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Uncovering low-dimensional structure in high-dimensional representations of
long-term recordings in people with epilepsy

Joaquı́n Rapela1, Timothée Proix1,2, Dmitrii Todorov1, Wilson Truccolo1,2

Abstract— Effective representations of recordings of epileptic
activity for seizure prediction are high-dimensional, which
prevents their visualization. Here we introduce and evaluate
methods to find low-dimensional (2D or 3D) descriptors of
these high-dimensional representations, which are amenable for
visualization. Once low-dimensional descriptors are found, it is
useful to identify structure in them. We evaluate clustering
algorithms to automatically identify this structure. In addition,
typical recordings of epileptic activity are long, extending for
several days or weeks. We present and assess extensions of the
previous methods to handle large datasets.

I. INTRODUCTION

Building good representations of data is essential for the
performance of machine learning methods in general [2],
and for the detection and prediction of epileptic seizures
in particular [1], [7]. We previously developed novel data
representations [6], [7] for the unique epilepsy recordings,
that we analyze in this manuscript. These are recordings from
layers two and three of human cortex obtained from a 10×10
(4×4mm2) microelectrode array intracortically implanted in
epileptic patients. A challenge with these representations is
their high dimensionality, which prevents their display and
the visual recognition of patterns in the data. Various ap-
proaches have been proposed to visualize high-dimensional
data. Some of these approaches display more than three
dimensions, e.g., parallel coordinates [4] and pixel-based vi-
sualizations [5]. Other approaches convert high-dimensional
data into two or three dimensions that can be easily dis-
played, e.g., t-distributed stochastic neighbor embedding (t-
SNE, [11]). Here we introduce and evaluate methods to learn
low-dimensional descriptors of high-dimensional representa-
tions of our microelectrode array recordings. We then use
clustering algorithms to automatically discover structure in
the learned low-dimensional descriptors.

Recent work have established the feasibility of long-term
recordings for epileptic patients, extending from several days
to years [3]. Hence, there is a need for new methods to
extract low-dimensional descriptors and to discover structure
in these very-long recordings of epileptic activity.
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In Section II-A we present and evaluate methods to find
low-dimensional descriptors of high-dimensional representa-
tions of recordings of epileptic activity, and in Section II-B
we describe and assess clustering methods to automatically
discover structure in these low-dimensional descriptors. Each
of these sections first describes and evaluates methods for
smaller recordings and then extends these methods to handle
very-long datasets.

II. RESULTS

A. Low-dimensional descriptors of high-dimensional repre-
sentations of recordings of epileptic activity

1) Short recordings: non-parametric t-SNE: Figure 1a
shows a scatter plot of the t-SNE two-dimensional descrip-
tors (Section IV-B) of a 2,102-dimensional representation
(Section IV-A) of a recording block containing three epileptic
seizures. t-SNE separates well inter-ictal (black and gray),
pre-ictal (green), ictal (red) and post-ictal (blue) samples. In
contrast, the PCA two-dimensional descriptors (Section IV-
C) failed to separate non-ictal features (Figure 1b).

We quantified the quality of the low-dimensional descrip-
tors by classifying points as inter-ictal vs. non-inter-ictal,
pre-ictal vs. non-pre-ictal, ictal vs. non-ictal and post-ictal
vs. non-post-ictal based on their low-dimensional coordinates
(multinomial logistic regression; function multinom of
package nnet of [8]). We reasoned that a relevant low-
dimensional descriptor should separate well different seizure
stages. Therefore, the better a low-dimensional descriptor of
recordings of epileptic activity is, the better we should be
able to classify the seizure stage of a sample point based on
its low-dimensional descriptor. Table I shows the area under
the receiver operating characteristic curve (AUC; computed
using function roc of package pROC of [8]) for classifying
seizure states using t-SNE and 2D-PCA as low-dimensional
descriptors and 487D-PCA as high-dimensional descriptors.
For all seizure stages, excluding the ictal stage, t-SNE yields
better classifications than PCA. The difference in AUC be-
tween the t-SNE low-dimensional descriptors and the 487D-
PCA high-dimensional descriptors is not large, suggesting
that t-SNE captures most of the relevant information of the
high-dimensional representation of seizure recordings.

