimated from natural and

random data were very consistent with each other but, as for the complex cell, had a few

interesting differences.

3.6 Discussion

In this study, we demonstrated the feasibility of ePPR for the spatio-temporal characteri-

zation of visual cells. ePPR is the first algorithm to apply a projection pursuit estimation

strategy for the spatio-temporal characterization of visual cells from input/output data.

This strategy addresses a fundamental problem in modeling visual cells from input/output

data: the curse of dimensionality (Bellman, 1961). By overcoming this problem, ePPR

was able to estimate, for the first time, a very general linear-nonlinear model that is

spatio-temporal, uses two-dimensional images as inputs, and contains multiple filters.

The ePPR model can approximate a broad class of cells. In Section 3.2 we proved

that ePPR models can uniformly approximate any continuous function to an arbitrary

degree of precision. We validated this generality empirically. First, due to the divisive

normalization, the model of the simulated complex cell (Equation 3.8) cannot be exactly

represented by an ePPR model (Equation 3.6). Nevertheless, ePPR approximations were

very good (Figure 3.2), and these approximations remained good for different strengths of

divisive normalizations (Appendix 3.8.5). Second, interactions between pixels of images

at different delays are relevant to the responses of the simulated complex cell (Equa-

tion 3.8). These interactions are neglected by ePPR models without time interaction. In

spite of this, ePPR models without time interaction provided good approximations (Fig-

ure 3.10, Appendix 3.8.4). Also, interactions between pixels of images at different delays
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were relevant for the cortical complex cell, as evidenced by the substantially better pre-

dictions of the ePPR model with time interaction over those of the ePPR model without

time interaction (orange versus pink curves in Figure 3.11c). For this cell ePPR models

without time interaction were very similar to the ePPR models with time interactions

(whose predictive power was very close to an upper bound on the predictive power of any

model). And third, ePPR provided a reasonable approximation to a linear-nonlinear-

linear extension of the simulated complex cell model, Figure 3.5.

Since ePPR makes no assumptions about the statistical properties of its inputs, it is

well-suited to characterize visual cells from their responses to arbitrary, including nat-

ural, inputs. We tested this with simulated and physiological data. For the simulated

cell we showed that ePPR models estimated from natural and random data well matched

the simulated cell model (Figure 3.2). And for the cortical complex and simple cells, we

showed that models estimated from natural data were very consistent with those esti-

mated from random data, and with previous characterizations of these cells (Figures 3.6

and 3.8).

Because ePPR is an entirely non-parametric algorithm, and because the cell responses

were very noisy, ePPR estimates could have been very variable. However, this was not

the case (Figures 3.2d, 3.2g, 3.6e, and 3.8e). Furthermore, ePPR models estimated from

natural and random data, i.e. with stimuli and responses with very different statistics,

were very similar to each other for the simulated cell (Figure 3.2), for the complex cell

(Figure 3.6) and for the simple cell (Figure 3.8). Several features of the ePPR estimation

procedure help reduce the variability of the estimated parameters. First, the projection

pursuit strategy used by ePPR reduces the original large-dimensional problem of estimat-

ing all the parameters in the ePPR model, Equation 3.6, to a sequence of low-dimensional

problems of alternatively minimizing the criterion in Equation 3.7, first with respect to

the nonlinear function φ, and then with respect to the filter, α. Second, the optimization

criterion for the filters, α in Equation 3.7, penalizes non-smooth filters. And third, the
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estimation of the nonlinear functions, φ in Equation 3.7, is performed using smoothing

splines with a relatively large penalty for non-smooth estimates.

Parameters of estimated ePPR models displayed properties previously reported in

the literature. For both the simple and complex cells, estimated filters had an ori-

ented Gabor-like shapes with similar spatial frequencies and orientations (Movshon et

al., 1978b, 1978a). For the simple cell, different frames of estimated filters had a very

similar shape, but their amplitude was modulated in time, in agreement with the space-

time separable model for simple cells (DeAngelis et al., 1993b, 1993a). For the complex

cell, inhibition appeared late in time, as previously reported (Rust et al., 2005; David

et al., 2004). For the complex cell, most nonlinear functions were full-squared rectifica-

tions (Figure 3.6b, and 3.6d), while for the simple cell they were half-wave rectifications

(Figure 3.8b, and 3.8d).

Although the main goal of this article was to demonstrate the feasibility of ePPR, the

results presented here suggest that the response properties of cortical cells may depend

on the statistics of the stimuli used to probe them. Recently, Sharpee et al. (2008)

showed that spatio-temporal LN models of simple cells cells, estimated from natural and

random stimuli, displayed significant differences. However, these LN models contained

only one filter. Here, we showed, for the first time, differences in spatio-temporal LN

models, with multiple filters, estimated from natural and random stimuli. We found that

ePPR recovered more filters from natural than from random data, for the complex cell

(Figure 3.6f), for the simple cell (Figure 3.8f), but not for the simulated cell (Figure 3.2h).

Also, ePPR recovered inhibitory terms at later delays in the models of the complex cell

estimated from natural, but not from random, data, consistent with the findings of David

et al. (2004). Furthermore, the simple cell models estimated from natural responses,

but not those estimated from random responses, displayed properties typical of complex

cells, supporting the notion by Mechler and Ringach (2002) that simple and complex

cells are not two different classes of cells but lie in a continuum. This study thus provides

further support for the notion that the observable response properties of sensory cells
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depend on the statistics of the stimuli used to probe them (Woolley, Fremouw, Hsu,

& Theunissen, 2005; Wooley et al., 2006; Theunissen et al., 2000; David et al., 2004;

Felsen et al., 2005; Sharpee et al., 2006, 2008; David, Mesgarani, Fritz, & Shamma,

2009). However, differences in parameters of models estimated from responses of cells to

stimuli with different statistics should be interpreted with care. These differences could

be artifacts of using overly-constrained models (Christianson, Sahani, & Linden, 2008).

But this does not appear to be the case for ePPR and the cells characterized in this

article. Because the ePPR model with time interactions can uniformly approximate, to

an arbitrary degree of precision, any continuous function with inputs in the unit cube

(Section 3.2), it is not overly-constrained to represent a large class of cells. For instance,

due to the divisive inhibition, the simulated complex cell characterized in Section 3.3 could

not be represented exactly by an ePPR model. But, despite this constraint, ePPR models

estimated from natural and random stimuli were very similar to each other (Figure 3.2).

We compared ePPR with state of the art methods for the estimation of linear-

nonlinear models, and ePPR performed better, or at the same level, as these methods.

From the cells we analyzed in the dataset from Felsen et al. (2005), the cortical complex

cell shown in this article is the ones for which we obtained the best correlation coefficient.

However, similar correlation coefficients, and qualitatively similar ePPR estimates, were

obtained for other complex cells (Figure 3.14, Appendix 3.8.7).

The method with results more similar to ePPR was MID. The estimation of multiple

filters is the most important advantage of ePPR over MID. For the simulated cell ePPR

well approximated the three-dimensional structure of the true filter space (Figure 3.2b,

orange curve in Figure 3.2d, Figure 3.2e, and orange curve in Figure 3.2g), while MID

well approximated the true filter space only along one dimension (Figure 3.3a, red curve

in Figure 3.2d, Figure 3.3b, and red curve in Figure 3.2g). And from responses of the

real complex cell to natural stimuli ePPR recovered six filters (Figure 3.6a), while MID

recovered only one well-structured filter (Figure 3.7a), and the predictive power of ePPR

filters was substantially better than that of MID filters (Figure 3.6f). But, this advantage
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of ePPR over MID does not always hold. From responses of the real complex cell to ran-

dom stimuli ePPR and MID recovered very similar sets of three filters (Figure 3.6c and

Figure 3.7b). Note that the sequential procedure that we used to estimate multiple MID

filters (Section 3.7.9) is not optimal for natural stimuli. The optimal procedure requires

the joint estimation of all the filters. This is a very challenging problem. For example,

to jointly estimate the five filters of the complex cell would require the estimation of

a five-dimensional probability distribution. If this estimation is done using histograms,

as in the current implementation of MID, it will be almost impossible to record enough

physiological data to accurately sample all the bins in a five-dimensional histogram, and

obtain reliable estimates of the joint probability distribution. Currently an implementa-

tion of a procedure to jointly estimate MID filters is not publicly available. Eventually,

if this implementation becomes available, it will be important to compare the new MID

filters with those from ePPR.

The greedy estimation of the forward model by PPR is not guaranteed to converge to

the global optimum. For this reason PPR uses the backward procedure to discard spurious

terms from the forward model. However, for responses with large amounts of noise, or

models estimated with small data sets, the backward procedure does not remove all

spurious terms from the forward model. So, in ePPR we use a model selection procedure

to select the best model from the collection of models returned by the backward procedure.

Still, the backward and model selection procedures are heuristic and do not guarantee

convergence to the global optimum. To study how frequently ePPR returned suboptimal

solutions, for the simulated and cortical cells studied in this article we estimated five ePPR

models from different subsets of the training dataset (Section 3.7.4). For data sets with

intermediate or low noise, models of the simulated cell were all very good approximations,

with the correct number of filters (Figure 3.2h), which were very similar to the true filters

and had small variability (Figures 3.2b, 3.2d, 3.2e, and 3.2g), and with nonlinear functions

with correct shape and sign (Figures 3.2c and 3.2f). For large data sets, models of the

complex cell estimated from natural data approached an upper bound on the predictive
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power of any model (Figure 3.6a). So, for models estimated from good quality data, the

convergence to suboptimal solutions does not seem to be a severe problem. ePPR models

estimated from datasets with large amounts of noise, or with small or intermediate sizes,

recovered less terms than the optimal (Figures 3.2h, 3.6e, and 3.8e) but, thanks thanks

to a stringent model selection procedure (Section 3.7.6), did not contain spurious terms.

To estimate spatio-temporal models one can use ePPR models with or without time

interactions (Section 3.2.2). Models with time interaction are more general than models

without time interaction, but require estimating larger spatio-temporal filters (and there-

fore more training data), and knowing the memory of the cell in advance. In contrast,

models without time interaction contain smaller spatial filters, and the estimation algo-

rithm discovers the memory of the cell in only one run. With the exception of the LNL

cell (Section 3.3.3), for all the cells studied in the main body of this article –that have

been probed with a large stimuli set, and whose response depends on only three or four

previous frames– we estimated models with time interaction. But for the simulated LNL

cell –whose response depends on movie frames presented up to 9 delays prior to the cell

response– and for the simulated cell probed with the temporally correlated natural movie

ensemble –for which the temporal correlation reduces the effective number of inputs– we

estimated models without time interaction.

The model used in ePPR is that of an artificial neural network with three layers

(input layer, hidden layer, and output layer). Thus, ePPR is related to the neural network

method proposed by Prenger et al. (2004). Both methods use non-parametric models that

can characterize a large variety of visual cells. Also, because both are regression-based

methods, they can estimate their parameters using natural stimuli. However, because the

neural network method estimates all its parameters simultaneously, it does not overcome

the curse of dimensionality. A detailed comparison between projection pursuit and neural

network methods is given in Hwang et al. (1994). To bypass the curse of dimensionality

Prenger et al. (2004) used projections of the input images in a few principal components

as inputs to the neural network. But, important information about the inputs could be
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lost in these low-dimensional projections. The strategy used by ePPR to bypass this

problem is a more general one.

Below we summarize some advantages and disadvantages of the ePPR algorithm.

Advantages

1. Generality. As discussed above, the ePPR model is very general and can can ap-

proximate many classes of cells.

2. Finding the model structure in only one estimation. Provided the number of terms

per delay, ML
d , and the number of delays, DL, of the forward model are sufficiently

large, only one estimation of an ePPR model without time interactions finds the

model structure, i.e., number of delays and number of terms for each delay, required

to characterize a given cell. This feature is nicely illustrated by the ePPR model

estimated for the LNL simulated cell (Section 3.3.3).

3. Natural stimuli. As discussed above, ePPR models can be estimated using nat-

ural stimuli. This is an advantage over previous methods that require Gaussian

stimuli (Chichilnisky, 2001; Rust et al., 2005).

4. Temporal dimension. Previous methods (Touryan et al., 2005; Rapela et al., 2006;

Chen et al., 2007) used only one image in the past to predict the current response,

while ePPR uses several past images. As shown in Figures 3.4, 3.6f, and 3.6g,

spatio-temporal ePPR models predicted responses substantially better than purely

spatial PPR and nSTC models.

5. Spatially 2D model. Rust et al. (2005) estimated a spatio-temporal LN model vi-

sual cells. However, to reduce the number of parameters in their estimations, the

input images varied along a single spatial dimension (optimally-oriented bars). Due

to its efficient optimization algorithm, and to the smooth prior for its filters (Sec-

tion 3.2.3), ePPR allows the use of two-dimensional images.
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6. Multiple filters. We have shown that for the simulated cell (Figure 3.2), the com-

plex cell (Figure 3.6), and the simple cell (Figure 3.8), ePPR recovered more

than one filter. This contrasts with other methods that can only estimate one

filter (Chichilnisky, 2001).

7. Suppressive filters. ePPR successfully recovered the suppressive filter of the simu-

lated cell (Figure 3.2), and a suppressive filter from responses of the cortical com-

plex cell to natural stimuli (Figure 3.6). To our knowledge, ePPR is the first

non-parametric algorithm that has been shown to estimate suppressive filters from

responses of visual cells to natural stimuli.

8. Improved predictions. ePPR provided better predictions of the responses of the

simulated cell (Figure 3.4), the complex cell (Figure 3.6f, and 3.6g), and the simple

cell (Figure 3.8f) than previous methods.

Disadvantages

1. Spurious terms. The analysis of projection pursuit techniques by Huber (1985)

concludes with a nice description of this limitation:

Perhaps the practical conclusion to be drawn is that we shall have to acquiesce to the

fact that Projection Pursuit will in practice uncover not only true but also spurious

structure, and that we must weed out the latter by other methods, for example by

validating the results on different data sets.

To weed out the spurious structure from ePPR models we used a model selection

procedure based on cross-validation (Section 3.7.6). With data sets large enough to

perform reliable cross-validations, our model selection procedure worked very well.

However, large recordings are not very common in visual neurophysiology. So we

are currently investigating Bayesian model selection procedures to perform model

selection without the need of cross-validation data.
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2. Hyper-parameters. As shown in Section 3.7.8, ePPR contains many hyper-parameters.

We used reasonable heuristics to select their values (Section 3.7.6), but we would

like to learn them from data, as done in Roosen and Hastie (1994) with the degrees

of freedom of the splines.

3. Nonlinearities. The ePPR estimation algorithm avoids the curse of dimensionality

by working with one-dimensional projections. The cost is that it is poorly suited

to characterize highly nonlinear functions (Huber, 1985).

4. Global convergence. As discussed above, ePPR is not guaranteed to converge to the

global optimum. However, this is a problem shared by all non-parametric nonlinear

optimization techniques.

5. Speed. The ePPR estimation algorithm is iterative, requiring several fits and refits

of models with different numbers of terms, and is thus very slow. On a personal

computer, with a 3GHz processor and 2GB of memory, estimating the example

ePPR model for the cortical complex cell from natural data requires approximately

45 minutes. The low speed of ePPR contrast with the high speed of nSTC. Spatial

nSTC models can be estimated in seconds. However, ePPR is fast compared to

MID. Estimating the five MID filters of the complex cell from natural data, using

the sequential approach, requires approximately 25 hours.

In conclusion, this article has demonstrated the feasibility of ePPR, a very general

method for the spatio-temporal characterization of visual cells from arbitrary (including

natural) stimuli, and showed that ePPR compared favorably with information-theoretic

and spike-triggered techniques.
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3.7 Methods

3.7.1 Overview of the experimental paradigm

The cortical complex and simple cells analyzed here were subjected to the following

sequence of inter-dependent experiments, as described in Felsen et al. (2005).

1. Responses from a cell were recorded to a quasi-natural sequence ensemble (see

Section 3.7.2).

2. The filter(s) of the cell were estimated using the responses to natural images recorded

in Step 1.

3. An ensemble of random images, matched to the ensemble of natural images used in

Step 1, was constructed (Section 3.7.2).

4. Finally, responses from the cell in Step 1 were recorded to several interleaved repeats

of the random and a novel natural ensemble.

3.7.2 Stimulus ensembles

The following stimulus ensembles were used to characterize the simulated and cortical

cells.

Natural movie : This ensemble consists of the center patches (16×16 pixels) extracted

from a digitized natural movie (van Hateren & Ruderman, 1998). It has the spatial

and temporal correlation structure present in natural movies. This ensemble was

used to probe the simulated cell in Appendix 3.8.6.

Natural sequence : This ensemble is identical to the natural movies ensemble, with

the exception that the frames in the movie have been randomly resorted. Thus,

it contains the spatial, but not the temporal, correlation in natural movies. This

ensemble was used as the natural stimuli to probe all simulated cells, with the

exception of that in Appendix 3.8.6.
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Random sequence : Each frame of this ensemble was matched to the corresponding

frame in the natural sequence ensemble, such that a) the matched frames had the

same mean and root-mean-square contrast, and b) the dot products of each true

filter of the simulated the cell onto the matched frames were equal. Random images

contain no spatial structure and are visually indistinguishable from white noise.

However, due to the matching procedure, they are not white noise. Further details

of the matching procedure are provided in Felsen et al.(2005). This ensemble was

the random stimuli used to probe all simulated cells.

Quasi-natural sequence : Raw images were selected at random from a database con-

sisting of a variety of digitized natural movies (van Hateren & Ruderman, 1998),

and the center patch (12 × 12 pixels) of each image was retained. These patches

were normalized to have the same root-mean-square contrast and, to maximize their

diversity, one patch of each a pair of very similar patches was excluded from the

ensemble. Further details are given in Felsen et al.(2005). This was the natural

ensemble used to probe the cortical complex (Section 3.4) and simple (Section 3.5)

cells.

Quasi-random sequence : This ensemble was constructed in the same way as in the

random sequence ensemble, but with frames matched to the quasi-natural sequence

ensemble. It was used to probe with random stimuli the cortical complex (Sec-

tion 3.4) and simple (Section 3.5) cells.

3.7.3 Simulated responses

To study the dependence of ePPR estimates on the noise level of the responses (Fig-

ures 3.2, 3.4), we generated three sets of responses with different noise levels. In Equa-

tion 3.8, the constant γ controls the mean, and noise, of the responses. We set γ so

that at the lowest, intermediate, and highest noise levels the mean of ȳ in Equation 3.8

was E[ȳ] =5.62, 0.56, and 0.17 spikes/image, respectively. The intermediate noise level
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was selected so that the mean correlation coefficient between simulated responses and

ePPR model (without time interactions) predictions was similar to that of the cortical

complex analyzed in Section 3.4 (0.58 for the simulated cell versus 0.61 for the complex

cell). Simulated responses to random stimuli were generated using the same parameters

as for responses to natural stimuli.

We simulated a LNL model by filtering the frame rates generated by the above model

with intermediate amount noise with a linear-phase lowpass filter with a cutoff frequency

of π/2 cycles per sample and with a length of 15 samples. The output of this filter at

time n was the mean of a Poisson random variable giving the number of spikes at time

n. These simulated responses were used to estimate the models in Figure 3.5.

To assess the dependence of ePPR estimates on the amount of divisive inhibition

(Figure 3.12), we fixed the value of the γ parameter, to the value used above to generated

responses with intermediate amount of noise, and varied the inhibitory constant ω so that

the mean of the denominator in Equation 3.8 was 4.26, 20.58, and 40.17.

To examine the effect of temporal correlations on ePPR estimates (Figure 3.13) we

simulated responses to the natural movie ensemble (Section 3.7.2) with the parameters

used above to generated responses with intermediate amount of noise.

3.7.4 Data partitioning

For the simulated and cortical cells, the complete dataset contained 24,000 responses. We

generated training datasets of different sizes: 20,000, 10,000, and 3,000 responses. For

each training dataset we use a disjoint set of 4,000 responses as testing dataset. Each

testing dataset was further partitioned into 8 disjoint testing subsets, with 500 responses

each. From each training dataset we generated 5 fitting subsets, by excluding contiguous

and disjoint subsets of 20% of the responses of the training dataset. For each fitting

subset, the excluded responses made the validation subset. The validation subset was

further partitioned into 8 disjoint subsets.

127



For example, the training subset with 20,000 responses contained responses to images

1 to 20,000. The corresponding testing dataset contained responses to images 20,001 to

24,000. From the training subset we generated 5 fitting subsets. For instance, the first

fitting subset contained responses to images 1 to 16,000, and the corresponding valida-

tion subset contained responses to images 16,001 to 20,000. The second fitting subset

contained responses to images 1 to 12,000 and 16,001 to 20,000, and the corresponding

validation subset contained responses to images 12,001 to 16,000.

For a given training dataset, the 5 fitting subsets were used to estimate 5 different

ePPR models. For each estimation of an ePPR model, the validation subsets were used to

select the final ePPR model, out of those returned by the backward-stepwise procedure,

as shown in Section 3.7.6. Finally, the testing subsets were used to assess the predictive

power of the final ePPR model.

3.7.5 Similarity between two sets of filters

What matters to determine the similarity between two sets of filters is not the similarity

between any pair of filters in the sets, but the similarity between the spaces spanned by

the two sets of filters. Call S1 and S2 the spaces spanned by the sets of filters. If the

dimension of S1 equals that of S2, then principal angles (Golub & van Loan, 1996) are

good measures to study their similarity. For the simulated complex cell, the dimension of

the true filter space is three, which equaled the dimensions of the filter spaces estimated

by ePPR and MID. So, we used principal angles to study the similarity between the filters

of the simulated cell and those estimated by ePPR or MID (Figures 3.2d, 3.2g, and 3.12a).