2) Long-term recordings: parametric t-SNE: In the pre-
vious section we showed that non-parametric t-SNE pro-
duced relevant low-dimensional (2-D) descriptors of high-
dimensional (2,102-D) representations of recordings of
epileptic activity. A limitation of non-parametric t-SNE is
that its memory requirements grows as O(N2), where N
is the number of input data points. Therefore, it cannot
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Fig. 1. Scatter-plot for t-SNE (a) and PCA (b) two-dimensional descriptors. Colors indicate seizure stages (black and gray: inter-ictal, green: pre-ictal,
red:ictal, blue: post-ictal) and shades indicate seizure (light: seizure one, medium: seizure two, dark: seizure three). Black and gray indicate inter-ictal
samples at the beginning and end, respectively, of the recording block. t-SNE, but not PCA, separates well inter-ictal, pre-ictal, ictal and post-ictal samples.

t-SNE 2D-PCA 487D-PCA
inter-ictal 0.95 0.59 1.00

pre-ictal 0.90 0.58 0.99
ictal 0.71 0.88 0.86

post-ictal 0.99 0.68 0.99

TABLE I
AREA UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE FOR

THE CLASSIFICATION OF SAMPLES AS BELONGING OR NOT TO

DIFFERENT SEIZURE STATES (ROWS) FROM DIFFERENT

DIMENSIONALITY REDUCTION METHODS (COLUMNS).

represent very long-duration recordings extending for weeks
(several million samples), typical of recent recordings for
epileptic patients.

To overcome this limitation, we trained parametric models
(XGBoost and linear-regression models, Section IV-D) to
map high-dimensional representations to their t-SNE low-
dimensional descriptors. Once a parametric model has been
trained, we can input an arbitrarily large number of high-
dimensional feature vectors and obtain approximations of
their t-SNE low-dimensional descriptors.

Figure 2a shows the t-SNE low-dimensional descriptors
used to train parametric t-SNE models and Figure 2b shows
the low-dimensional descriptors used to test their accuracy.
Figure 2c and 2d shows the low-dimensional descriptors
predicted by XGBoost models for the train and test data,
respectively. Each figure’s title reports the Maximum Abso-
lute Error (MAE) achieved by the model (XGBoost MAE
train=0.98, test=3.61). Figures 2f and 2g show the t-SNE
low-dimensional descriptors for the train and test dataset,
respectively, predicted by the linear-regression model and
the corresponding MAEs (linear regression MAE train=4.01,
test=4.24).

We observe that for the training dataset the XGBoost low-

dimensional descriptors (Figure 2)c are more similar to the t-
SNE low-dimensional descriptors (Figure 2)a than the linear-
regression low-dimensional descriptors (Figure 2e). This
superiority is reflected in a smaller MAE for the XGBoost
(MAE=0.98) than for the linear-regression (MAE=4.01)
descriptors. The superiority of XGBoost over the linear-
regression model is also observed, although to a lesser
degree, in the test dataset (compare Figures 2b, 2d and 2f;
MAE XGBoost 3.61, linear regression 4.24).

We partitioned the complete dataset into training and
testing subsets, and repeated the operation 100 times . For
each partition we estimated XGBoost and linear-regression
models with the training samples and evaluated their predic-
tion power using the training and test subsets. Figures 3ab
show histograms of MAEs for training and testing samples,
respectively, for XGBoost (blue) and linear-regression (pink)
models. For both training and testing samples MAEs from
XGBoost models are significantly lower than those by linear-
regression models (p<1e-4), confirming the superiority of
XGBoost over linear regression as a parametric t-SNE model.

Although not perfect, the XGBoost and linear-regression
models provide reasonable approximations of t-SNE low-
dimensional descriptor of high-dimensional inputs. Addi-
tionally, XGBoost performs significantly better than linear
regression. Thus XGBoost is a practical parametric t-SNE
model to obtain low-dimensional descriptors of very large
number of samples, e.g. for long-term recordings in epilepsy.