When comparing two subspaces of dimension n one can compute n principal angles. This

turned to be an advantage of principal angles respect to single-valued distance measures

because, as shown below, the three principal angles of the simulated cell gave us further

insight about the quality of the ePPR and MID estimates than what we could have

obtained from a single-value distance measure.
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Principal angles

Let S1 and S2 be subspaces of Rm whose dimensions satisfy

p = dim(S1) ≥ dim(S2) = q ≥ 1

The principal angles θ1, . . . , θq ∈ [0, π/2] between S1 and S2 are defined recursively by

cos(θk) = max
u∈S1

max
v∈S2

uT v = uTk vk

subject to:

||u|| = ||v|| = 1

uTui = 0 i = 1 : k − 1

vT vi = 0 i = 1 : k − 1

Note that the principal angles satisfy 0 ≤ θ1 ≤ . . . ≤ θq ≤ π/2. The vectors {u1, . . . , uq}

and {v1, . . . , vq} are called the principal vectors. If the columns of Q1 and Q2 define

orthonormal bases of S1 and S2, respectively, then cos(θi) = σi, with σi the ith singular

value of QT
1 Q2.

The sine of the first principal angle, sin θ1, measures the similarity between the closest

vectors in S1 and S2. Thus, sin θ1 can be interpreted as an indication of how well S1

approximates S2 along one dimension. And for k > 1, the sine of the kth principal

angle, sin θk, measures the similarity between the closest vectors in the subspace of S1

orthogonal to the space spanned by {u1, . . . , uk−1}, and the subspace of S2 orthogonal to

the space spanned by {v1, . . . , vk−1}. Then, sin θk indicates how well S1 approximates S2

along k dimensions. For the simulated cell, this interpretation of principal angles showed
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that MID approximations were good along one dimension but poor along more than one

dimension (Figures 3.2d and 3.2g).

3.7.6 Selecting the best ePPR model by cross-validation

The backward-stepwise procedure, Listing 8, returns a set of models. We used a cross-

validation procedure to select the best model from this set, as described here. To give

a concrete example, we provide details of a cross-validation procedure used to obtain an

ePPR model with time interaction estimated from simulated responses with large levels of

noise to natural stimuli. For this estimation, the backward-stepwise procedure returned

a set of models having between 1 and 6 terms. We then used each of these 6 models

to predict responses to the 8 validation subsets (Section 3.7.4). Figure 3.9a plots the

correlation coefficients between these predictions and the responses of the simulated cell

as a function of the number of terms of the ePPR models. For each number of terms, n,

the value j along the y-axis, 1 ≤ j ≤ 8, is the correlation coefficient between the responses

from the simulated cell, to images in the jth validation subset, and the predictions of the

ePPR model with n terms.

We seek to select the model that has the best predictive power, while containing the

fewest terms. Thus, the predictions of this model should be better than those of all models

with fewer terms, and not worse than those of models with more terms. To compare the

predictive power between two models we test, using a non-parametric Wilcoxon signed-

rank test, if the correlation coefficients of one of the models are larger/smaller than those

of the other model. For the example cross-validation procedure, with the correlation

coefficients shown in Figure 3.9a, we found the ePPR model with 4 terms yielded better

predictions than all ePPR models with fewer terms (p < 0.05 for all Wilcoxon signed-

rank tests). Also, we could not conclude that the ePPR model with 4 terms yielded worse

predictions than any ePPR model with more terms (p > 0.1 for all Wilcoxon signed-rank

tests). Thus, to characterize the simulated cell from natural data, the best ePPR model

contains 4 terms. The filters of this model are shown in Figure 3.9b.
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Figure 3.9: Selection of the best ePPR model by cross-validation. (a) correlation coeffi-
cients between ePPR model predictions and cell responses as a function of the number
of terms in ePPR models. For each number of terms, n, the value j along the y-axis,
1 ≤ j ≤ 8, is the correlation coefficient between the responses from the simulated cell to
images in the jth validation subset, and the predictions of the ePPR model with n terms.
The ePPR model with 4 terms predicts better than all models with smaller number of
terms (p < 0.05 for all Wilcoxon signed-rank tests). We could not conclude that the ePPR
models with 4 terms predicted worse than any model with more than 4 terms (p > 0.1
for all Wilcoxon signed-rank tests). Thus, the best ePPR model contains 4 terms. (b):
filters of the ePPR model with 4 terms. The third filter from the left is spurious. For the
simulated cell, spurious filters appeared only in models estimated from responses with
the largest noise level. They were removed from the model using the “Removal of spu-
rious terms” procedure. (c): final ePPR estimate obtained by applying the “Removal of
spurious terms” procedure to the ePPR model with 4 terms.
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For responses with high levels of noise, the ePPR model maximizing the predictive

power can contain spurious terms (e.g., third filter from the left in Figure 3.9b). To

remove these spurious terms we use the following procedure.

Removal of spurious terms

In the plot of correlation coefficients versus number of ePPR terms (Figure 3.9a), we see

that before reaching the number of terms at which the predictive power of ePPR models

saturates (4 terms in Figure 3.9a), in most cases, when the backward-stepwise procedure

drops a term from a model with n terms, it yields a new model with n− 1 terms having

worse predictive power. This means that the term dropped by the backward-stepwise

procedure contributed to improve the predictions of the model with n terms. However,

occasionally, the model with n − 1 terms has equal or better predictive power than the

model with n terms (e.g., n=3 in Figure 3.9a). This means that the term dropped by the

backward-stepwise procedure did not contribute to improve the predictions of the model

with n terms. With simulated data we verified that these dropped terms are spurious

ones. Then, to detect spurious filters, for each number of terms, n, between 2 and the

maximum number of terms, we test whether the correlation coefficients of the ePPR

model with n terms are significantly larger than those of the ePPR model with n − 1

terms (Wilcoxon signed-rank test, p < 0.05). If the test does not reach significance, the

term dropped from the model with n terms is removed from the model maximizing the

predictive power.

In the example cross-validation procedure considered above, the correlation coeffi-

cients of the models with 3 terms were not significantly larger than those of the models

with 2 terms (Wilcoxon signed-rank test, p > 0.1). We therefore removed from the ePPR

model with 4 terms (Figure 3.9b) the term dropped by the backward-stepwise proce-

dure from the models with 3 terms, obtaining a final model which filters are shown in

Figure 3.9c.
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Note that the procedures that we use to select the ePPR model maximizing predictive

power and to remove spurious terms depend only on the outcomes of hypothesis tests,

and not on user-dependent subjective criteria. With simulated data, these procedures

enabled us to recover the true model, even under considerably noisy conditions. And with

physiological data, for models estimated from different fitting subsets, or from natural

and random data, this procedure produced very consistent results.

3.7.7 Upper bound on correlation coefficients for predictions

For the simulated responses, for which we knew the firing rate, r = ȳ in Equation 3.8, we

used as the upper bound the correlation coefficient between the noisy responses, y, and

the firing rate, upperbound = ρ(r, y).

For the responses of the real cell, for which we did not know the firing rate, we esti-

mated it as the mean response of the M repeats of N stimuli, r̂(i) = 1
M

∑M
m=1 ym(i), 1 ≤

i ≤ N , and then used as the upper bound the maximum correlation coefficient between

the estimated firing rate and the response to any repeat of the stimuli, upperbound =

max1≤m≤M ρ(r̂, ym). Note that when the number M of repeats is small, as in the com-

plex cell characterized with random data, or the simple cell, the mean of the M repeats

will be a poor estimate of the firing rate, and the resulting upper bound will be loose

(Figures 3.6g, 3.8f, 3.8g).

3.7.8 ePPR hyper-parameters

The only ePPR hyper-parameter (Section 3.8.2.2) that we selected (by cross-validation)

for each ePPR estimation is the regularization parameter for the filters, λ. The memory

of the forward model, DL, and the number of terms at delay d of the forward model, ML
d ,

were selected by cross-validation for each cell, and kept constant across different condi-

tions, i.e., noise levels, number of stimuli, or type of stimuli. The values selected for these

parameters for the example cells shown in this article appear in Table 3.1. The remainder
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Figure λ ML
d

3.2b 15 6

3.2e 15 6

3.6a 75 10

3.6c 75 10

3.8a 10 10

3.8c 75 10

3.10a 15 6,6,4,2

3.11a 75 6,6,6,3

3.12b 15 6

3.13a 15 6,6,4,2

3.13b 150 6

3.14b 3 3,6,6,4,3,3

Table 3.1: ePPR hyper-parameters for the cells analyzed in this article. Only shown
are the values of the regularization parameter, λ, and number of terms per delay for
the forward model, ML

d . The remainder hyperparameters were fixed for all the ePPR
estimations (see text). ML

d = (i, j, k, . . .) stands for i terms at delay 0, j terms at delay
1, k terms at delay 2, . . . .

ePPR hyper-parameters were kept constant for all the cells analyzed in this article (d=5,

addTermsCV=0.01, refitCV=0.001, r0=1, rmax=1,000, and iterlim=1,000).

3.7.9 MID

The maximally informative dimension algorithm (Sharpee et al., 2004) estimates a set of

filters {v̂1, v̂2, . . . , v̂n} that maximize the mutual information between cell responses and

projections of the stimuli on those filters, i.e., v̂1, . . . , v̂n = argmaxṽ1,...,ṽn I({XT ṽ1, . . . , X
T ṽn}, Y ),

where X and Y are random variables associated with the stimuli and responses, respec-

tively. An implementation of MID is freely available from Dr. Sharpee’s laboratory web

site (http://cnl-t.salk.edu/Download/). However, this implementation only allows

to estimate one filter, i.e., n = 1 in the previous maximization. Since a multi-filter im-

plementation of MID is unavailable, we estimated multiple filters sequentially, by finding

the first filter using the one-filter implementation of MID, and then searching in the or-

thogonal space for the next filter (Sharpee, personal communication). This sequential

procedure is guaranteed to converge to the right filters provided the stimuli are Gaussian,

either with or without correlations (Sharpee, 2007).
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Having estimated a first MID filter with D delays, to estimate a second MID filter,

we first build a first set of spatio-temporal stimuli set as follows. If x(n) is the stimulus

at time n, then the corresponding first spatio-temporal stimulus is w(n) = [x(n − (D −

1)), . . . , x(n−1), x(n)], where [. . .] is the concatenation operator. Next, the second spatio-

temporal stimuli set is obtained by removing from each stimulus in the first spatio-

temporal stimuli set its component along the first MID filter. Then, the second MID

filter is estimated by running the single-filter implementation of MID with the second

spatio-temporal stimuli set. And, in general, having estimated the nth MID filter, the

n+ 1th spatio-temporal stimuli set is constructed by removing from each stimulus in the

nth spatio-temporal stimuli set its component along the nth MID filter. Then the n+1th

MID filter is estimated by running the single filter implementation of MID with the n+1th

spatio-temporal stimuli set.

To improve the MID estimates, we varied the number of bins and number of iterations

in MID estimations. We always started with the default parameters (15 bins and 1,000

iterations) and then tried a few other values of these parameters. But the computational

cost of MID is very high (on a personal computer, with a 3GHz processor and 2GB

of memory, the estimation of a single MID filter requires between 4 and 8 hours, so a

complete MID characterization of a cell with 5 filters requires between 20 and 40 hours)

and we could not do an exhaustive exploration of the parameter space for the number of

bins and iterations.

3.7.10 nSTC

For Gaussian white noise stimuli, if a cell is selective to a set of relevant dimensions,

then the variance of stimuli that elicit spikes (spike-triggered stimuli) along these di-

mensions should be higher or lower than the variance along non-relevant dimensions.