B. Discovering structure in low-dimensional descriptors

In the previous section we described a methodology to
build low-dimensional descriptors of high-dimensional de-
scriptions of electrophysiological recordings from epilepsy.
We observed that the obtained low-dimensional descriptors
were separating well inter-ictal, pre-ictal, ictal and post-
ictal data points. However, as shown in Figure 1a, this
low-dimensional descriptor has a finer structure than the



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

Fig. 2. XGBoost and linear regression as parametric t-SNE descriptors. (a,b) t-SNE low-dimensional descriptor used to train and test the parametric
models in c-f. (c,d) XGBoost predictions of t-SNE low-dimensional descriptors from the train and test datasets. (e,f) as (c,d) but for linear-regression
parametric t-SNE model. Color indicate seizure stage (gray: inter-ictal, green: pre-ictal, red: ictal and blue: post-ictal). Titles in c-f show maximum absolute
error (MAE) between parametric model predictions and corresponding non-parametric t-SNE descriptors (e.g., the title in (c) shows the MAE between the
XGBoost predictions for train samples in (c) and the t-SNE low-dimensional descriptor of train data in (a)). For both train and test datasets, MAEs of
t-SNE are smaller than those of linear regression (see also resampling analysis in Figure 3).
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Fig. 3. Maximum absolute deviations (MAEs) between low-dimensional
descriptors of train (a) and test (b) samples predicted by XGBoost models
(blue) and by linear-regression models (pink) for different random data
partitions into train and test samples. p-value in top-right is the result of
a paired t-test for equality of the mean of XGBoost and linear-regression
predictions. Predictions by the XGBoost model are significantly better than
those by the linear-regression model, for both train and test samples.

one given by the previous seizures stages. In this section
we introduced methods to automatically discover this finer
structure, first in shorter-duration recordings and next in
longer-duration ones.

1) Short recordings: parametric t-SNE: To automatically
discover structure in t-SNE low-dimensional descriptors of
recordings of epileptic activity we clustered these descriptors
using the algorithm described in [9]. The obtained clusters
are shown in Figure 4a and seem to capture more visually
salient structure that those obtained using k-means (Sec-
tion IV-E) shown in Figure 4b.

2) Longer-duration recordings: non-parametric t-SNE: A
challenge of most clustering algorithms is that their memory
requirement grows as O(N2), where N is the number of
points to be clustered. Therefore, most clustering algorithms
cannot be used to group very large number of samples,
typical of recordings in epilepsy.

To cluster a very large number of low-dimensional t-SNE
descriptors, we propose the following procedure:

1) Use non-parametric t-SNE to obtain low-dimensional
descriptors of a smaller (representative) training dataset
of high-dimensional representations of recordings of
epileptic activity (as in Figure 1a),

2) Use the clustering algorithm devloped by [9] to cluster
this low-dimensional descriptors of the train dataset (as
in Figure 4a),

3) Use a parametric version of t-SNE (e.g., XGBoost or
linear regression) to derive low-dimensional descrip-
tors of (a possibly very large number of) new samples,
not included in the train data (as in Figure 2df).

4) Assign the low-dimensional descriptor of the new
samples to a cluster, from step two. Note: the method
of assignment of new samples to existing clusters
varies between clustering algorithms (e.g., in k-means

a new sample should be assigned to the cluster with
closest centroid, but in the algorithm by [9] it should
be assigned to the same cluster as its nearest neighbor
of higher local density).

For a dataset of reasonable size , we can simply run non-
parametric t-SNE on the whole dataset (as in Figure 1a),
and then cluster the output of t-SNE using the algorithm
by [9] (as in Figure 4a). The cluster labels obtained in this
way are the gold standard that the above procedure should
achieve when applied to this not too large dataset. To test the
accuracy of the above procedure we used a smaller dataset,
for which we could compute the above gold standard. We
then partitioned the dataset into train and test subsets. If
this procedure worked perfectly on this smaller dataset, the
cluster assigned to a new sample in step four should be
equal to the cluster assigned to it when non-parametric t-
SNE and the algorithm by [9] are run on the whole dataset.
Thus, to quantify the accuracy of the above procedure, we
measure percentage of correct assignments (i.e., cases where
the cluster label assigned to a sample, when t-SNE and the
clustering algorithm are run on the whole dataset, is the same
as the cluster label assigned using the above procedure).

We partitioned the complete dataset into train and test
samples 100 times, and for each partition we computed
the percentage of correct assignments using XGBoost and
linear regression parametric t-SNE models. The obtained
percentage of correct assignments for train and test samples
are shown in Figures 5a and 5b, respectively.

XGBoost assigned new samples to their correct cluster
around 80% of the time, and significantly outperformed
linear-regression. This shows that the procedure introduced
at the beginning of this section, using XGBoost as parametric
t-SNE model, is practical to discover low-dimensional struc-
ture in high-dimensional representations of long-duration
recordings of epileptic activity.

III. DISCUSSION

We found that t-SNE yields low-dimensional descriptors of
high-dimensional representations of recordings of epileptic
activity that separates well seizure stages, and that are
superior to low-dimensional descriptors derived from PCA
(Figure 1). We proposed and evaluated the use of XGBoost
and linear regression as parametric t-SNE models, showed
that XGBoost yields accurate predictions of low-dimensional
t-SNE descriptors, and demonstrated that XGBoost is better
than linear regression as a parametric t-SNE model (Figure 2
and 3). We showed that the clustering algorithm described
in [9] identifies visually salient clusters in t-SNE low-
dimensional descriptors, which are superior to clusters found
by PCA (Figure 4). We proposed a methodology to dis-
cover structure in high-dimensional representations of long-
duration recordings from epileptic subjects. We provided
preliminary evidence for its feasibility by showing that,
with XGBoost as parametric t-SNE model, this methodology
assigned correct structural labels to 80% of new samples.

The assessment of the methods introduced here is prelimi-
nary. We evaluated our methods in a 23-hour and 10-minute
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Fig. 4. Scatter-plot of t-SNE two-dimensional descriptor of all samples colored with cluster assignments from the [9] (a) and the k-means (b) algorithm.
The former algorithm, but not the latter, identifies visually-salient clusters. Here we use the [9] algorithm to discover structure in t-SNE low-dimensional
descriptors.
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Fig. 5. Accuracy in the assignment of parametric t-SNE (XGBoost
and linear-regression) predictions to [9] clusters of non-parametric t-SNE
samples. Percentage of parametric t-SNE predictions assigned to the same
cluster as the corresponding non-parametric t-SNE sample, for 100 para-
metric t-SNE models estimated and evaluated with different random train
and test subsamples of the complete dataset. XGBoost predictions (blue) are
significantly more often assigned to the same cluster as the corresponding
non-parametic t-SNE sample than linear-regression predictions (pink). The
80% mean correct assignment of XGBoost predictions to clusters of non-
parametric t-SNE samples suggests that the procedure using XGBoost,
described at the beginning of Section II-B.2, is a good parametric t-SNE
method, demonstrating that it is practical to find structure in t-SNE low-
dimensional descriptors of large datasets of epilepsy recordings.

block from one participant with epilepsy containing three
spike-and-wave seizures. Future research will test the new
methods in more subjects and other types of seizures. We
will also study the performance of the proposed methods
on epilepsy neural recordings extending for several days
and weeks. The clusters estimated by the [9] algorithm are
appealing because they are visually salient. Next, we will
study if these clusters are physiologically relevant. We hope

that some of these clusters will correspond to neural activity
anticipating the occurrence of epileptic seizures, allowing
the use of the methods introduced here for forecasting the
occurrence of seizures.

IV. METHODS

A. High-dimensional representations of epilepsy recordings

We recorded broadband intracortical field potentials (0.3
Hz - 7.5 kHz; sampling at 30 kHz) in a 23-hour and 10-
minute block period (42,896 samples) using a 10×10 (4×4
mm2) microelectrode array (96 recording electrodes plus
4 references) implanted in a person with focal epileptic
seizures [10], [12]. Recordings were obtained according to
an approve IRB protocol at MGH and with patient consent.
We did not include recordings from 6 electrodes due to poor
signal quality.