The dimensions with high or low variance correspond to the eigenvectors of the auto-

covariance matrix with correspondingly high or low eigenvalues. For Gaussian stimuli,

Spike-Triggered Covariance (STC) (de Ruyter van Steveninck & Bialek, 1988) identifies
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the relevant dimensions of a cell as the eigenvectors of the autocovariance matrix of the

spike-triggered stimuli that correspond to significantly high or low eigenvalues.

Touryan et al. (2005) proposed a modification to STC for natural stimuli. This

modification starts by whitening the natural stimuli. Denote by U to the matrix of

eigenvectors of the autocovariance of the stimuli (one eigenvector per column), and by λi

to its eigenvalues. The matrix of normalized eigenvectors is defined as

Un = U













1√
λ1

0

. . .

0 1√
λn













(3.9)

Then the whitened natural images are Xw = XUn. STC for natural images now performs

a classical STC analysis on the whitened natural images, obtaining a set of relevant dimen-

sions, Vw (one relevant dimension per column). Finally, the desired relevant dimensions

of the cell, V (one relevant dimension per column), are V = UnVw.

The autocovariance matrix of natural images is nearly singular, so its last eigenvalues

(λi, i >> 1) will be very small and tend to amplify noise. To avoid this effect, a threshold

is selected and, for each eigenvalue λj less than this threshold, the diagonal value 1/
√

λj

in Equation 3.9 is set to zero. The results reported here correspond to using a threshold

such that approximately 35% of the eigenvalues were greater than it, as in Touryan et

al. (2005).

3.7.11 rSTA

If the input images were Gaussian white noise, the filter α could be estimated by cross-

correlating the responses with the images, α̂ = Cyw (de Boer & Kuyper, 1968). But,

natural images are not Gaussian white noise (Field, 1987; Ruderman & Bialek, 1994;

Simoncelli & Olshausen, 2001). Nevertheless, if the cell response is a linear function

of its inputs, the filter α can be estimated as α̂ = C−1
wwCyw, where Cww represents the
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autocorrelation of the inputs (Theunissen et al., 2001). The autocorrelation matrix, Cww,

for natural stimuli is nearly singular. Therefore, its true inverse tends to amplify noise.

To avoid this problem, we regularized the autocorrelation matrix using the truncated

singular value decomposition (Hansen, 1987) and computed the pseudoinverse (Ben-Israel

& Greville, 1980) from this regularized matrix (Smyth et al., 2003). The computation of

the truncated singular value decomposition uses a threshold to decide how many singular

values to include in the regularized matrix. We selected the optimal threshold using k-fold

cross-validation (Efron & Tibshirani, 1993).

3.7.12 Multi-dimensional polynomial predictive model

Given a set of M spatio-temporal filters {f1, . . . , fM}, each with a temporal extent of

D delays, to predict the response of a cell at time t, we first computed the dot product

between each of the M filters and the concatenation of the images presented at times

t, t− 1, . . . , t− (D − 1), i.e., we computed the vector vt(i) = fT
i [x(t), . . . , x(t−D)], 1 ≤

i ≤ M . Then, we used this vector as input to a second-order multi-dimensional polyno-

mial (Equation 3.10) to generate the predictions at time t of the simulated (Figures 3.4

and 3.13f) and cortical (Figures 3.6f, and 3.6g) complex cells, or as input to a third-

order multi-dimensional polynomial (Equation 3.11) to generate the predictions of the

cortical simple cell (Figure 3.8). The coefficients of a polynomial model were estimated

by minimizing the mean-squared error between cell responses and the polynomial model

predictions.

y(t) = k0 +
M
∑

i=1

k1(i)vt(i) +
M
∑

i1=1

M
∑

i2=i1

k2(i1, i2)vt(i1)vt(i2) (3.10)

y(t) = k0 +
M
∑

i=1

k1(i)vt(i) +
M
∑

i1=1

M
∑

i2=i1

k2(i1, i2)vt(i1)vt(i2)

+
M
∑

i1=1

M
∑

i2=i1

M
∑

i3=i2

k3(i1, i2, i3)vt(i1)vt(i2)vt(i3) (3.11)
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To predict responses from the purely spatial filters of the ePPR models without time

interactions in Figure 3.13f (orange bar), we used the spatio-temporal polynomial model

in Equation 3.12. Given the spatial filters {fd
1 , f

d
2 }, 0 ≤ d ≤ 1 (Figure 3.13a), we first

computed the dot products between each of these filters and the image at delay d, i.e.,

we computed the vectors vdt (i) = (fd
i )

Tx(t − d), 0 ≤ d ≤ 1, 1 ≤ i ≤ 2. Then, we used

these vectors as inputs to the polynomial model in Equation 3.12.

y(t) = k0 +

M0
∑

i=1

k01(i)v
0
t (i) +

M1
∑

i=1

k11(i)v
1
t (i) +

M
∑

i1=1

M
∑

i2=i1

k002 (i1, i2)v
0
t (i1)v

0
t (i2)

+
M
∑

i1=1

M
∑

i2=i1

k012 (i1, i2)v
0
t (i1)v

1
t (i2) +

M
∑

i1=1

M
∑

i2=i1

k112 (i1, i2)v
1
t (i1)v

1
t (i2)(3.12)

3.7.13 Testing for difference in the predictive power of two models

To compare the predictive power of two models, we used them to predict responses to the 8

testing subsets, and computed Pearson correlation coefficients between these predictions

and cell responses. In this way, we constructed two sets of 8 correlation coefficients,

one for each model. In most cases, the variability of the correlation coefficients in each

set was large, and the error bars (size one standard deviation) of the mean correlation

coefficients of the two models intersected. However, it was frequently the case that for

each testing subset the correlation coefficient of one of the models was larger than that of

the other model. So, to compare the predictive power of the two models, for each testing

subset we paired the correlation coefficients of the two models, and used a one-sided

Wilcoxon signed-rank test (Hollander & Wolfe, 1999) to check if one element of the pair

was significantly larger than the other element.
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3.8 Appendices

3.8.1 PPR

3.8.1.1 PPR algorithm

A detailed description of the PPR algorithm appears in Friedman (1984a). For complete-

ness we provide an abridged description here. Equation 3.1 describes the PPR model

whose parameters are optimized by minimizing Equation 3.2, as described algorithmi-

cally in Listing 1. PPR consists of a forward stepwise procedure followed by a backward

stepwise procedure. The parameters of the algorithm are the responses, y, the input

images x, the length of the forward model, ML, the length of the final PPR model, M0,

and the degree of smoothness of the nonlinear functions, d.

Listing 1 PPR

Require: y, x,ML,M0, d
1: (model, r) ← FORWARD STEPWISE(y, x,ML, d) {Built forward model ŷ(x) = ȳ +

∑ML

m=0 βmφm(αT
mx)}

2: model ← BACKWARD STEPWISE(model, r, x,M0, d) {Obtained model ŷ(x) = ȳ +
∑M0

m=0 βmφm(αT
mx)}

3: return model

PPR forward stepwise procedure

For the forward procedure, an initial ML-term model of the form given in Equation 3.1

is constructed. An algorithmic description of this procedure is given in Listing 2. It

first defines the residuals r as the mean-subtracted responses. Then, it obtains an initial

estimate of α by reverse correlation. Next, it fits the first term of the model obtaining the

the approximation y = ȳ+β1φ1(α
T
1 x). It next defines the new residuals r = r−β1φ1(α

T
1 x)

and fits to them the second term of the model. This gives the approximation y =

ȳ+ β1φ1(α
T
1 x) + β2φ2(α

T
2 x). Continuing in this fashion, it arrive at the forward stepwise

estimated model.
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Listing 2 PPR: FORWARD STEPWISE

Require: y, x,ML, d
1: r ← y − ȳ
2: for m ∈ 1 to ML do
3: α← GET INITIAL ALPHA(r, x)
4: (βm, φm, αm) ← FIT NEW TERM(r, x, α, d) {Find (βm, φm, αm) minimizing J =

∑N
i=1(r − βmφm(αT

mx))2}
5: r = r − βmφm(αT

mx)
6: end for{Built model ŷ(x) = ȳ +

∑ML

m=0 βmφk(α
T
mx)}

7: return model = [(β1, φ1, α1), . . . , (βML
, φML

, αML
)]

PPR backward stepwise procedure

The forward stepwise procedure is greedy and it is not guaranteed to converge to the

optimal M term model. The terms in the model estimated by the forward stepwise

procedure do not necessarily appear in decreasing order of importance. To avoid this

problem, and estimate a model with the M0 most important terms, a backward stepwise

procedure is used. The strategy is to fit the forward model with a relatively large value of

ML, and then to search for models of size ML−1,ML−2, . . . ,M0 with optimal terms. The

starting parameter values to search for the M -term model with optimal terms are the M

most important terms of the model with M + 1 terms. Term importance is measured by

|βm| (1 ≤ m ≤ M + 1). The starting parameters values to search for the (ML − 1)-term

model with optimal terms are given by the forward stepwise model.

An algorithmic description of the backward stepwise procedure is given in Listing 3.

The procedure repeatedly drops terms from the model until the model contains only

M0 terms. After each term is dropped the residuals are adjusted (according to the

contributions of the dropped term), and all the terms of the model are refitted.

Listing 3 PPR: BACKWARD STEPWISE

Require: model, r, x,M0, d
1: for m ∈ML downto M0 do
2: ((β, φ, α), model)← DROP LEAST IMPORTANT TERM(model)
3: r ← r + β φ(αTx)
4: model← REFIT MODEL(model, r, x, d)
5: end for
6: return model
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The refit model procedure is described in Listing 4. It starts by refitting the βm

parameters in Equation 3.1, while fixing the remaining φm and αm parameters. This

is a linear problem, with regressors φm(αT
mx) and dependent variable y(x), that can be

solved using standard linear regression techniques. Then, following the PPR estimation

strategy, terms are refitted one at a time. In doing so, a term is removed from the model,

residuals are adjusted according to the contribution of the removed term, a new term

is fitted to the adjusted residuals, the newly fitted term is added to the model, and the

residuals are adjusted again according to the contributions of this term.

Listing 4 PPR: REFIT MODEL

Require: model, r, x, d
1: model← REFIT MODEL BETAS(model, r)
2: for m ∈ 1 to M do
3: (βm, φm, αm, model)← REMOVE TERM FROM MODEL(m, model)
4: r ← r + βmφm(αT

mx)
5: (β, φ, α)← FIT NEW TERM(r, x, αm, d)
6: model← ADD TERM TO MODEL((β, φ, α), model)
7: r ← r − βφ(αTx)
8: end for
9: return model

PPR fit new term procedure

When fitting a new term the sum of square error (SSE) in Equation 3.13 is minimized

with respect to the smooth function φ, and the projection direction α. This is done

iteratively. In each iteration α is first fixed and φ is adjusted to minimize the SSE. Then

φ is fixed and α is adjusted to minimize the SSE. This iteration is repeated until the SSE

stops decreasing. Finally, β is calculated and φ is normalized. The procedure is described

algorithmically in Listing 5.

SSE =
N
∑

i=1

(ri − φ(αTxi))
2 (3.13)
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Listing 5 PPR: FIT NEW TERM

Require: r, x, α, d
1: repeat
2: Fix α and find φk+1 minimizing SSE(α, φ) =

∑N
i=1(ri − φ(αTxi))

2 {Smooth the
scatter plot (αTxi, ri) using a smoothing spline or Friedman’s ‘super smoother’.}

3: Fix φk+1 and update α along a Gauss-Newton descent direction δk of
SSE(α, φk+1) : αk+1 = αk + δk.

4: until SSE stops decreasing
5: β ←

√

E{φ2(αTx)}
6: φ← φ/β
7: return (β, φ, α)

To adjust φ, with α fixed, the procedure projects the input images onto α, pi = αTxi,

builds a scatter plot with the pairs of projections and residuals, (pi, ri), and smooths the

scatter plot using a smoothing spline (Green & Silverman, 1994), or Friedman’s ‘super

smoother’ (Friedman, 1984b), giving the adjusted φ.

With φ fixed the SSE in Equation 3.13 can be expressed as the L2 norm of a nonlinear

function h depending on α, as shown in Equation 3.14. Then, finding the value of α

minimizing the SSE reduces to a nonlinear least-squares problem, which PPR solves

using the Gauss-Newton algorithm (Bertsekas, 1999).

SSE =
N
∑

i=1

(ri − φ(αTxi))
2 =

N
∑

i=1

|hi(α)|
2 = ||h(α)||22 (3.14)

where hi(α) = ri − φ(αTxi)

and h(α) = (h1(α), . . . , hN (α))

Briefly, the Gauss-Newton algorithm produces a sequence α1, α2, . . . such that ||h(αk)||
2
2

converges to a minimum. Given αk, we obtain αk+1 using Equation 3.15. The value of

δk is selected to minimize ||h(αk+1)||
2
2. In doing so the Gauss-Newton algorithm approx-

imates h(αk+1) using its first-order Taylor expansion, ĥ(αk+1) = h(αk) + ∇
Th(αk)δk,

and estimates δk satisfying Equation 3.16. From the first-order necessary conditions for
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a minimum of Equation 3.16, δk is the solution of the linear system of equations in

Equation 3.17.

αk+1 = αk + δk (3.15)

δk = argmin
δ

1

2
||h(αk) +∇

Th(αk)δ||
2
2

= argmin
δ

1

2

[

||h(αk)||
2
2 + 2∇h(αk)h(αk)δ + δT∇h(αk)∇

Th(αk)δ
]

(3.16)

∇h(αk)∇
Th(αk)δk = −∇h(αk)h(αk) (3.17)

In PPR αk is not updated until ||ĥ(αk)||
2
2 converges to a minimum. Instead, αk is

updated only once and then the algorithm proceeds with the next iteration.

3.8.1.2 Selection of PPR hyperparameters

Number of terms in the forward (ML) and final (M0) model

As described in Section 3.8.1.1, the PPR algorithm is controlled by parameters ML, the

number of terms in the forward model, andM0, the number of terms in the final model. To

estimate these parameters we fitted a PPR model using a very large value for ML, usually

ML = 10, and with M0 = 1. The PPR algorithm returns the goodness of fit (quantified

by the SSE in Equation 3.2 for the training data) of the backfitted models having between

M0 and ML terms. A plot of these goodness of fit values, as a function of the number of

terms in the PPR model, usually has an L shape. Before a given point, as we increase the

number of terms in PPR models, the goodness of fit improves considerably. But, after
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this point, increasing the number of terms improves the goodness of fit only marginally.

So, we selected the number of terms at which the SSE stops decreasing considerably as

the number of terms, MO, for the final PPR model. To allow refitting of the terms in the

final PPR model, we set the number of terms in the forward model to ML = M0 + 3.

Degree of smoothness of the nonlinear functions (d)

To estimate the smooth functions we used super smoother (Friedman, 1984b) with auto-

matic span selection.

3.8.2 ePPR

3.8.2.1 ePPR algorithm

Equation 3.6 describes the ePPR model whose parameters are optimized by minimizing

Equation 3.7. To overcome the curse of dimensionality, ePPR retains the optimization

strategy of PPR. There are three main differences between the PPR and ePPR estima-

tion algorithms. First, ePPR extends PPR to become spatio-temporal. For the model

without time interactions (Section 3.2), after fitting the responses to images presented

at the same time bin as the responses, residuals are fitted to images presented in previ-

ous time bins. For models with time interaction, images at several delays are concate-

nated to form spatio-temporal inputs, and spatial ePPR models are then estimated using

these spatio-temporal inputs, i.e., the ePPR estimation procedure is invoked with a delay

DL = 0 for the forward model. Second, to avoid problems caused by correlations in

natural images, ePPR uses a Trust Region method, instead of a Gauss Newton method,

to solve the nonlinear least-squares problem in Equation 3.19. Third, to obtain smooth

projection directions, ePPR penalizes the criterion in Equation 3.3 used in PPR to fit a

new term, as shown in Equation 3.18. The first difference requires minor changes in the

FORWARD STEPWISE, BACKWARD STEPWISE, and REFIT MODEL procedures for the estimation

of models without time interactions, and requires no change in the PPR algorithm for
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the estimation of models with time interaction. The last two differences only require

changing the FIT NEW TERM procedure.

The ePPR estimation algorithm is described in Listing 6. It consists of a forward

stepwise procedure followed by a backward stepwise procedure, and a model selection

procedure. The parameters of the algorithm are the responses, y, the input images, x,

the number of delays for the forward model, DL, the number of terms at each delay d for

the forward model, ML
d , the regularization parameter for the α’s, λ, and the number of

degrees of freedom for the φ’s, d.

Listing 6 ePPR

Require: y, x,DL, {ML
0 , . . . ,M

L
DL}, λ, d

1: (model, r)← FORWARD STEPWISE(y, x,DL, {ML
0 , . . . ,M

L
DL}, λ, d)

{Built forward model ŷ(i) = ȳ +
∑DL

d=0

∑ML
d

m=0 βm,dφm,d(α
T
m,dxi−d)}

2: models← BACKWARD STEPWISE(r, x, λ, d)
{Obtained models of the form ŷ(x) = ȳ +

∑D
d=0

∑Md

m=0 βm,dφm,d(α
T
m,dxi−d), having

between 1 term and the maximum number of terms in the forward model.}
3: model← SELECT BEST MODEL(models)
4: return model

ePPR forward stepwise procedure

The forward procedure estimates an ePPR model with delays d = 0, . . . , DL and con-

taining ML
d terms at delay d. An algorithmic description of this procedure is given in

Listing 7. It first defines the residuals r as the mean-subtracted responses. Then it fits

to these residuals ML
0 terms operating on images presented at the same time bin as the

responses. These ML
0 terms are fitted with the ePPR FIT NEW TERM procedure. Next, the

input images are shifted in time, so that the image presented at time i − 1 is displaced

to time i, and a new set of ML
1 terms operating on these shifted images is fitted to the

response residuals. In this way the response at time i has been approximated by ML
0

terms operating on the image presented at time i, plus additional ML
1 terms operating

on the image presented at time i − 1. After shifting the image DL times, the forward

ePPR model is constructed.
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Listing 7 ePPR: FORWARD STEPWISE

Require: y, x,DL, {ML
0 , . . . ,M

L
DL}, λ, d

1: r ← y − ȳ
2: for d ∈ 0 to DL do
3: for m ∈ 1 to ML

d do
4: α← GET INITIAL ALPHA(r, x)
5: (βm,d, φm,d, αm,d)← FIT NEW TERM(r, x, λ, d)
6: r = r − βm,dφm,d(α

T
m,dx)

7: end for
8: xi ← xi−1

9: end for{Built model ŷ(i) = ȳ +
∑DL

d=0

∑ML
d

m=1 βm,dφm,d(α
T
m,dxi−d)}

10: return model = [(β1,0, φ1,0, α1,0), . . . , (βML

DL
,DL , φML

DL
,DL , αML

DL
,DL)]

ePPR backward stepwise procedure

The ePPR backward stepwise procedure builds a list containing models having between

1 and
∑DL

d=0M
L
d terms. The procedure is described in Listing 8. It is similar to the same

procedure in PPR (Listing 3). The input model for this procedure is the output of the

ePPR FORWARD STEPWISE procedure. The procedure operates iteratively. Suppose that

at the beginning of one iteration model contains the M terms that best fit the response,

then model is saved in the models list, the least important term is dropped from model,

the residuals are adjusted according to the contribution of the dropped term, and the

parameters of the dropped model are refitted to the adjusted residuals. Then, by the end

of the iteration model approximates a model with M −1 terms that best fit the response.

In the next iteration model will be saved in the list of models and a model with the

best M − 2 terms fitting the response will be estimated. By the end of the loop, the

list models will contain
∑DL

d=0M
L
d models, where the M th model in this list will be the

M -term model that best approximates the response in the L2-norm.

The ePPR REFIT MODEL procedure is described in Listing 9. It is similar to the same

procedure in PPR (Listing 4), but adds a few statements to refit terms using appropriately

delayed images. The procedure begins by refitting the β parameters. Then it enters a

loop where each term is removed from the model, the images are shifted according to the

delay of the removed term, residuals are adjusted according to the contribution of the
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Listing 8 ePPR: BACKWARD STEPWISE

Require: model, r, x, λ, d
1: models← [ ]
2: for m = nTerms(model) downto 2 do
3: models← [models, model]
4: ((β, φ, α), model)← DROP LEAST IMPORTANT TERM(model)
5: r ← r + β φ(αTx)
6: model← REFIT MODEL(model, r, x, λ, d)
7: end for
8: models← [model, models]
9: return models

removed term, a new term is fitted to the adjusted residuals, this new term is added to

the back of the model, and the residuals are adjusted according to the contribution of

the new term.

Listing 9 ePPR: REFIT MODEL

Require: model, r, x, λ, d
1: model← REFIT MODEL BETAS(model)
2: noTerms← noTerms(model)
3: for m ∈ 1 to noTerms do
4: (βm, φm, αm, delay, model)← REMOVE FIRST TERM FROM MODEL(m, model)
5: xsi ← xi−delay

6: r ← r + βmφm(αT
mxs)

7: (β, φ, α)← FIT NEW TERM(r, xs, αm, λ, d)
8: model← ADD TERM TO BACK OF MODEL((β, φ, α), model)
9: r ← r − βφ(αTxs)

10: end for
11: return model

ePPR fit new term procedure

To avoid estimates that overfit noise in the responses, the ePPR estimation algorithm

penalizes estimates, ŷ, containing non-smooth projection directions. This is accomplished

by adding penalty terms to the PPR estimation criterion in Equation 3.2, as shown in

Equation 3.7. To account for these penalty terms the objective function used in PPR to

estimate a new term, Equation 3.3, is expanded to that used in ePPR, Equation 3.18.

The ePPR new term procedure optimizes the criterion J in Equation 3.18 with respect
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to the smooth function φ, and the projection direction α. This is performed iteratively.

In each iteration α is first fixed and φ is adjusted to minimize J . Then φ is fixed and

α is adjusted to minimize J . This iteration is repeated until the reduction in J for two

consecutive iterations falls below a convergence value. Finally, β is calculated and φ is

normalized. The procedure is described algorithmically in Listing 10.