We measured local field potentials (LFPs) and multi-unit
activity (MUA) counts. LFPs were calculated by low-pass
filtering the broadband field potentials (Butterwordth filter,
order nine, cutoff frequency 500 Hz) and downsampling
the result at a frequency of 2 kHz. MUA counts we com-
puted by high-pass filtering the broadband field potentials
(Butterworth filter, order nine, cutoff frequency 250 Hz),
calculating the standard deviation of this high-passed signal,
sd, identifing MUA spikes as fluctuations in the high-passed
signal below -3 times sd, and calculating MUA counts by
summing the number of MUA spikes in 0.5 millisecond
windows (i.e., 2 kHz frequency).

Field potentials were segmented in four-second (over-
lapping) time windows, extracted every two seconds. This
procedure yielded 42,896 sample times, and 90 four-second
sample windows per sampling time (one sample window for
each valid recording electrode). For each sample time, we
represented the 90 sample windows as 2,102-dimensional
vectors by extracting features from local-field potential (LFP)
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and multi-unit activity (MUA) derived from the recorded
voltages. These features included LFP power spectrum (mul-
titaper) in 10 frequency bands, eigenvector centrality, leading
eigenvalue, mean and variance of LFP coherence matrix
for 10 frequency bands, MUA counts for each recording
electrode, eigenvector centrality and largest eigenvalue of
the correlation matrix of the MUA count, and eigenvector
centrality and largest eigenvalue of the correlation matrix
of the envelope of the MUA count. Please refer to [6], [7]
for further details on feature extraction from LFP and MEA
extracted from our microelectrode array recordings.

B. t-SNE low-dimensional descriptor

The input for t-SNE was a matrix A containing the
high-dimensional representation of the epilepsy recordings;
A ∈ <nFeatures=2,102×nSamples=42,896. We first reduced the
dimensionality of this matrix using PCA (Section IV-C)
keeping nPComp=487 principal components capturing 90%
of the variance of the high-dimensional representations,
giving a matrix B ∈ <nPComp×nSamples. Next, we computed
L1 distances between all the dimensionality reduced sample
points (i.e., between all pairs of columns in matrix B)
yielding a matrix C ∈ <nSamples×nSamples where C[i, j] =
L1 distance(B[, i], B[, j]). This distance matrix C was the
input to the Barnes-Hut implementation of t-SNE (function
Rtsne from package Rtsne of [8]) with default parame-
ters. We used the default parameter value perplexity=30
and verified that the results presented here were qualitatively
similar for perplexity ∈ [10, 50].

C. PCA low-dimensional descriptor

We used the function prcomp from [8] with parameters
center=scale=TRUE to z-score the high-dimensional
features across time) and keeping a pre-specified number of
principal components (nPComp = 2 for Figure 1b and for
column 2D-PCA of Table I; nPComp = 487 for t-SNE
pre-processing, Section IV-B and for column 487D-PCA of
Table I).

D. Parametric t-SNE models

XGBoost: we used the function xgboost from package
xgboost of [8] with regression trees (maximum depth=10,
learning rate=0.1). The optimal number of regression trees
was estimated by 5-fold cross validation using the function
xgb.cv from package xgboost of [8].
linear regression: we used the function lm from package
stats of [8].

E. Clustering t-SNE low-dimensional descriptors

Rodriguez & Laio (2014): we used the Matlab implementa-
tion of the algorithm reference in their paper. As input to this
implementation we provided an L1 distance matrix between
all pairs of t-SNE samples. As recommended in the article,
we set the parameter percentage of neighbors to 2%. We
manually selected ρmin = −0.1 (minimum local density)
and δmin = 2.0 (minimum distance to a point of higher
density) in order to get a relatively large number of clusters
(nClulsters=16).

k-means: we used the same number of clusters as for the [9]
algorithm (function kmeans of package stats of [8]).
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