J =
N
∑

i=1

(ri − φ(αTxi))
2 + λ||Lα||2 (3.18)

Listing 10 ePPR: FIT NEW TERM

Require: r, x, α, λ, d
1: repeat
2: Fix α and find φk+1 minimizing J̃(α, φ) =

∑N
i=1(ri − φ(αTxi))

2 {Smooth the scat-
terplot (αTxi, ri) using a smoothing spline with d degrees of freedom}

3: Fix φk+1 and update α along a Trust Region descent direction δk of J(α, φk+1) =
∑N

i=1(ri − φ(αTxi))
2 + λ||Lα||2 : αk+1 = αk + δk.

4: until J stops decreasing
5: β ←

√

E{φ2(αTx)}
6: φ← φ/β
7: return (β, φ, α)

Note that when α is fixed the second term in Equation 3.18 is a constant. So to

adjust φ, with α fixed, it suffices to minimize the first term in Equation 3.18. This

is done in the same way as in PPR. The procedure projects the input images onto α,

pi = αTxi, builds a scatter plot with the pairs of projections and residuals, (pi, ri), and

sets φ as the smoothing spline that best approximates, in the L2 norm, the points in the

scatter plot. The degrees of freedom d, controls the smoothness of the estimated splines.

Appendix 3.8.2.2 describes the procedure we used to select this parameter.

With φ fixed, Equation 3.18 can be expressed as the L2 norm of a nonlinear function

h̃ depending on α, as shown in Equation 3.19. Then, finding the value of α that mini-

mize Equation 3.19 for a fixed φ reduces to a nonlinear least-squares problem. For the
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reasons explained in Section 3.2.3, in ePPR this problem is solved using the Trust Region

method (Nocedal & Wright, 2006).

J =

N
∑

i=1

(ri − φ(αT
xi))

2 + λ||Lα||2 =

N
∑

i=1

|hi(α)|2 +
m
∑

j=1

|
√
λLαj |2 = ||h̃(α)||22 (3.19)

where hi(α) = ri − φ(αT
xi)

and h̃(α) = (h1(α), . . . , hN (α),
√
λ(Lα)1, . . . ,

√
λ(Lα)m)

As in PPR, αk is not updated until ||ĥ(αk)||
2
2 converges to a minimum. Instead, αk

is updated only once and then the algorithm proceeds with the next iteration.

ePPR select best model procedure

The backward-stepwise procedure (Listing 8) returns a set of models having between 1

and
∑DL

d=0M
L
d terms. The final ePPR estimate is selected from this set. Several strategies

have been proposed for selecting the best model from a set of candidate models (Burnham

& Anderson, 2002). Here we used cross-validation, as described in Section 3.7.6.

3.8.2.2 Selection of ePPR hyperparameters

Below we describe the ePPR hyperparameters and the procedure we used to select their

values. The hyperparameters selected to estimate the ePPR models used in this paper

are shown in Section 3.7.8.

Number of delays (DL) and number of terms per delay (ML
d ) for the forward

model

ePPR builds a forward model with a maximum delay of DL and with ML
d terms at each

delay d, 0 ≤ d ≤ DL. We set the parameters DL and ML
d so that the forward model

contained enough terms per delay, and enough delays, to characterize the cell response,

as indicated below.

149



Starting from the forward model, the backward stepwise procedure returns a list

of models where the nth model in this list is the ePPR model with n terms that best

predicts the cell responses. Then, the model selection procedure selects from this list the

final ePPR as that model with the minimum number of terms that best predicts the cell

responses. We set the values of DL and ML
d large enough so that the model selected

by the model selection procedure contains at most ML
d − 1 terms at every delay d and

the maximum delay is at most DL − 1. This guarantees that at least 1 term at every

delay, and all the terms at delay DL, were irrelevant for the model maximizing predictive

power. Thus, the forward model contained more terms per delay, and more delays, than

were needed by the model maximizing predictive power.

Regularization parameters for the filters (λ)

To avoid estimates overfitting noise in the responses we penalized estimates having non-

smooth projection directions, as show in Section 3.2.3, by adding penalty terms to the

ePPR optimization criterion in Equation 3.7. Each of these penalty terms has the form

λ||Lαm,d||
2. We chose λ by cross validation. We estimated ePPR models with different

values of λ and chose the value of λ maximizing predictions to data not used in fitting

the model parameters.

Degrees of freedom for the spines (d)

The degree of smoothness of the splines used to fit the nonlinear functions φm,d is con-

trolled by the degrees of freedom parameter, d. The standard procedure is to estimate

the value of this parameter from training data using standard or generalized cross valida-

tion (Green & Silverman, 1994). However, for the large levels of noise in neural responses,

these methods performed poorly. Better results were obtained by choosing d by cross-

validation. For the models estimated with intermediate level of noise for the simulated

cell, and for the models estimated with the largest amount of data for the cortical cells,

we verified, using cross-validation, that setting d = 5 provided reasonable results. So, to
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reduce the number of model estimates, for all estimations we fixed the degrees of freedom

for the splines to d = 5.

Convergence values for fitting new terms (addTermsCV and refitCV)

ePPR fits a new term by repeatedly minimizing the criterion J in Equation 3.18, first

with respect to α and then with respect to φ. These minimizations continue until the

reduction in J for two consecutive iterations falls below a convergence value. The ePPR

algorithm provides two convergence value hyperparameters addTermsCV and refitCV,

the former one is used when adding a new ePPR to the forward model, and the latter

one is used when refitting an ePPR term. For all the models estimated in this article we

used addTermsCV=0.01 and refitCV=0.001.

Trust region hyperparameters (r0, rmax, and iterlim)

At each iteration, the Trust Region algorithm minimizes a target function on a restricted

‘trust’ region where the function behaves well. The size of this trust region is changed

adaptively through the minimization (Nocedal & Wright, 2006). The r0 and rmax hyper-

parameters give the initial and maximal size of the trust region. The hyperparameters

iterlim controls the maximum number of iterations in the Trust Region algorithm. For

all the models estimated in this article we used r0=1, rmax=1,000, and iterlim=1,000.

3.8.3 Proofs

Proposition 1. Let x ∈ R
p and f(x) be a polynomial. Then

f(x) = ȳ +

M0
∑

m=1

βmφm(αT
mx) (3.20)

for constants ȳ, βm, vectors αm ∈ R
p, and univariate functions φm.
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Proof. Any polynomial f(x) can be written in the form f(x) =
∑n

i=0 fm(x) where fm(x)

is an homogeneous polynomial of degree m5. Proposition 2 proves that any homogeneous

polynomials fm(x) can be written in the form of Equation 3.20. Then, because the

sum of expressions of the form of Equation 3.20 is another expression of the form of

Equation 3.20, the proof is complete.

Proposition 2 is a more detailed and simplified version of a result by Diaconis and

Sahshahani (1984, Proposition 1). We provide this proof here for completeness, and

because the proof is very elegant. Our contribution to the result from Diaconis and

Sahshahani (1984) appears in Lemma 2, that replaces the algebraic independence argu-

ment, at the end of the original proof, by a simpler explanation using only concepts from

linear algebra.

Proposition 2. Let r =
(

m+p−1
m

)

be the number of distinct monomials of degree m. Then

there exist r distinct directions a1, a2, . . . , ar in R
p such that any homogeneous polynomial

f of degree m can be written as f(x) =
∑r

j=1 αj (x
Taj)m for some real numbers αj.

Proof. The space of homogeneous polynomial of degreem is an r-dimensional vector space

over the real numbers. Due to this dimensionality, to prove the proposition it suffices to

show that we can find r directions {aj}rj=1, such that the polynomials {(xTaj)m}rj=1 are

linearly independent.

Let mi(x), 1 ≤ i ≤ r, be an enumeration of all the monomials in homogeneous

polynomials of degree m. For each monomial mi(x), let Di be the associated differen-

tial operator (e.g., if mi(x) = x21x2x3, Di = ∂4/∂2x1∂x2∂x3). Lemma 1 proves that

Di(x
Taj)m = m! mi(a

j).

Suppose that for any {aj}rj=1 the polynomials {(xTaj)m}rj=1 were linearly dependent.

This happens if and only if, for any {aj}rj=1, the equation
∑r

j=1 cj (xTaj)m = 0 admits

5An homogeneous polynomial of degree m is a polynomial whose monomials with nonzero coefficients
all have the same total degree m. For example, x7

1 + x1x
4

2x
2

3 + x2

2x
5

3 is an homogeneous polynomial of
degree m = 7; the sum of the exponents in each term is always 7.
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a non-trivial solution. Then, applying Di to both sides of the previous equality we get

that, for any {aj}rj=1, the system of equations
∑r

j=1mi(a
j) cj = 0, 1 ≤ i ≤ r, admits a

non-trivial solution. Then, for any {aj}rj=1, the determinant of the matrix associated with

this system of equations must be zero, i.e., det(A) = 0, with Ai,j = mi(aj). As a function

of the coefficients of the directions, {ajl }, 1 ≤ j ≤ r, 1 ≤ l ≤ p, det(A) is a non-zero poly-

nomial with coefficients in the field of the rationals. Thus, the evaluation of the non-zero

polynomial det(A) should equal zero for any possible assignment of directions {aj}rj=1.

But this is not possible according to the contrapositive of Lemma 26. This contradiction

arose because we supposed that that for any {aj}rj=1 the polynomials {(xTaj)m}rj=1 were

linearly dependent. Therefore, there must exist a set of directions {aj}rj=1 such that the

polynomials {(xTaj)m}rj=1 are linearly independent, and the proposition is proved.

Lemma 1. Let x ∈ R
p and mi(x) = xn1

1 xn2

2 . . . x
np
p , with m =

∑p
j=1 nj. Associate with

mi(x) the differential operator Di =
∂m

∂x
n1

1
∂x

n2

2
...∂x

np
p
. Then Di(x

Taj)m = m! mi(a
j).

Proof. By the multinomial theorem

(xTaj)m =
∑

k1,k2,...,kp

m!

k1! k2! . . . kp!
(x1a

j
1)

k1(x2a
j
2)

k2 . . . (xpa
j
p)

kp (3.21)

where the summation is taken over all non-negative integers k1 through kp such that

∑p
j=1 kj = m. Applying Di to both sides of Equation 3.21 we obtain

Di(x
Taj)m =

∑

k1,k2,...,kp

m! (aj1)
k1(aj2)

k2 . . . (ajp)
kpDi

xk11 xk22 . . . x
kp
p

k1! k2! . . . kp!

6The contrapositive of Lemma 2 says that if F is a non-zero polynomial, with n variables and coefficients
in a infinite field k, then exist {bj}nj=1 ⊂ R such that F (b1, b2, . . . , bn) is not zero. Then, because det(A)
is a non-zero polynomial with rp variables and coefficients in the infinite field of the rationals, there must
exists {aj

l } ⊂ R, 1 ≤ j ≤ r, 1 ≤ l ≤ p such that det(A) 6= 0.
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But

Di
xk11 xk22 . . . x

kp
p

k1! k2! . . . kp!
=











1 if k1 = n1, k2 = n2, . . . , kp = np

0 otherwise

So

Di(x
Taj)m = m! (aj1)

n1(aj2)
n2 . . . (ajp)

np = m! mi(a
j)

Lemma 2. Let k be an infinite field, and F a polynomial with n variables and coefficients

in k. If F (b1, b2, . . . , bn) = 0, for all {bj}
n
j=1 ⊂ R. Then F = 0.

Proof. By induction on n.

n = 1: a non-zero and one-dimensional polynomial F of degree m with coefficients on

an infinite field has at most m roots. Then, if F (b1) = 0 for all b1 ∈ R, it follows that

F = 0.

n → n + 1: if F is a polynomial of degree m with coefficients in k and variables

x1, . . . , xn, xn+1, then we can write F =
∑m

i=0 Fi xin+1, where Fi is a polynomial with

coefficients in k and variables x1, . . . , xn. For example, if n = 1 and m = 2, F = c0 +

c11x1+c12x2+c211x
2
1+c212x1x2+c222x

2
2 = (c0+c11x1+c211x

2
1)+(c12+c212x1)x2+c22x

2
2 =

F0 + F1x2 + F2x
2
2, with F0 = c0 + c11x1 + c211x

2
1, F1 = c12 + c212x1, and F2 = c22.

Suppose F (b1, b2, . . . , bn+1) = 0, for all b1, b2, . . . , bn+1 ∈ R. Take b̃1, b̃2, . . . , b̃n ∈ R

and define G(xn+1) = F (b̃1, b̃2, . . . , b̃n, xn+1). Then G(bn+1) = F (b̃1, b̃2, . . . , b̃n, bn+1) = 0

for all bn+1 ∈ R. So, by the inductive hypothesis, G = 0, or Fi(b̃1, b̃2, . . . , b̃n) = 0, for 0 ≤

i ≤ m. Because b̃1, b̃2, . . . , b̃n are arbitrary elements in R, we have that Fi(b1, b2, . . . , bn) =

0, for 0 ≤ i ≤ m and for all b1, b2, . . . , bn ∈ R. So by the inductive hypothesis Fi = 0.

Thus, F =
∑m

i=0 Fix
i
n+1 = 0.

154



3.8.4 ePPR models without time interactions

Figures 3.10a and 3.10b show the parameters of an example ePPR model without time

interaction estimated from responses to natural stimuli, and with intermediate amount

of noise (0.56 spikes/image), of the simulated complex cell (Equation 3.8). Nonlinear

interactions between pixels of images at different delays are relevant to characterize the

responses of the simulated complex cell (Section 3.3), but these nonlinear interactions

cannot be accounted by ePPR models without time interaction (Section 3.2.2). Despite

this, the estimated filters (Figure 3.10a) well approximate the true filters of the simulated

model (Figure 3.2a). Also, the estimated nonlinear functions (Figure 3.10b) correctly re-

covered the facilitatory/suppressive nature of the associated filters. Figure 3.10c plots

the predictions of ePPR models with (red curve) and without (pink curve) time inter-

action. For comparison, it re-plots, from Figure 3.4, the predictions of second-order

multi-dimensional polynomials using ePPR filters with time interactions (orange curve).

At low and intermediate noise levels, 5.62 and 0.56 spikes/image, respectively, predic-

tions of the ePPR models with time interaction were significantly better than those of

the polynomial models (Wilcoxon signed-rank test, p < 0.01, Section 3.7.13), and at all

noise levels predictions of the ePPR model with time interactions were significantly better

than those ePPR models without time interaction (p < 0.01).

The parameters of an example ePPR models without time interactions estimated from

responses to natural stimuli of the cortical complex cell (Section 3.4) are shown in Fig-

ures 3.11a and 3.11b. At each delay, the filters without time interaction match well the

corresponding frames of the filters with time interaction (Figure 3.6a). For instance, the

filters at delay 0 of the model without time interaction (first row in Figure 3.11a), match

well the first frames of the three most important filters of the model with time interaction

(first frames of the three leftmost filters in Figure 3.6a). The nonlinear function of the

model without time interaction correspond well with those of the model with time inter-

action. For example, all the nonlinear functions at delays 0 and 1 of the model without

time interaction are facilitatory, and those at delay 2 are suppressive (Figure 3.11b). In
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Figure 3.10: Simulated cell: ePPR models without time interaction estimated from re-
sponses to natural stimuli. (a,b): filters (a) and nonlinear functions (b) of an example
model estimated from responses to natural stimuli with intermediate amount of noise
(0.56 spikes/image). The titles in (a) are the corresponding β coefficients. (c) predictive
power of ePPR models with and without time interaction compared to that of a polyno-
mial model. Orange curve: predictions for a second-order multi-dimensional polynomial
constructed with ePPR filters with time interaction (re-plotted from Figure 3.4a). Red
curve: predictions from ePPR models with time interaction. Pink curve: predictions
from ePPR models without time interaction. Black curve: upper bound on correlation
coefficients. Light red asterisks mark number of spikes/image at which predictions of
the ePPR models with time interaction were significantly better than those of the poly-
nomial models. Despite the mismatch between the simulated model in Equation 3.8,
that incorporates time interactions between pixels of images at different delays, and the
ePPR model without time interactions, that cannot model these interactions, the es-
timated filters (Figures 3.10a) well approximate the true filters (Figure 3.2a), and the
estimated nonlinear functions correctly recovered the facilitatory/suppressive nature of
the associated filters.
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Figure 3.11: Complex cell: ePPR models without time interaction estimated from re-
sponses to natural stimuli. Same format at Figure 3.10. The filters and nonlinear function
of this model are similar to those of the model with time interaction (Figure 3.6). The
ePPR model with time interaction predicts significantly better than the ePPR without
time interactions, demonstrating the relevance of nonlinear interactions between pixels of
images at different delay for the response of this complex cell.

agreement, the nonlinear functions of the four most important terms of the model with

time interaction, whose filters have most structure at delays 0 and 1, are facilitatory,

and the nonlinear function of the least important term of the natural model with time

interaction, whose filter has most structure at delay 2, is suppressive (Figure 3.6b). As

for the simulated cell, Figure 3.11c plots the predictions of ePPR models with (red curve)

and without (pink curve) time interaction, as well as those of a polynomial model using

the filters of ePPR models with time interaction (orange curve). ePPR models with time

interaction predict significantly better than ePPR models without time interaction. This

shows that nonlinear interactions between pixels of images at different delays are relevant

to predict the responses of this complex cell. Also, ePPR models with time interaction

yield better or equal predictions than polynomial models.

The ePPR model without time interaction estimated from responses of the simulated

LNL cell is described in Section 3.3.3, and that estimated from responses of the simulated

complex cell with temporally correlated inputs is described in Appendix 3.8.6.
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3.8.5 Varying the amount of divisive inhibition

Due to the divisive normalization, the simulated model in Equation 3.8 cannot be rep-

resented exactly by the ePPR model in Equation 3.6. However, as shown in Figure 3.2,

ePPR produced good approximations. To check if this positive result only holds for the

particular amount of inhibition used in our simulations, we estimated ePPR models from

responses with different amounts of inhibition.

We call the denominator in Equation 3.8 the inhibitory factor. The solid line in Fig-

ure 3.12a, re-plotted from Figure 3.2d, shows the principal angles between the true filters

and those of ePPR models estimated from simulated responses with a mean inhibitory

factor of 4.26, i.e., where the denominator in Equation 3.8 reduced the numerator, on

the average, 4.26 times. The dashed and dotted lines plot the principal angels for ePPR

models estimated from simulated responses with a mean inhibitory factor of 20.58 and

40.17, respectively.

When the mean inhibitory factor is increased by a factor of 5, from 4.26 to 20.59,

only the first principal angle increases marginally. And when the mean inhibitory factor

is increased by a factor of 10, from 4.26 to 40.17, only the third principal angle in-

creases substantially. This happens because two of the five ePPR models estimated from

responses with a mean inhibitory factor of 40.17 did not recover the inhibitory filter7.

To visualize the impact of increasing the amount of inhibition on ePPR estimates, Fig-

ures 3.12b and 3.12c show the filters and nonlinear functions of the model estimated from

responses with the largest inhibition and whose filters were most different from the true

filters (according to their principal angles). These estimates capture the most important

features of the true excitatory filters in Figure 3.2a.

7The ePPR estimation algorithm returns a collection of models having between one term and the
number of terms of the forward model (Appendix 3.8.2). From this collection we select the optimal model
using a cross-validation procedure (Section 3.7.6). Because in order to compute three principal angles we
need three estimated filters, for the two ePPR estimations where the optimal model contained two terms,
we used the suboptimal model with three terms returned by the ePPR algorithm to compute the three
principal angles.
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Figure 3.12: Varying the amount of divisive inhibition. (a): principal angles between the
true filters of the simulated model (Figure 3.2a) and those of ePPR models with time
interaction estimated from responses with varying amount of inhibition. (b,c): filters (b)
and nonlinear functions (c) of the ePPR model estimated from responses with the largest
inhibition and whose filters were most different from the true filters. Even though ePPR
models cannot represent exactly the simulated model with divisive inhibition, they yields
good approximations for a broad range of inhibition strengths.

Note that as the mean inhibitory factor increased from 4.26 to 20.58 to 40.17, the mean

of the simulated responses (Equation 3.8) decreased from 0.56 to 0.33 to 0.26 spikes per

frame. Then, because the noise is Poisson, as inhibition increased the signal to noise ratio

in the responses decreased. Hence, the degradation in the quality of the ePPR estimates

as the strength of the inhibition is increased does not only reflect the mismatch between

the simulated and ePPR models, but is also due to an increasing noise level.

Overall, Figure 3.12 shows that, although ePPR models cannot represent exactly the

simulated model with divisive inhibition, they yield good approximations for a large range

of inhibition strengths.
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3.8.6 Temporally correlated inputs

The simulated models and the real simple and complex cells were probed with stimuli

with natural spatial statistics, but that were temporally uncorrelated. To study the effect

of temporal correlations on ePPR estimates, we estimated ePPR models from responses

of the simulated model with intermediate amount of noise (Section 3.7.3) to the natural

movie ensemble (Section 3.7.2).

Figure 3.13a shows the filters of an estimated ePPR model without time interactions.

These filters capture the Gabor shape, orientation, and spatial frequency of the true filters

of the simulated model (Figure 3.2a). However, we see a few problems in these filters.

First, the cross oriented filter at delay 1 (second row and right column in Figure 3.13a)

should appear at delay 2. Second, one filter is missing at delay 1. Third, the shapes

of the the excitatory filters are distorted. For example, the estimated filters at delay

0 combine features of the true filters at delay 0 and 1. Despite these problems, the

estimated nonlinear functions have the correct quadratic shape and properly capture the

facilitatory/suppressive nature of the corresponding filters (Figure 3.13b). The estimated

ePPR model with time interactions contains only one term. Its filter (Figure 3.13c)

captures some features of the excitatory true filters (Figure 3.2a), like orientation, spatial

frequency, and position, but its shape is distorted. Its nonlinear function (Figure 3.13d)

is excitatory, but does not have the quadratic shape associated with the excitatory filters.

We see that temporal correlations in the inputs degrades the quality of the ePPR esti-

mates. To check if this negative impact of temporal correlations was a problem of ePPR

only, or a problem shared by other methods, we estimated MID filters (Section 3.7.9)

from the same responses to the natural movie ensemble. Figure 3.13e shows the first

three MID filters. Only the first MID filter contains structure. This filter has a Gabor

shape, with correct orientation and spatial frequency. However, the position of this filters

at delays 0 and 1 is incorrect, and the filter at delay 2 is spurious. So, correlations in the

inputs have a negative impact on the estimation of MID filters also.
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Figure 3.13f plots the predictive power of the filters of the ePPR model without

time interaction (Figure 3.13a), the filters of the ePPR model with time interaction

(Figure 3.13c), and the MID filters (Figure 3.13f), using a second-order multi-dimensional

polynomial (Section 3.7.12) as the predictive model. The predictions of the filters of ePPR

model without time interaction are significantly better than those of the ePPR model with

time interaction (Wilcoxon signed-rank test, p < 0.01, Section 3.7.13), and significantly

better than those of the MID filters (p < 0.01).

We see that for temporal correlated stimuli, which reduce the number of effective

stimulus, ePPR models without time interaction perform better than ePPR models with

time interaction.

3.8.7 Population plot

Figure 3.14a plots the correlation coefficients between mean cell responses to natural

stimuli and predictions of ePPR models without time interaction, as a function of the

maximal correlation coefficient between pairs of responses to repetitions of the stimuli8.

Only cells for which the maximal correlation coefficient between pairs of responses was

greater than 0.1 are shown. From these cells, the cortical complex cell studied in this

article is the one for which we obtained best correlation coefficients (filled black cir-

cle), but similar correlation coefficients, and qualitatively similar ePPR estimates, were

obtained for other complex cells. Figures 18b and 18c show the ePPR filters and non-

linear functions, respectively, of the cell with the lowest correlation coefficient between

cell responses and model prediction, illustrating that, even for complex cells with very

noisy responses, ePPR recovered well-structured models with parameters consistent with

previous findings.

The maximal correlation coefficient between pair of responses to repetitions of the

stimuli is inversely proportional to the noise level in the cell responses. As expected,

8The simple cell plotted as having a maximal correlation between repetition of zero was probed with
only one repetition of the stimuli, so we could not compute the maximal correlation between repetitions.
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filters. Light red line with asterisks indicate that the model on the left generated better
predictions than the model on the right. High correlations in the inputs substantially
degrade the quality of the ePPR and MID estimates. Due to the reduced number of
effective stimuli, ePPR models without time interaction yielded better estimates than
ePPRmodels with time interaction. Also, predictions from filters of ePPR models without
timer interactions were significantly better than those from filters of ePPR models with
time interaction, and those from MID filters.
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Figure 3.14: Population results: (a): correlation coefficients between mean cell responses
to natural stimuli and predictions from ePPR models without time interaction, as a
function of the maximal correlation coefficient between pairs of responses to repetitions
of the stimuli. (b,c): filters (b) and nonlinear functions (c) of the ePPR model without
time interaction estimated from responses of the cell with the lowest correlation coefficient
between cell responses and models predictions. Black circles: complex cells. Blue circles:
simple cells. Solid circles: example cells shown in this article. Only cells for which
the maximal correlation coefficient between pairs of responses was greater than 0.1 are
shown. The cortical complex cell studied in this article is the one for which we obtained
best correlation coefficients, but similar correlation coefficients, and qualitatively similar
ePPR estimates, were obtained for other complex cells. For example, the filters and
nonlinear functions of the cell with the lowest correlation coefficient between mean cell
responses and predictions from ePPR models are qualitatively similar to those of the
complex cell studied in this article (Figures 15a and 15b).

Figure 3.14 shows that the predictive power of ePPR models increases as the noise level

in the cell responses decreases.

The solid line shows the points where the correlation between cell responses and

model predictions equal the maximal correlation between repetitions. Because we used

the mean response to several repetitions of the stimuli as the cell response, the correlation

coefficient between this mean cell response and the ePPR model prediction can be, and

in almost all cases is, larger than the maximal correlation between individual repetitions.
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Chapter 4

Discussion

In this thesis we developed two methods for the characterization of visual cells from

their responses to natural stimuli. In Chapter 2 we described the Volterra Relevant

Space Technique (VRST) that allows the estimation of spatial Volterra models from re-

sponses of visual cells to arbitrary, including natural, stimuli. Volterra models have too

many parameters to directly estimate them from limited amounts of physiological data.

To overcome this limitation the VRST uses a substantiated hypothesis stating that the

response of visual cells depends on a specially low-dimensional subspace of the image

space. To estimate spatial low-dimensional subspaces we used the Projection Pursuit Re-

gression (PPR) algorithm. We showed that spatial low-dimensional subspaces estimated

by PPR and spatial Volterra models estimated by the VRST compared favorably with

low-dimensional suspaces and with nonlinear models estimated by state-of-the-art meth-

ods. Neglecting temporal properties of the response generation mechanism is a good first

approximation, but in most settings responses of visual cells are not spatial, but spatio-

temporal. So, in Chapter 3 we introduced the Extended Projection Prusuit Regression

(ePPR) algorithm. ePPR extends PPR to allow the estimation of spatio-temporal low-

dimensional subspaces, and overcomes limitations of PPR with natural stimuli. With

simulated and physiological data we demonstrated the feasibility of ePPR and we showed

that it compares favorably with current methods for the estimation of low-dimensional

subspaces. In addition, ePPRmodels estimated from responses of cortical cells to matched
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natural and artificial stimuli displayed important differences, showing that the observ-

able response properties of visual cells depend on the statistical properties of the stimuli

used to probe them. Thus, using natural stimuli for the characterization of visual cells is

relevant to understand natural vision.

Scientists that characterize response properties of visual cells from stimuli/response

data are currently divided into two groups: those that advocate the use of artificial

stimuli (refer to Rust & Movshon, 2005, for a discussion of this point of view), and

those supporting the use of natural stimuli (refer to Felsen & Dan, 2005, for a discussion

of this point of view). The main argument of the artificial stimuli group against the

use of natural stimuli is that “this use of natural images is so fraught with difficulty

that it is not useful” (Rust & Movshon, 2005). In this thesis we showed that the use

of natural stimuli to characterize visual cells is not only feasible (models of cortical cells

estimated using natural stimuli were very consistent with previous characterizations using

artificial stimuli) but essential if we want to understand how visual cells operate in their

natural operating conditions (models estimated using natural stimuli showed important

differences with respect to models estimated using artificial stimuli).

Recent increases in the amount of digitally collected data –from the Internet, to sen-

sor networks, to physiology– has lead to the development of novel statistical algorithms

that can well approximate a very large class of functions. One wonders how much will

these algorithm be able to learn about sensory cells, and what will be the role of human

intelligent input in this learning. We believe that these algorithms will be able to learn

a lot about sensory cells, and that they will reveal aspects of sensory processing that

have remained occluded by the use of simple parametric models estimated using artificial

stimuli. However, in Chapter 1 we described the bias/variance dilemma for the estima-

tion of models from input/output data. This is the dilemma between large bias in the

estimation of parametric models, and large variance in the estimation of non-parametric

models. We mentioned that a solution to this dilemma is the introduction of properly de-

signed biases into non-parametric models. In our opinion, it will be extremely difficult, if
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not impossible, for machines to autonomously learn these proper biases, for which human

intelligent input is essential. Moreover, we are skeptical that these algorithms will ever

be smart enough to discover such unique models as the one of the double helix structure

of the DNA molecule (Watson & Crick, 1953), or the one describing the initiation and

propagation of action potentials in neurons (Hodgkin & Huxley, 1952).

Below we outline a few directions of future research motivated by this thesis.

Population analysis of difference between natural and random stimulation In

Chapter 3 we showed that a simple and a complex cell in primary visual cortex dis-

played important differences in their response properties when they were probed

with natural or with random stimuli. On a second paper we will describe these

differences across the population of cells recorded by Felsen et al. (2005). A compli-

cation for this study is that most complex cells do not respond well to the random

stimuli used to stimulate them. Then, the comparison between a model well fitted

to natural responses and a model poorly fitted to random data is not trivial.

Model selection for ePPR In Chapter 3 we mentioned that, to remove spurious terms,

ePPR uses a model selection procedure based on cross-validation. For the large

amounts of data recorded from cortical cells this procedure worked reliably. How-

ever, large data sets are not very common in sensory neurophysiology. So, it is im-

portant to evaluate model selection procedures that do not require cross-validated

data and work with smaller datasets, e.g., Akaike information criterion (Akaike,

1974) or Bayesian information criterion (Schwarz, 1978). The estimation of the

filters and that of the nonlinear functions of ePPR models are regularized, so they

can be performed with smaller datasets. The model selection procedure is the only

component of the ePPR algorithm that requires large data sets. Thus, with a model

selection procedure that does not require cross-validated data, we will be able to

characterize many more visual cells for which only smaller datasets are available.
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Spatio-temporal Volterra models As in the spatial case, one could use the spatio-

temporal relevant dimensions obtained by ePPR to estimate spatio-temporal Volterra

models. Spatio-temporal Volterra models could reveal nonlinear interactions at the

pixel level that are not evident in ePPR models. However, Volterra models esti-

mated though the VRST can have large variability, and one should develop statis-

tical methods to asses this variability.

Assessing the variability in estimated Volterra and ePPR models To check the

variability in ePPR estimates, for each cell we estimated five ePPR models, from dif-

ferent resampled subsets of the training data. We did not observed large variability

in these estimates. However, a more rigorous statistical analysis of variability, for

example using bootstrap techniques (Efron & Tibshirani, 1993; Shao & Tu, 1995),

is pertinent. A complication is that most bootstrap techniques require independent

and identically distributed, data and the responses of cells analyzed in this thesis

are highly correlated, and therefore non-independent.

Non-parametric models for populations of cells A natural extension of the research

in this thesis is to move from the characterization of single cells to the characteriza-

tion of a simultaneously recorded population of cells. Recently, Pillow et al. (2008)

made a first contribution along this direction, by using a semi-parametric model to

characterize a population of retinal ganglion cells from their responses to artificial

stimuli. It would be useful to extend this work by estimating a more general non-

parametric model, and by using natural stimuli. The PPR algorithm, as described

in Friedman (1984a), can be used to estimate a model of the responses of multi-

ple cells. Although this model may be too restrictive, it is a good starting point

for a more general non-parametric model of populations of visual cells that can be

estimated using natural stimuli.

Application of the VRST and ePPR to other cortical systems In this thesis we

used the VRST and the ePPR algorithm to characterize cells in the visual system.
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But, these methods are general and can be applied to characterize cells in other

sensory systems. Moreover, Volterra models are currently being used to characterize

hippocampal cells (Song, Marmarelis, & Berger, 2009; Song, Wang, Marmarelis,

& Berger, 2009). These Volterra models are estimated using a low-dimensional

subspace, as in the VRST. But this low-dimensional subspace is constructed using

parametric Laguerre basis functions, instead of being learned non-parametrically

from the data, as in ePPR. Then, it would be useful to check how Volterra models

estimated using Laguerre basis functions compare with those estimated using basis

functions learned non-parametrically from the data, for the characterization of cells

in the hippocampus.

The research that lead to this thesis has been delightful. It combined beautiful data,

with powerful algorithms, and with elegant mathematical proofs. It is astonishing to hear

the preferences of something so minuscule as a visual cell responding to stimuli that it

likes or dislikes. Powerful algorithms applied to physiological data provide new glasses to

observe previously hidden aspects of nature. And the perfection of a mathematical proof

demonstrating a property of an algorithm that one has developed is dazzling.
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